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ABSTRACT 

A promising approach to learn to play board games is to use reinforcement learning algorithms that can learn a game 
position evaluation function. In this paper we examine and compare three different methods for generating training 
games: 1) Learning by self-play, 2) Learning by playing against an expert program, and 3) Learning from viewing ex-
perts play against each other. Although the third possibility generates high-quality games from the start compared to 
initial random games generated by self-play, the drawback is that the learning program is never allowed to test moves 
which it prefers. Since our expert program uses a similar evaluation function as the learning program, we also examine 
whether it is helpful to learn directly from the board evaluations given by the expert. We compared these methods using 
temporal difference methods with neural networks to learn the game of backgammon. 
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1. Introduction 

The success of the backgammon learning program 
TD-Gammon of Tesauro (1992, 1995) was probably the 
greatest demonstration of the impressive ability of ma-
chine learning techniques to learn to play games. TD- 
Gammon used reinforcement learning [1,2] techniques, 
in particular temporal difference (TD) learning [2,3], for 
learning a backgammon evaluation function from train-
ing games generated by letting the program play against 
itself. This has led to a large increase of interest in such 
machine learning methods for evolving game playing 
computer programs from a randomly initialized program 
(i.e., initially there is no a priori knowledge of the game 
evaluation function, except for a human extraction of 
relevant input features). Samuel (1959, 1967) pioneered 
research in the use of machine learning approaches in his 
work on learning a checkers program. In his work he 
already proposed an early version of temporal difference 
learning for learning an evaluation function. 

For learning to play games, value function based rein-
forcement learning (or simply reinforcement learning) or 
evolutionary algorithms are often used. Evolutionary 
algorithms (EAs) have been used for learning to play 
backgammon [4], checkers [5], and Othello [6] and were 
quite successful. Reinforcement learning has been ap-
plied to learn a variety of games, including backgammon 
[7,8], chess [9,10], checkers [11,12,13], and Go [14]. 

Other machine learning approaches learn an opening 
book, rules for classifying or playing the endgame, or use 
comparison training to mimic the moves selected by hu-
man experts. We will not focus on these latter ap-
proaches and refer to [15] for an excellent survey of ma-
chine learning techniques applied to the field of game- 
playing. 

EAs and reinforcement learning (RL) methods con-
centrate on evolving or learning an evaluation function 
for a game position and after learning choose positions 
that have the largest utility or value. By mapping inputs 
describing a position to an evaluation of that position or 
input, the game program can choose a move using some 
kind of look-ahead planning. For the evaluation function 
many function approximators can be used, but commonly 
weighted symbolic rules (a kind of linear network), or a 
multi-layer perceptron that can automatically learn non- 
linear functions of the input is used. 

A difference between EAs and reinforcement learning 
algorithms is that the latter usually have the goal to learn 
the exact value function based on the long term reward 
(e.g., a win gives 1 point, a loss –1, and a draw 0), 
whereas EAs directly search for a policy which plays 
well without learning or evolving a good approximation 
of the result of a game. Learning an evaluation function 
with reinforcement learning has some advantages such as 
better fine-tuning of the evaluation function once it is 
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quite good and the possibility to learn from single moves 
without playing an entire game. Finally, the evaluation 
function allows feedback to a player and can in combina-
tion with multiple outputs for different outcomes also be 
used for making the game-playing program play more or 
less aggressive. 

In this paper we study the class of reinforcement 
learning methods named temporal difference (TD) 
methods. Temporal difference learning [3,7] uses the 
difference between two successive positions for back- 
propagating the evaluations of the successive positions to 
the current position. Since this is done for all positions 
occurring in a game, the outcome of a game is incorpo-
rated in the evaluation function of all positions, and 
hopefully the evaluation functions improves after each 
game. Unfortunately there is no convergence proof that 
current RL methods combined with non-linear function 
approximators such as feed-forward neural networks will 
find or converge to an optimal value function. 

For learning a game evaluation function for mapping 
positions to moves (which is done by the agent), there are 
the following three possibilities for obtaining experiences 
or training examples; 1) Learning from games played by 
the agent against itself (learning by self-play), 2) Learn-
ing by playing against a (good) opponent, 3) Learning 
from observing other (strong) players play games against 
each other. The third possibility might be done by letting 
a strong program play against itself and let a learner pro-
gram learn the game evaluation function from observing 
these games or from database games played by human 
experts. 

