
J. Intelligent Learning Systems & Applications, 2010, 2: 57-68
doi:10.4236/jilsa.2010.22009 Published Online May 2010 (http://www.SciRP.org/journal/jilsa)

Copyright © 2010 SciRes. JILSA

57

Self-Play and Using an Expert to Learn to Play
Backgammon with Temporal Difference Learning

Marco A. Wiering*

Department of Artificial Intelligence, University of Groningen, Groningen, Netherlands.
Email: m.a.wiering@rug.nl

Received October 22nd, 2009; revised January 10th, 2010; accepted January 30th, 2010.

ABSTRACT

A promising approach to learn to play board games is to use reinforcement learning algorithms that can learn a game
position evaluation function. In this paper we examine and compare three different methods for generating training
games: 1) Learning by self-play, 2) Learning by playing against an expert program, and 3) Learning from viewing ex-
perts play against each other. Although the third possibility generates high-quality games from the start compared to
initial random games generated by self-play, the drawback is that the learning program is never allowed to test moves
which it prefers. Since our expert program uses a similar evaluation function as the learning program, we also examine
whether it is helpful to learn directly from the board evaluations given by the expert. We compared these methods using
temporal difference methods with neural networks to learn the game of backgammon.

Keywords: Board Games, Reinforcement Learning, TD(λ), Self-Play, Learning From Demonstration

1. Introduction

The success of the backgammon learning program
TD-Gammon of Tesauro (1992, 1995) was probably the
greatest demonstration of the impressive ability of ma-
chine learning techniques to learn to play games. TD-
Gammon used reinforcement learning [1,2] techniques,
in particular temporal difference (TD) learning [2,3], for
learning a backgammon evaluation function from train-
ing games generated by letting the program play against
itself. This has led to a large increase of interest in such
machine learning methods for evolving game playing
computer programs from a randomly initialized program
(i.e., initially there is no a priori knowledge of the game
evaluation function, except for a human extraction of
relevant input features). Samuel (1959, 1967) pioneered
research in the use of machine learning approaches in his
work on learning a checkers program. In his work he
already proposed an early version of temporal difference
learning for learning an evaluation function.

For learning to play games, value function based rein-
forcement learning (or simply reinforcement learning) or
evolutionary algorithms are often used. Evolutionary
algorithms (EAs) have been used for learning to play
backgammon [4], checkers [5], and Othello [6] and were
quite successful. Reinforcement learning has been ap-
plied to learn a variety of games, including backgammon
[7,8], chess [9,10], checkers [11,12,13], and Go [14].

Other machine learning approaches learn an opening
book, rules for classifying or playing the endgame, or use
comparison training to mimic the moves selected by hu-
man experts. We will not focus on these latter ap-
proaches and refer to [15] for an excellent survey of ma-
chine learning techniques applied to the field of game-
playing.

EAs and reinforcement learning (RL) methods con-
centrate on evolving or learning an evaluation function
for a game position and after learning choose positions
that have the largest utility or value. By mapping inputs
describing a position to an evaluation of that position or
input, the game program can choose a move using some
kind of look-ahead planning. For the evaluation function
many function approximators can be used, but commonly
weighted symbolic rules (a kind of linear network), or a
multi-layer perceptron that can automatically learn non-
linear functions of the input is used.

A difference between EAs and reinforcement learning
algorithms is that the latter usually have the goal to learn
the exact value function based on the long term reward
(e.g., a win gives 1 point, a loss –1, and a draw 0),
whereas EAs directly search for a policy which plays
well without learning or evolving a good approximation
of the result of a game. Learning an evaluation function
with reinforcement learning has some advantages such as
better fine-tuning of the evaluation function once it is

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 58

quite good and the possibility to learn from single moves
without playing an entire game. Finally, the evaluation
function allows feedback to a player and can in combina-
tion with multiple outputs for different outcomes also be
used for making the game-playing program play more or
less aggressive.

In this paper we study the class of reinforcement
learning methods named temporal difference (TD)
methods. Temporal difference learning [3,7] uses the
difference between two successive positions for back-
propagating the evaluations of the successive positions to
the current position. Since this is done for all positions
occurring in a game, the outcome of a game is incorpo-
rated in the evaluation function of all positions, and
hopefully the evaluation functions improves after each
game. Unfortunately there is no convergence proof that
current RL methods combined with non-linear function
approximators such as feed-forward neural networks will
find or converge to an optimal value function.

For learning a game evaluation function for mapping
positions to moves (which is done by the agent), there are
the following three possibilities for obtaining experiences
or training examples; 1) Learning from games played by
the agent against itself (learning by self-play), 2) Learn-
ing by playing against a (good) opponent, 3) Learning
from observing other (strong) players play games against
each other. The third possibility might be done by letting
a strong program play against itself and let a learner pro-
gram learn the game evaluation function from observing
these games or from database games played by human
experts.

Research Questions. In this paper we compare dif-
ferent methods for acquiring and learning from training
examples. We pose ourselves the following research
questions:

1) Which method combined with temporal difference
learning results in the best performance after a fixed
number of games? Is observing an expert player, playing
against an expert, or self-play the best method?

2) When the learning program immediately receives
accurate evaluations of encountered board positions, will
it then learn faster than when it uses its initially random-
ized function approximator and TD-learning to get the
board evaluations?

3) Is a function approximator with more trainable pa-
rameters more efficient for learning to play the game of
backgammon than a smaller representation?

4) Which value for λ in TD (λ) works best for obtain-
ing the best performance after a fixed number of games?

Outline. This paper first describes game playing pro-
grams in section 2. Section 3 describes reinforcement
learning algorithms. Then section 4 presents experimen-
tal results with learning the game of backgammon for
which the above mentioned three possible methods for

generating training games are compared. Section 5 con-
cludes this paper.