Research Questions. In this paper we compare dif-
ferent methods for acquiring and learning from training 
examples. We pose ourselves the following research 
questions: 

1) Which method combined with temporal difference 
learning results in the best performance after a fixed 
number of games? Is observing an expert player, playing 
against an expert, or self-play the best method?  

2) When the learning program immediately receives 
accurate evaluations of encountered board positions, will 
it then learn faster than when it uses its initially random-
ized function approximator and TD-learning to get the 
board evaluations?  

3) Is a function approximator with more trainable pa-
rameters more efficient for learning to play the game of 
backgammon than a smaller representation?  

4) Which value for λ in TD (λ) works best for obtain-
ing the best performance after a fixed number of games?  

Outline. This paper first describes game playing pro-
grams in section 2. Section 3 describes reinforcement 
learning algorithms. Then section 4 presents experimen-
tal results with learning the game of backgammon for 
which the above mentioned three possible methods for 

generating training games are compared. Section 5 con-
cludes this paper. 

2. Game Playing Programs 

Game playing is an interesting control problem often 
consisting of a huge number of states, and therefore has 
inspired research in artificial intelligence for a long time. 
In this paper we deal with two person, zero-sum, alterna-
tive move games such as backgammon, Othello, draughts, 
Go, and chess. Furthermore, we assume that there is no 
hidden state such as in most card games. Therefore our 
considered board games consist of: 

1) A set of possible board positions. 
2) A set of legal moves in a position. 
3) Rules for carrying out moves. 
4) Rules for deciding upon termination and the result 

of a game. 
A game playing program consists of a move generator, 

a look-ahead algorithm, and an evaluation function. The 
move generator just generates all legal moves, possibly 
in some specific order (taking into account some priority). 
The look-ahead algorithm deals with inaccurate evalua-
tion functions. If the evaluation function would be com-
pletely accurate, look-ahead would only need to examine 
board positions resulting from each legal move. For most 
games an accurate evaluation function is very hard to 
make, however. Therefore, by looking ahead many moves, 
positions much closer to the end of a game can be exam-
ined and the difference in evaluations of the resulting 
positions is larger and therefore the moves can be more 
easily compared. A well known method for looking ahead 
in games is the Minimax algorithm, however faster algo-
rithms such as alpha-beta pruning, Negascout, or princi-
pal variation search [16,17] are usually used for good 
game playing programs. 

If we examine the success of current game playing 
programs, such as Deep Blue which won against Kas-
parov in 1997 [18], then it relies heavily on the use of 
very fast computers and look-ahead algorithms. Deep 
Blue can compute the evaluation of about 1 million posi-
tions in a second, much more than a human being who 
examines less than 100 positions in a second. Also 
draughts playing programs currently place emphasis on 
look-ahead algorithms for comparing a large number of 
positions. Expert backgammon playing programs only 
use 3-ply look-ahead, however, and focus therefore much 
more on the evaluation function. 

Board games can have a stochastic element such as 
backgammon. In backgammon dice are rolled to deter-
mine the possible moves. Although the dice are rolled 
before the move is made, and therefore for a one-step 
look-ahead the dice are no computational problem, this 
makes the branching factor for computing possible posi-
tions after two or more moves much larger (since then 
look-ahead needs to take into account the 21 outcomes of 
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the two dice). This is the reason that looking ahead many 
moves in stochastic games is infeasible for human ex-
perts or computers. For this Monte Carlo simulations [19] 
can still be helpful for evaluating a position, but due to 
the stochasticity of these games, many games have to be 
simulated. 

On the other hand, we argue that looking ahead is not 
very necessary due to the stochastic element. Since the 
evaluation function is determined by dice, the evaluation 
function will become smoother since a position’s value is 
the average evaluation of positions resulting from all dice 
rolls. In fact, in backgammon it often does not matter too 
much whether some single stone or field occupied by 2 
or more stones are shifted one place or not. This can be 
again explained by the dice rolls, since different dice in 
similar positions can results in a large number of equal 
subsequent positions. Looking ahead multiple moves for 
backgammon may be helpful since it combines approxi-
mate evaluations of many positions, but the variance may 
be larger. A search of 3-ply is commonly used by the 
best backgammon playing programs [7,8]. 

This is different with e.g. chess or draughts, since for 
these games (long) tactical sequences of moves can be 
computed which let a player win immediately. Therefore, 
the evaluations of many positions later vary significantly 
and are more easily compared. Furthermore, for chess or 
draughts moving a piece one position can make the dif-
ference between a winning and losing position. Therefore 
the evaluation function is much less smooth (evaluations 
of close positions can be very different) and harder to 
learn. We think that the success of learning to play 
backgammon [8] relies on this smoothness of the evalua-
tion function. It is well known that learning smooth func-
tions requires less parameter for a machine learning al-
gorithm and therefore faster search for a good solution 
and better generalization. 

In the next section we will explain how we can use TD 
methods for learning to play games. After that the results 
of using TD learning for learning the game of Back-
gammon using different strategies for obtaining training 
examples will be presented. 

3. Reinforcement Learning 

Reinforcement learning algorithms are able to let an 
agent learn from its experiences generated by its interac-
tion with an environment. We assume an underlying 
Markov decision process (MDP) which does not have to 
be known to the agent. A finite MDP is defined as; 1) 
The state-space S = {s1, s2, . . . , sn}, where st ∈ S de-
notes the state of the system at time t; 2) A set of actions 
available to the agent in each state A(s), where at ∈ A(st) 
denotes the action executed by the agent at time t; 3) A 
transition function P (s, a, s’) mapping state action pairs s, 
a to a probability distribution of successor states s’; 4) A 

reward function R(s, a, s’) which denotes the average 
reward obtained when the agent makes a transition from 
state s to state s’ using action a, where rt denotes the 
(possibly stochastic) reward obtained at time t; 5) A dis-
count factor 0 ≤ γ ≤ 1 which discounts later rewards 
compared to immediate rewards. 

3.1 Value Functions and Dynamic Programming 

In optimal control or reinforcement learning, we are in-
terested in computing or learning an optimal policy for 
mapping states to actions. We denote an optimal deter-
ministic policy as π∗(s) → a∗|s. It is well known that for 
each MDP, one or more optimal deterministic policies 
exist. An optimal policy is defined as a policy that re-
ceives the highest possible cumulative discounted re-
wards in its future from all states. 

In order to learn an optimal policy, value-function 
based reinforcement learning [1,2,3] uses value functions 
to summarize the results of experiences generated by the 
agent in the past. We denote the value of a state Vπ(s) as 
the expected cumulative discounted future reward when 
the agent starts in state s and follows a particular policy 
π: 

Vπ(s) = E (∑i = 0 γ
iri |s0 = s, π) 

The optimal policy is the one which has the largest 
state-value in all states. It is also well-known that there 
exists a recursive equation known as the Bellman opti-
mality equation [20] which relates a state value of the 
optimal value function to other optimal state values 
which can be reached from that state using a single local 
transition: 

V∗(s) =∑s’ P (s, π∗(s), s’) (R(s, π∗(s), s’) + γV∗(s’)) 

Value iteration can be used for computing the optimal 
V-function. For this we repeat the following update many 
times for all states: 

Vk+1(s) = maxa ∑s’ P (s, a, s’) (R(s, a, s’) + γVk(s’)) 

The agent can then select optimal actions using: 

π∗(s) = argmaxa ∑s’ P (s, a, s’) (R(s, a, s’) + γV∗(s’)) 

3.2 Reinforcement Learning 

Although dynamic programming algorithms can be effi-
ciently used for computing optimal solutions for particu-
lar MDPs, they have some problems for more practical 
applicability; 1) The MDP should be known a-priori; 2) 
For large state-spaces the computational time would be-
come very large; 3) They cannot be directly used in con-
tinuous state-action spaces. 