2. Game Playing Programs

Game playing is an interesting control problem often
consisting of a huge number of states, and therefore has
inspired research in artificial intelligence for a long time.
In this paper we deal with two person, zero-sum, alterna-
tive move games such as backgammon, Othello, draughts,
Go, and chess. Furthermore, we assume that there is no
hidden state such as in most card games. Therefore our
considered board games consist of:

1) A set of possible board positions.
2) A set of legal moves in a position.
3) Rules for carrying out moves.
4) Rules for deciding upon termination and the result

of a game.
A game playing program consists of a move generator,

a look-ahead algorithm, and an evaluation function. The
move generator just generates all legal moves, possibly
in some specific order (taking into account some priority).
The look-ahead algorithm deals with inaccurate evalua-
tion functions. If the evaluation function would be com-
pletely accurate, look-ahead would only need to examine
board positions resulting from each legal move. For most
games an accurate evaluation function is very hard to
make, however. Therefore, by looking ahead many moves,
positions much closer to the end of a game can be exam-
ined and the difference in evaluations of the resulting
positions is larger and therefore the moves can be more
easily compared. A well known method for looking ahead
in games is the Minimax algorithm, however faster algo-
rithms such as alpha-beta pruning, Negascout, or princi-
pal variation search [16,17] are usually used for good
game playing programs.

If we examine the success of current game playing
programs, such as Deep Blue which won against Kas-
parov in 1997 [18], then it relies heavily on the use of
very fast computers and look-ahead algorithms. Deep
Blue can compute the evaluation of about 1 million posi-
tions in a second, much more than a human being who
examines less than 100 positions in a second. Also
draughts playing programs currently place emphasis on
look-ahead algorithms for comparing a large number of
positions. Expert backgammon playing programs only
use 3-ply look-ahead, however, and focus therefore much
more on the evaluation function.

Board games can have a stochastic element such as
backgammon. In backgammon dice are rolled to deter-
mine the possible moves. Although the dice are rolled
before the move is made, and therefore for a one-step
look-ahead the dice are no computational problem, this
makes the branching factor for computing possible posi-
tions after two or more moves much larger (since then
look-ahead needs to take into account the 21 outcomes of

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 59

the two dice). This is the reason that looking ahead many
moves in stochastic games is infeasible for human ex-
perts or computers. For this Monte Carlo simulations [19]
can still be helpful for evaluating a position, but due to
the stochasticity of these games, many games have to be
simulated.

On the other hand, we argue that looking ahead is not
very necessary due to the stochastic element. Since the
evaluation function is determined by dice, the evaluation
function will become smoother since a position’s value is
the average evaluation of positions resulting from all dice
rolls. In fact, in backgammon it often does not matter too
much whether some single stone or field occupied by 2
or more stones are shifted one place or not. This can be
again explained by the dice rolls, since different dice in
similar positions can results in a large number of equal
subsequent positions. Looking ahead multiple moves for
backgammon may be helpful since it combines approxi-
mate evaluations of many positions, but the variance may
be larger. A search of 3-ply is commonly used by the
best backgammon playing programs [7,8].

This is different with e.g. chess or draughts, since for
these games (long) tactical sequences of moves can be
computed which let a player win immediately. Therefore,
the evaluations of many positions later vary significantly
and are more easily compared. Furthermore, for chess or
draughts moving a piece one position can make the dif-
ference between a winning and losing position. Therefore
the evaluation function is much less smooth (evaluations
of close positions can be very different) and harder to
learn. We think that the success of learning to play
backgammon [8] relies on this smoothness of the evalua-
tion function. It is well known that learning smooth func-
tions requires less parameter for a machine learning al-
gorithm and therefore faster search for a good solution
and better generalization.

In the next section we will explain how we can use TD
methods for learning to play games. After that the results
of using TD learning for learning the game of Back-
gammon using different strategies for obtaining training
examples will be presented.

3. Reinforcement Learning

Reinforcement learning algorithms are able to let an
agent learn from its experiences generated by its interac-
tion with an environment. We assume an underlying
Markov decision process (MDP) which does not have to
be known to the agent. A finite MDP is defined as; 1)
The state-space S = {s1, s2, . . . , sn}, where st ∈ S de-
notes the state of the system at time t; 2) A set of actions
available to the agent in each state A(s), where at ∈ A(st)
denotes the action executed by the agent at time t; 3) A
transition function P (s, a, s’) mapping state action pairs s,
a to a probability distribution of successor states s’; 4) A

reward function R(s, a, s’) which denotes the average
reward obtained when the agent makes a transition from
state s to state s’ using action a, where rt denotes the
(possibly stochastic) reward obtained at time t; 5) A dis-
count factor 0 ≤ γ ≤ 1 which discounts later rewards
compared to immediate rewards.

3.1 Value Functions and Dynamic Programming

In optimal control or reinforcement learning, we are in-
terested in computing or learning an optimal policy for
mapping states to actions. We denote an optimal deter-
ministic policy as π∗(s) → a∗|s. It is well known that for
each MDP, one or more optimal deterministic policies
exist. An optimal policy is defined as a policy that re-
ceives the highest possible cumulative discounted re-
wards in its future from all states.

In order to learn an optimal policy, value-function
based reinforcement learning [1,2,3] uses value functions
to summarize the results of experiences generated by the
agent in the past. We denote the value of a state Vπ(s) as
the expected cumulative discounted future reward when
the agent starts in state s and follows a particular policy
π:

Vπ(s) = E (∑i = 0 γ
iri |s0 = s, π)

The optimal policy is the one which has the largest
state-value in all states. It is also well-known that there
exists a recursive equation known as the Bellman opti-
mality equation [20] which relates a state value of the
optimal value function to other optimal state values
which can be reached from that state using a single local
transition:

V∗(s) =∑s’ P (s, π∗(s), s’) (R(s, π∗(s), s’) + γV∗(s’))

Value iteration can be used for computing the optimal
V-function. For this we repeat the following update many
times for all states:

Vk+1(s) = maxa ∑s’ P (s, a, s’) (R(s, a, s’) + γVk(s’))

The agent can then select optimal actions using:

π∗(s) = argmaxa ∑s’ P (s, a, s’) (R(s, a, s’) + γV∗(s’))

3.2 Reinforcement Learning

Although dynamic programming algorithms can be effi-
ciently used for computing optimal solutions for particu-
lar MDPs, they have some problems for more practical
applicability; 1) The MDP should be known a-priori; 2)
For large state-spaces the computational time would be-
come very large; 3) They cannot be directly used in con-
tinuous state-action spaces.

Reinforcement learning algorithms can cope with
these problems; first of all the MDP does not need to be
known a-priori, all that is required is that the agent is
allowed to interact with an environment which can be
modeled as an MDP; secondly, for large or continuous

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 60

state-spaces, an RL algorithm can be combined with a
function approximator for learning the value function.
When combined with a function approximator, the agent
does not have to compute state-action values for all pos-
sible states, but can concentrate itself on parts of the
state-space where the best policies lead into.

There are a number of reinforcement learning algo-
rithms, the first one known as temporal difference learn-
ing or TD(0) [3] computes an update of the state value
function after making a transition from state st to state
st+1 and receiving a reward of rt on this transition by us-
ing the temporal difference learning rule:

V(st) = V(st) + α(rt + γV(st+1) − V(st))

where 0 < α ≤ 1 is the learning rate (which is treated here
as a constant, but should decay over time for conver-
gence proofs). Although it does not compute action-value
functions, it can be used to learn the value function of a
fixed policy (policy-evaluation). Furthermore, if com-
bined with a model of the environment, the agent can use
a learned state value function to select actions:

π(s) = argmaxa ∑s’ P (s, a, s’)(R(s, a, s’) + γV(s’))

It is possible to learn the V-function of a changing pol-
icy that selects greedy actions according to the value
function. This still requires the use of a transition func-
tion, but can be used effectively for e.g. learning to play
games [7,8].

There exists a whole family of temporal difference
learning algorithms known as TD(λ)-algorithms [3]
which are parameterized by the value λ which makes the
agent look further in the future for updating its value
function. It has been proved [21] that this complete fam-
ily of algorithms converges under certain conditions to
the same optimal state value function with probability 1
if tabular representations are used. The TD(λ)-algorithm
works as follows. First we define the TD(0)-error of V(st)
as:

δt = (rt + γV(st + 1) − V(st))

TD(λ) uses a factor λ ∈ [0, 1] to discount TD-errors
of future time steps:

V(st) ← V(st) + αδt
λ

where the TD(λ)-error δt
λ is defined as

δt
λ = ∑i = 0 (γλ)i δt+i

Eligibility traces. The updates above cannot be made
as long as TD errors of future time steps are not known.
We can compute them incrementally, however, by using
eligibility traces [3,22]. For this we use the update rule:

V(s) = V(s) + αδtet(s)

for all states, where et(s) is initially zero for all states and
updated after every step by:

et(s) = γλet−1(s) + ηt(s)

where ηt(s) is the indicator function which returns 1 if
state s occurred at time t, and 0 otherwise. A faster algo-
rithm to compute exact updates is described in [23]. The
value of λ determines how much the updates are influ-
enced by events that occurred much later in time. The
extremes are TD(0) and TD(1) where (online) TD(1)
makes the same updates as Monte Carlo sampling. Al-
though Monte Carlo sampling techniques that only learn
from the final result of a game do not suffer from biased
estimates, the variance in updates is large and that leads
to slow convergence. A good value for λ depends on the
length of an epoch and varies between applications, al-
though often a value between 0.6 and 0.9 works best.

3.3 Reinforcement Learning with Neural
Networks

To learn value functions for problems with many state
variables, there is the curse of dimensionality; the num-
ber of states increases exponentially with the number of
state variables, so that a tabular representation would
quickly become infeasible in terms of storage space and
computational time. Also when we have continuous states,
a tabular representation requires a good discretization
which has to be done a-priori using knowledge of the
problem, and a fine-grained discretization will also qui-
ckly lead to a large number of states. Therefore, instead
of using tabular representations it is more appropriate to
use function approximators to deal with large or con-
tinuous state spaces.

There are many function approximators available such
as neural networks, self-organizing maps, locally
weighted learning, and support vector machines. When
we want to combine a function approximator with rein-
forcement learning, we want it to learn fast and online
after each experience, and be able to represent continu-
ous functions. Appropriate function approximators com-
bined with reinforcement learning are therefore feed-
forward neural networks [24].

In this paper we only consider fully-connected feed-
forward neural networks with a single hidden layer. The
architecture consist of one input layer with input units
(when we refer to a unit, we also mean its activation):
I1, . . . , I|I |, where |I | is the number of input units, one
hidden layer H with hidden units: H1 , . . . , H|H|, and one
output layer with output units: O1, . . . , O|O|. The network
has weights: wih for all input units Ii to hidden units Hh,
and weights: who for all hidden Hh to output units Oo.
Each hidden unit and output unit has a bias bh or bo with
a constant activation of 1. The hidden units most often
use sigmoid activation functions, whereas the output
units use linear activation functions.

Forward propagation. Given the values of all input
units, we can compute the values for all output units with

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 61

forward propagation. The forward propagation algorithm
looks as follows:

1) Clamp the input vector I by perceiving the envi-
ronment.