Reinforcement learning algorithms can cope with 
these problems; first of all the MDP does not need to be 
known a-priori, all that is required is that the agent is 
allowed to interact with an environment which can be 
modeled as an MDP; secondly, for large or continuous 
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state-spaces, an RL algorithm can be combined with a 
function approximator for learning the value function. 
When combined with a function approximator, the agent 
does not have to compute state-action values for all pos-
sible states, but can concentrate itself on parts of the 
state-space where the best policies lead into. 

There are a number of reinforcement learning algo-
rithms, the first one known as temporal difference learn-
ing or TD(0) [3] computes an update of the state value 
function after making a transition from state st to state 
st+1 and receiving a reward of rt on this transition by us-
ing the temporal difference learning rule: 

V(st) = V(st) + α(rt + γV(st+1) − V(st)) 

where 0 < α ≤ 1 is the learning rate (which is treated here 
as a constant, but should decay over time for conver-
gence proofs). Although it does not compute action-value 
functions, it can be used to learn the value function of a 
fixed policy (policy-evaluation). Furthermore, if com-
bined with a model of the environment, the agent can use 
a learned state value function to select actions: 

π(s) = argmaxa  ∑s’ P (s, a, s’)(R(s, a, s’) + γV(s’)) 

It is possible to learn the V-function of a changing pol-
icy that selects greedy actions according to the value 
function. This still requires the use of a transition func-
tion, but can be used effectively for e.g. learning to play 
games [7,8]. 

There exists a whole family of temporal difference 
learning algorithms known as TD(λ)-algorithms [3] 
which are parameterized by the value λ which makes the 
agent look further in the future for updating its value 
function. It has been proved [21] that this complete fam-
ily of algorithms converges under certain conditions to 
the same optimal state value function with probability 1 
if tabular representations are used. The TD(λ)-algorithm 
works as follows. First we define the TD(0)-error of V(st) 
as: 

δt = (rt + γV(st + 1) − V(st)) 

TD(λ) uses a factor λ ∈ [0, 1] to discount TD-errors 
of future time steps: 

V(st) ← V(st) + αδt
λ  

where the TD(λ)-error δt
λ is defined as 

δt
λ = ∑i = 0 (γλ)i δt+i 

Eligibility traces. The updates above cannot be made 
as long as TD errors of future time steps are not known. 
We can compute them incrementally, however, by using 
eligibility traces [3,22]. For this we use the update rule: 

V(s) = V(s) + αδtet(s) 

for all states, where et(s) is initially zero for all states and 
updated after every step by: 

et(s) = γλet−1(s) + ηt(s) 

where ηt(s) is the indicator function which returns 1 if 
state s occurred at time t, and 0 otherwise. A faster algo-
rithm to compute exact updates is described in [23]. The 
value of λ determines how much the updates are influ-
enced by events that occurred much later in time. The 
extremes are TD(0) and TD(1) where (online) TD(1) 
makes the same updates as Monte Carlo sampling. Al-
though Monte Carlo sampling techniques that only learn 
from the final result of a game do not suffer from biased 
estimates, the variance in updates is large and that leads 
to slow convergence. A good value for λ depends on the 
length of an epoch and varies between applications, al-
though often a value between 0.6 and 0.9 works best. 

3.3 Reinforcement Learning with Neural  
Networks 

To learn value functions for problems with many state 
variables, there is the curse of dimensionality; the num-
ber of states increases exponentially with the number of 
state variables, so that a tabular representation would 
quickly become infeasible in terms of storage space and 
computational time. Also when we have continuous states, 
a tabular representation requires a good discretization 
which has to be done a-priori using knowledge of the 
problem, and a fine-grained discretization will also qui- 
ckly lead to a large number of states. Therefore, instead 
of using tabular representations it is more appropriate to 
use function approximators to deal with large or con-
tinuous state spaces. 

There are many function approximators available such 
as neural networks, self-organizing maps, locally 
weighted learning, and support vector machines. When 
we want to combine a function approximator with rein-
forcement learning, we want it to learn fast and online 
after each experience, and be able to represent continu-
ous functions. Appropriate function approximators com-
bined with reinforcement learning are therefore feed- 
forward neural networks [24]. 