2) Compute the values for all hidden units Hh ∈ H as
follows:

Hh = σ (∑i wih Ii + bh), where σ(x) is the Sigmoid func-
tion: σ(x) = 1/(1+e-x).

3) Compute the values for all output units Oo = ∑h who
Hh + bo.

Backpropagation. For training the system we can use
the back-propagation algorithm [25]. The learning goal is
to learn a mapping from the inputs to the desired outputs
Do for which we update the weights after each example.
For this we use backpropagation to minimize the squared
error measure:

E = ½∑o (Do – Oo)
2

To minimize this error function, we update the weights
and biases in the network using gradient descent steps
with learning rate α. We first compute the delta values of
the output units (for a linear activation function):

δO (o) = (Do − Oo)

Then we compute the delta values of all hidden units
(for a sigmoid activation function):

δH (h) = ∑o δO(o)who Hh(1 − Hh)

Then we change all hidden-output weights and output
bias values:

who = who + αδO(o)Hh; bo = bo + αδO(o)

And finally we change all input-hidden weights and
hidden bias values:

wih = wih + αδH(h)Ii; bh = bh + αδH(h)

Offline TD-methods. All we need is a desired output
and then backpropagation can be used to compute weight
updates to minimize the error-function on every different
example. To get the desired output, we can simply use
offline temporal difference learning [26] which waits
until an epoch has ended and then computes desired val-
ues for the different time-steps. For learning to play
games this is useful, since learning from the first moves
will not immediately help to play the rest of the game
better. In this paper we used the offline TD(λ) method
which provides the desired values for each board position,
taking into account the result of a game and the predic-
tion of the result by the next state. The final position at
time-step T is scored with the result rT of the game, i.e. a
win for white (= 1), a win for black (= –1) or a draw (= 0).

V′(sT) = rT (1)

The desired values of the other positions are given by
the following function:

V′(st) = γV(st+1) + rt + λγ(V′(st+1) − V(st+1))

After this, we use V′(st) as the desired value of state
st and use back-propagation to update all weights. In
Backgammon, we used a minimax TD-rule for learning
the game evaluation function. Instead of using an input
that indicates which player is allowed to move, we al-
ways reverted the position so that white was to move. In
this case, evaluations of successive positions are related
by V(st) = −V(st + 1). Without immediate reward and a
discount factor of 1, the minimax TD-update rule be-
comes:

V′(st) = −V(st+1) + λ(V(st+1) − V′(st+1))

4. Experiments with Backgammon

Tesauro’s TD-Gammon program learned after about
1,000,000 games to play at human world class level, but
already after 300,000 games TD-Gammon turned out to
be a good match against the human grand-master Rober-
tie. After this TD-Gammon was enhanced by a 3-ply
look-ahead strategy that made it even stronger. Currently,
TD-Gammon is still probably the best backgammon
playing program in the world, but other programs such as
BGBlitz from Frank Berger or Fredrik Dahl’s Jellyfish
also rely on neural networks as evaluation functions and
obtained a very good playing level. All of these programs
are much better than Berliner’s backgammon playing
program BKG [27] which was implemented using human
designed weighted symbolic rules to get an evaluation
function.

4.1 Learning an Expert Backgammon Program

We use an expert backgammon program against which
we can train other learning programs and which can be
used for generating games that can be observed by a
learning program. Furthermore, in later experiments we
can evaluate the learning programs by playing test-games
against this expert. To make the expert player we used
TD-learning combined with learning from self-play using
hierarchical neural network architecture. This program
was trained by playing more than 1 million games
against itself. Since the program was not always improv-
ing by letting it play more training games, we tested the
program after each 10,000 games for 5,000 test games
against the best previous saved version. Then we re-
corded the score for each test and the weights of the
network architecture with the highest score were saved.
Then after each 100,000 games we made a new opponent
which was the previous network with the highest score
over all tests and this program was also used as learning
program and further trained by self-play while testing it
against the previous best program. This was repeated
until there was no more progress, i.e. the learning pro-
gram was not able to significantly beat the previous best
learned program anymore. This was after more than
1,000,000 training games.

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 62

Architecture. We used modular neural network ar-
chitecture, since different strategic positions require dif-
ferent knowledge for evaluating the positions [28]. There-
fore we used a neural network architecture consisting of
the following 9 neural networks for different strategic
position classes, and we also show how many learning
examples these networks received during training this
architecture by self-play:

1) One network for the endgame; all stones are in the
inner-board for both players or taken out (10.7 million
examples).

2) One network for the racing game or long endgame;
the stones can not be beaten anymore by another stone
(10.7 million examples).

3) One network for positions in which there are no
stones on the bar or stones in the first 6 fields for both
players (1.9 million examples).

4) One network if the player has a prime of 5 fields or
more and the opponent has one piece trapped by it (5.5
million examples).

5) One network for back-game positions where one
player has a significant pip-count disadvantage and at
least three stones in the first 6 fields (6.7 million exam-
ples).

6) One network for a kind of holding game; the player
has a field with two stones or more or one of the 18, 19,
20, or 21 points (5.9 million examples).

7) One network if the player has all its stones further
than the 8 point (3.3 million examples).

8) One network if the opponent has all its stones fur-
ther than the 8 point (3.2 million examples).

9) One default network for all other positions (34.2
million examples).

For each position which needs to be evaluated, our
symbolic categorization module uses the above rules to
choose one of the 9 networks to evaluate (and learn) a
position. The rules are followed from the first category to
the last one, and if no rule applies then the default cate-
gory and network is used.

Input features. Using this modular design, we also
used different features for different networks. E.g., the
endgame network does not need to have inputs for all
fields since all stones have been taken out or are in the
inner-board of the players. For the above mentioned
neural network modules, we used different inputs for the
first (endgame), second (racing game), and other (general)
categories. The number of inputs for them is:

1) For the endgame we used 68 inputs, consisting of
56 inputs describing raw input information and 12 higher
level features.

2) For the racing game (long endgame) we used 277
inputs, consisting of the same 68 inputs as for the end-
game, another 192 inputs describing the raw board in-
formation, and 17 additional higher level features.

3) For the rest of the networks (general positions) we
used 393 inputs consisting of 248 inputs describing raw
board information and 145 higher level features includ-
ing for example the probabilities that stones can be hit by
the opponent in the next move.

For the neural networks we used 7 output units in
which one output learned on the average result and the
other six outputs learned a specific outcome (such as
winning with 3, 2, or 1 point or losing with 3, 2, or 1
point). The good thing of using multiple output units is
that there is more learning information going in the net-
works. Therefore the hidden units of the neural networks
need to be useful for storing predictive information for
multiple related subtasks, possibly resulting in better
representations [29]. For choosing moves, we combined
the average output with the combined outputs of the
other output neurons to get a single board position
evaluation. For this we took the average of the single
output (with a value between –3 and 3) and the combined
value of the other outputs times their predicted probabil-
ity values. Each output unit only learned from the same
output unit in the next positions using TD-learning (so
the single output only learned from its own evaluations
of the next positions). Finally, the number of hidden units
(which use a sigmoid activation function) was 20 for the
endgame and long endgame, and 40 for all other neural
networks. We call the above described network architec-
ture the large neural network architecture and trained it
by self-play using TD(λ) learning with a learning rate of
0.01, a discount factor γ of 1.0, and a value for λ of 0.6.
After learning we observed that the 2 different evaluation
scores were always quite close and that the 6 output units
usually had a combined activity close to 1.0 with only
sometimes small negative values (such as –0.002) for
single output units if the probability of the result was 0,
which only have a small influence on the evaluation of a
position.

Now we obtained an expert program, we can use it for
our experiments in analyzing the results of new learners
that train by self-play, train by playing against this expert,
or learn by viewing games played by the expert against
itself.

4.2 Experiments with Learning Backgammon

We first made a number of simulations in which 200,000
training games were used and after each 5,000 games we
played 5,000 test games between the learner and the ex-
pert to evaluate the learning program. Because these
simulations took a lot of time (several days for one
simulation), they were only repeated two times for every
setup.

The expert program was always the same as described
before. For the learning program we also made use of a
smaller architecture consisting of three networks; one for
the endgame of 20 hidden units, one for the long end-

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 63

game (racing game) of 20 hidden units, and one for the
other board positions with 40 hidden units. We also used
a larger network architecture with the same three net-
works, but with 80 hidden units for the other board posi-
tions, and finally we used an architecture with 20, 20, 40
hidden units with a kind of radial basis activation func-

tion: Hj = .These architectures were trained
by playing training games against the expert. We also
experimented with a small network architecture that
learns by self-play or by observing games played by the
expert against itself.

ij i j(W I +b)2e

Because the evaluation scores fluctuate a lot during the
simulation, we smoothed them a bit by replacing the
evaluation of each point (test after n games) by the aver-
age of it and its two adjacent evaluations. Since we used
2 simulations, each point is therefore an average of 6
evaluations obtained by testing the program 5,000 games
against the expert (without the possibility of doubling the
cube). For all these experiments we used extended back-
propagation [30] and TD(λ)-learning with a learning rate
of 0.01 and an eligibility trace factor λ of 0.6 that gave
the best results in preliminary experiments. Figures 1
and 2 show the obtained results.

First of all, it can be noted that the neural network ar-
chitecture with RBF like activation functions for the
hidden units works much worse. Furthermore, it can be
seen that most other approaches work quite well and
reach equity of almost 0.5. Table 1 shows that all archi-
tectures, except for the architecture using RBF neurons,
obtained an equity higher than 0.5 in at least one of

Figure 1. Results for different architectures from learning
against the expert, and the small architecture that learns by
self-play or by observing games of the expert

Figure 2. Results for different architectures from learning
against the expert, and the small architecture that learns by
self-play or by observing games of the expert. More detailed
plot without the architecture with RBF hidden units

Table 1. Results for the different methods as averages of 6
matches of 5,000 games played against the expert. Note that
the result after 5,000 games is the average of the tests after
100, 5000, and 10000 games

Architecture 5000 100,000 175,000
Max
after

Max
eval

Small Network 0.327 0.483 0.478 190,000 0.508

Large architecture 0.290 0.473 0.488 80,000 0.506

Network 80 hidden 0.309 0.473 0.485 155,000 0.505

Network 40 RBF 0.162 0.419 0.443 120,000 0.469

Small network Self-play 0.298 0.471 0.477 200,000 0.502

Small network Observing 0.283 0.469 0.469 110,000 0.510

the 80 tests. Testing these found solutions 10 times for
5000 games against the expert indicated that their play-
ing strengths were equal. If we take a closer look at Fig-
ure 2, we can see that the large architecture with many
module finally performs a bit better than the other ap-
proaches and that learning by observing the expert
reaches a slightly worse performance.

Smaller simulations. We also performed a number of
smaller simulations of 15,000 training games where we
tested after each 500 games for 500 testing games. We
repeated these simulations 5 times for each neural net-
work architecture and method for generating training

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 64

games. Because there is an expert available with the
same kind of evaluation function, it is also possible to
learn with TD-learning using the evaluations of the ex-
pert itself. This is very similar to supervised learning,
although the agent generates its own moves (depending
on the method for generating games). In this way, we can
analyze what the impact of bootstrapping on an initially
bad evaluation function is compared to learning immedi-
ately from outputs for positions generated by a better
evaluation function. Again we used extended back-
propagation [30] and TD(λ) with a learning rate of 0.01
and set λ = 0.6.

In Figure 3, we show the results of the smaller archi-
tecture consisting of three networks with 20, 20, and 40
hidden units. We also show the results in Figure 4 where
we let the learning programs learn from evaluations
given by the expert program, but for which we still use
TD-learning on the expert’s evaluations with λ = 0.6 to
make training examples.

The results show that observing the expert play and
learning from these generated games progress slower and
reach slightly worse results within 15,000 games if the
program learns from its own evaluation function. In Fig-
ure 4 we can see faster learning and better final results
if the programs learn from the expert’s evaluations
(which is like supervised learning), but the differences are
not very large compared to learning from the own evalua-
tion function. It is remarkable that good performance

Figure 3. Results for the small architecture when using a
particular method for generating games. The evaluation on
which the agent learns is its own

Figure 4. Results when the expert gives the evaluations of
positions

has already been obtained after only 5,000 training games.

In Table 2 we can see that if we let the learning pro-
gram learn from games played against the expert, in the
beginning it almost always loses (its average test-result
or equity after 100 training games is 0.007), but already
after 500 training games the equity has increased to an
average value of 0.26. We can conclude that the learning
program can learn its evaluation function by learning
from the good positions of its opponent. This good
learning performance can be attributed to the minimax
TD-learning rule, since otherwise always losing will
quickly result in a simple evaluation function that always
returns a negative result. However, using the minimax
TD-learning rule, the program does not need to win
many games in order to learn the evaluation function.
Learning by self-play performs almost as good as learn-
ing from playing against the expert. If we use the ex-
pert’s evaluation function then learning progresses much
faster in the beginning, although after 10,000 training
games almost the same results are obtained. Learning by
observing the expert playing against itself progresses
slower and reaches worse results if the learning program
learns from its own evaluation function. If we look at the
learning curve, we can still see that it is improving how-
ever.

We repeated the same simulations for the large archi-
tecture consisting of 9 modules. The results are shown in
Figures 5 and 6. The results show that learning with the
large network architecture progresses much slower,
which can be explained by the much larger number of

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 65

Table 2. Results for the three different methods for gener-
ating training games with learning from the own or the
expert’s evaluation function. The results are averages of 5
simulations

Method Eval-function 100 500 1000 5000 10,000

Self-play Own 0.006 0.20 0.36 0.41 0.46

Self-play Expert 0.15 0.33 0.38 0.46 0.46

Against expert Own 0.007 0.26 0.36 0.45 0.46

Against expert Expert 0.20 0.35 0.39 0.47 0.47

Observing expert Own 0.003 0.01 0.16 0.41 0.43

Observing expert Expert 0.05 0.22 0.32 0.45 0.46

Figure 5. Results for the large architecture when using a
particular method for generating games. The evaluation on
which the agent learns is its own

parameters which need to be trained and the fewer ex-
amples for each individual network. The results also
show that learning from observing the expert play against
itself performs worse than the other methods, although
after 15,000 games this method also reaches quite high
equities, comparable with the other methods. The best
method for training the large architecture is when games
are generated by playing against the expert. Figure 6
shows faster progress if the expert’s evaluations are used.

Effect of λ. Finally, we examine what the effect of dif-
ferent values for λ is when the small architecture learns
by playing against the expert. We tried values for λ of 0.0,
0.2, 0.4, 0.6, 0.8, and 1.0. When using λ = 1 we needed to
use a smaller learning-rate, since otherwise initially the

weights became much too large. Therefore we used a
learning rate of 0.001 for λ = 1.0 and a learning rate of
0.01 for the other values for λ. Figure 7 shows the results
averaged over 5 simulations. It can be seen that a λ-value
of 1.0 works much worse and that values of 0.6 or 0.8
perform the best. Table 3 shows the results after 100,
500, 1000, 5000, and 10,000 games. We can see that
higher values of λ initially result in faster learning which

Figure 6. Results for the large architecture when using a
particular method for generating games. Results when the
expert gives the evaluations

Figure 7. Results for the small architecture when using dif-
ferent values for λ. The games are generated by self-play

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 66

Table 3. Results for different values of λ when the small
architecture learns against the expert

λ 100 500 1000 5000 10,000

0.0 0.004 0.13 0.31 0.42 0.43

0.2 0.002 0.24 0.34 0.43 0.45

0.4 0.002 0.26 0.35 0.44 0.44

0.6 0.007 0.26 0.36 0.45 0.46

0.8 0.06 0.34 0.39 0.44 0.45

1.0 0.12 0.23 0.31 0.39 0.40

can be explained by the fact that bootstrapping from the
initially random evaluation function does not work too
well and therefore larger eligibility traces are profitable.
After a while λ values between 0.2 and 0.8 perform all
similarly.

4.3 Discussion

Learning a good evaluation function for backgammon
with temporal difference learning appears to succeed
very well. Already within few thousands of games which
can be played in less than one hour a good playing level
is learned with equity of around 0.45 against the expert
program. We expect this equity to be similar to a human
player who regularly plays backgammon. The results
show that learning by self-play and by playing against
the expert obtain the same performance.

Learning by observing an expert play progresses ap-
proximately two or three times slower than the other
methods. In our current experiments the learning pro-
gram observed another program that still needed to select
moves. Therefore there was no computational gain in
generating training games. However, if we would have
used a database, then in each position also one-step
look-ahead would not be needed. Since the branching
factor for a one-step look-ahead search is around 16 for
backgammon, we would gain 94% of the computational
time for generating and learning from a single game.
Therefore learning from database games could still be
advantageous compared to learning by self-play or play-
ing against an expert. A problem of using a (small) data-
base is that overfitting the evaluation function may occur.
This may be solved by combining this approach with
learning by self-play. In the large experiment, the learn-
ing behavior of the method that learns by observing the
expert is a bit more fluctuating, but it still obtained equity
a bit larger than 0.5 during one of the test-games in the
large experiment and additional tests indicated that its
playing strength at that point was equal to the expert
player.

We also noted that training large architectures initially
takes longer which can be simply explained by the larger
number of parameters which need to be learned and
fewer examples for individual modules. After training for
a longer time, such bigger architectures can reach higher
performance levels than smaller architectures. We note
that since the agent learns on the same problem as on
which it is tested, in these cases overfitting does not oc-
cur. A large value for λ (larger than 0.8) initially helps to
improve the learning speed, but after some time smaller
values for λ (smaller than 0.8) perform better. An an-
nealing schedule for λ may therefore be useful. Finally
we observed in all experiments that the learning pro-
grams are not always improving by playing more games.
This can be explained by the fact that there is no conver-
gence guarantee for RL and neural networks. Therefore
testing the learning program against other fixed programs
on a regular basis is necessary to be able to save the best
learning program. It is interesting to note the similarity to
evolutionary algorithms evolving game playing programs
which also use tests. However, we expect that temporal
difference learning and gradient descent is better for
fine-tuning the evaluation function than a more random-
ized evolutionary search process.

Another approach that receives a lot of attention in re-
cent RL research and good results for particular control
problems is kernel-based least policy iteration (LSPI)
learning [31]. However, it is unlikely that RBF kernels
will generalize well to the huge state space of backgam-
mon and that therefore kernel based LSPI is not likely to
be successful. In fact, we implemented Support vector
machines with RBF kernels for the game of Othello, and
this showed indeed that RBF kernels are not good for
games involving huge state-spaces. For this sigmoid
functions are needed, but they are difficult to use as ker-
nels, since they require a lot of structural design. The use
of neural networks with sigmoid activation functions is
therefore the current method of choice for difficult
games.

5. Conclusions

In this paper different strategies for obtaining training
examples for learning game evaluation functions have
been examined. The possible advantage of playing against
or observing an expert, namely that games are initially
played at a high level was not clearly shown in the ex-
perimental results. We will now return to our research
questions and answer them here.

1) Question 1. Which method combined with temporal
difference learning results in the best performance after a
fixed number of games? Is observing an expert player,
playing against an expert, or self-play the best method?

Answer. The results indicate that observing an expert
play is the worst method. The reason can be that the
learning program is never actively involved in playing

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 67

and therefore can not learn to penalize particular moves
that it may have overestimated. Learning by playing
against an expert seems to be the best strategy. Another
approach that could be useful is learning from the expert
combined with learning by self-play.

2) Question 2. When the learning program immedi-
ately receives accurate evaluations of encountered board
positions, will it then learn faster than when it uses its
initially randomized function approximator and TD-
learning to estimate the board evaluations?

Answer. Initially, learning goes much faster when ac-
curate evaluations are given. However, after 10,000
training games, the disadvantage of the initially random-
ized function approximator has almost disappeared.

3) Question 3. Is a function approximator with more
trainable parameters more efficient for learning to play
the game of backgammon than a smaller representation?

Answer. Yes, in general the larger function approxi-
mators obtain better performance levels, although in the
beginning they learn at a slower rate. Since the agent is
tested on exactly the same problem as on which it is
trained (different from supervised learning), overfitting
does not occur in reinforcement learning.

4) Question 4. Which value for λ in TD(λ) works best
for obtaining the best performance after a fixed number
of games?

Answer. Initially larger values for λ result in a faster
learning rate. However, the final performance is best for
intermediate values of λ around 0.6. It should be noted
that this observation is quite problem specific.

Future work. Although in this paper it was demon-
strated that learning from observing an expert is not prof-
itable to learn to play backgammon, we also mentioned
some advantages of using an expert or a database. Ad-
vantages of learning from experts are that the system
does not explore the whole huge state-space and that in
some applications it is a safer method for obtaining ex-
periences than learning by trial-and-error. Furthermore,
learning game evaluation functions from databases has
the advantage that no look-ahead during game-play is
necessary.

Learning from experts or databases can also be used
for other applications, such as learning in action or stra-
tegic computer games for which human games played
with a joystick can be easily recorded. Furthermore, for
therapy planning in medicine, databases of therapies may
be available and could therefore be used for learning
policies. For robotics, behavior may be steered by hu-
mans and these experiences can be recorded and then
learned by the robot [32]. Thus, we still think that learn-
ing from observing an expert has many advantages and
possibilities for learning control knowledge, although
care should be taken that the learner tries out its own
behavior during learning.

REFERENCES
[1] L. P. Kaelbling, M. L. Littman and A. W. Moore, “Rein-

forcement Learning: A Survey,” Journal of Artificial In-
telligence Research, Vol. 4, 1996, pp. 237-285.

[2] R. S. Sutton and A. G. Barto, “Reinforcement Learning:
An Introduction,” The MIT press, Cambridge, MA, 1998.

[3] R. S. Sutton, “Learning to Predict by the Methods of
Temporal Differences,” Machine Learning, Vol. 3, 1988,
pp. 9-44.

[4] J. B. Pollack and A. D. Blair, “Why Did TD-Gammon
Work,” In: D. S. Touretzky, M. C. Mozer and M. E. Has-
selmo, Ed., Advances in Neural Information Processing
Systems 8, MIT Press, Cambridge, MA, 1996, pp. 10-16.

[5] D. B. Fogel, “Evolving a Checkers Player without Rely-
ing on Human Experience,” Intelligence, Vol. 11, No. 2,
2000, pp. 20-27.

[6] D. E. Moriarty, “Symbiotic Evolution of Neural Net-
works in Sequential Decision Tasks,” PhD thesis, De-
partment of Computer Sciences, The University of Texas
at Austin, USA, 1997.

[7] G. Tesauro, “Practical Issues in Temporal Difference
Learning,” In: D. S. Lippman, J. E. Moody and D. S.
Touretzky, Ed., Advances in Neural Information Proc-
essing Systems 4, Morgan Kaufmann, San Mateo, CA,
1992, pp. 259-266.

[8] G. J. Tesauro, “Temporal Difference Learning and TD-
Gammon,” Communications of the ACM, Vol. 38, 1995,
pp. 58-68.

[9] S. Thrun, “Learning to Play the Game of Chess,” In: G. Te-
sauro, D. Touretzky and T. Leen, Ed., Advances in Neural
Information Processing Systems 7, Morgan Kaufmann, San
Fransisco, CA, 1995, pp. 1069-1076.

[10] J. Baxter, A. Tridgell and L. Weaver, “Knightcap: A
Chess Program that Learns by Combining TD(λ) with
Minimax Search,” Technical report, Australian National
University, Canberra, 1997.

[11] A. L. Samuel, “Some Studies in Machine Learning Using
the Game of Checkers,” IBM Journal on Research and
Development, Vol. 3, No. 3, 1959, pp. 210-229.

[12] A. L. Samuel, “Some Studies in Machine Learning Using
the Game of Checkers II—Recent Progress,” IBM Jour-
nal on Research and Development, Vol. 11, No. 6, 1967,
pp. 601-617.

[13] J. Schaeffer, M. Hlynka and V. Hussila, “Temporal Dif-
ference Learning Applied to a High-Performance Game,”
In Seventeenth International Joint Conference on Artifi-
cial Intelligence, Seattle, WA, USA, 2001, pp. 529-534.

[14] N. N. Schraudolph, P. Dayan and T. J. Sejnowski, “Tem-
poral Difference Learning of Position Evaluation in the
Game of Go,” In: J. D. Cowan, G. Tesauro and J. Al-
spector, Ed., Advances in Neural Information Processing
Systems, Morgan Kaufmann, San Francisco, CA, 1994,
pp. 817-824.

[15] J. Furnkranz, “Machine Learning in Games: A Survey,”
In: J. Furnkranz and M. Kubat, Ed., Machines that learn
to Play Games, Nova Science Publishers, Huntington,

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning

Copyright © 2010 SciRes. JILSA

68

NY, 2001, pp. 11-59.

[16] A. Plaat, “Research Re: search and Re-search,” PhD the-
sis, Erasmus University Rotterdam, Holland, 1996.

[17] J. Schaeffer, “The Games Computers (and People) Play,”
Advances in Computers, Vol. 50, 2000, pp. 189-266.

[18] J. Schaeffer and A. Plaat, “Kasparov versus Deep Blue:
The Re-match,” International Computer Chess Associa-
tion Journal, Vol. 20, No. 2, 1997, pp. 95-102.

[19] R. Coulom, “Efficient Selectivity and Backup Operators
in Monte-Carlo Tree Search,” Proceedings of the fifth In-
ternational Conference on Computers and Games, Turin,
Italy, 2006, pp. 72-83.

[20] R. Bellman, “Dynamic Programming,” Princeton Univer-
sity Press, USA, 1957.

[21] J. N. Tsitsiklis, “Asynchronous Stochastic Approximation
and Q-learning,” Machine Learning, Vol. 16, 1994, pp.
185-202.

[22] A. G. Barto, R. S. Sutton and C. W. Anderson, “Neu-
ronlike Adaptive Elements that Can Solve Difficult
Learning Control Problems,” IEEE Transactions on Sys-
tems, Man and Cybernetics, Vol. 13, 1983, pp. 834-846.

[23] M. A. Wiering and J. H. Schmidhuber, “Fast Online
Q(λ),” Machine Learning, Vol. 33, No. 1, 1998, pp. 105-
116.

[24] C. M. Bishop, “Neural Networks for Pattern Recogni-
tion,” Oxford University, New York, 1995.

[25] D. E. Rumelhart, G. E. Hinton and R. J. Williams,
“Learning Internal Representations by Error Propaga-

tion,” In: D. E. Rumelhart and J. L. Mcclelland, Ed., Par-
allel Distributed Processing, MIT Press, USA, 1986, pp.
318-362.

[26] L.-J. Lin, “Reinforcement Learning for Robots Using
Neural Networks,” PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, 1993.

[27] H. Berliner, “Experiences in Evaluation with BKG—A
Program that Plays Backgammon,” In Proceedings of the
International Joint Conference on Artificial Intelligence,
Vol. 1, 1977, pp. 428-433.

[28] J. A. Boyan, “Modular Neural Networks for Learning
Context-Dependent Game Strategies,” Master’s thesis,
University of Chicago, USA, 1992.

[29] R. Caruana and V. R. de Sa, “Promoting Poor Features to
Supervisors: Some Inputs Work Better as Outputs,” In: M.
C. Mozer, M. I. Jordan and T. Petsche, Ed., Advances in
Neural Information Processing Systems 9, Morgan Kauf-
mann, San Mateo, CA, 1997, pp.246-252.

[30] A. Sperduti and A. Starita, “Speed up Learning and Net-
work Optimization with Extended Backpropagation,”
Neural Networks, Vol. 6, 1993, pp. 365-383.

[31] X. Xu, D. Hu and X. Lu, “Kernel-Based Least Squares
Policy Iteration for Reinforcement Learning,” IEEE
Transactions on Neural Networks, Vol. 18, No. 4, 2007,
pp. 973-992.

[32] W. Smart and L. Kaelbling, “Effective Reinforcement
Learning for Mobile Robots,” Proceedings of the IEEE
International Conference on Robotics and Automation,
Washington, DC, USA, 2002, pp. 3404-3410.