In this paper we only consider fully-connected feed- 
forward neural networks with a single hidden layer. The 
architecture consist of one input layer with input units 
(when we refer to a unit, we also mean its activation): 
I1, . . . , I|I |, where |I | is the number of input units, one 
hidden layer H with hidden units: H1 , . . . , H|H|, and one 
output layer with output units: O1, . . . , O|O|. The network 
has weights: wih for all input units Ii to hidden units Hh, 
and weights: who for all hidden Hh to output units Oo. 
Each hidden unit and output unit has a bias bh or bo with 
a constant activation of 1. The hidden units most often 
use sigmoid activation functions, whereas the output 
units use linear activation functions. 

Forward propagation. Given the values of all input 
units, we can compute the values for all output units with 
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forward propagation. The forward propagation algorithm 
looks as follows: 

1) Clamp the input vector I by perceiving the envi-
ronment. 

2) Compute the values for all hidden units Hh ∈ H as 
follows: 

Hh = σ (∑i wih Ii + bh), where σ(x) is the Sigmoid func-
tion: σ(x) = 1/(1+e-x). 

3) Compute the values for all output units Oo = ∑h who 
Hh + bo. 

Backpropagation. For training the system we can use 
the back-propagation algorithm [25]. The learning goal is 
to learn a mapping from the inputs to the desired outputs 
Do for which we update the weights after each example. 
For this we use backpropagation to minimize the squared 
error measure: 

E = ½∑o (Do – Oo)
2 

To minimize this error function, we update the weights 
and biases in the network using gradient descent steps 
with learning rate α. We first compute the delta values of 
the output units (for a linear activation function): 

δO (o) = (Do − Oo) 

Then we compute the delta values of all hidden units 
(for a sigmoid activation function): 

δH (h) = ∑o δO(o)who Hh(1 − Hh) 

Then we change all hidden-output weights and output 
bias values: 

who = who + αδO(o)Hh; bo = bo + αδO(o) 

And finally we change all input-hidden weights and 
hidden bias values: 

wih = wih + αδH(h)Ii; bh = bh + αδH(h) 

Offline TD-methods. All we need is a desired output 
and then backpropagation can be used to compute weight 
updates to minimize the error-function on every different 
example. To get the desired output, we can simply use 
offline temporal difference learning [26] which waits 
until an epoch has ended and then computes desired val-
ues for the different time-steps. For learning to play 
games this is useful, since learning from the first moves 
will not immediately help to play the rest of the game 
better. In this paper we used the offline TD(λ) method 
which provides the desired values for each board position, 
taking into account the result of a game and the predic-
tion of the result by the next state. The final position at 
time-step T is scored with the result rT of the game, i.e. a 
win for white (= 1), a win for black (= –1) or a draw (= 0). 

V′(sT) = rT                (1) 

The desired values of the other positions are given by 
the following function: 

V′(st) = γV(st+1) + rt + λγ(V′(st+1) − V(st+1)) 

After this, we use V′(st) as the desired value of state 
st and use back-propagation to update all weights. In 
Backgammon, we used a minimax TD-rule for learning 
the game evaluation function. Instead of using an input 
that indicates which player is allowed to move, we al-
ways reverted the position so that white was to move. In 
this case, evaluations of successive positions are related 
by V(st) = −V(st + 1). Without immediate reward and a 
discount factor of 1, the minimax TD-update rule be-
comes: 

V′(st) = −V(st+1) + λ(V(st+1 ) − V′(st+1)) 

4. Experiments with Backgammon 

Tesauro’s TD-Gammon program learned after about 
1,000,000 games to play at human world class level, but 
already after 300,000 games TD-Gammon turned out to 
be a good match against the human grand-master Rober-
tie. After this TD-Gammon was enhanced by a 3-ply 
look-ahead strategy that made it even stronger. Currently, 
TD-Gammon is still probably the best backgammon 
playing program in the world, but other programs such as 
BGBlitz from Frank Berger or Fredrik Dahl’s Jellyfish 
also rely on neural networks as evaluation functions and 
obtained a very good playing level. All of these programs 
are much better than Berliner’s backgammon playing 
program BKG [27] which was implemented using human 
designed weighted symbolic rules to get an evaluation 
function. 

4.1 Learning an Expert Backgammon Program 

We use an expert backgammon program against which 
we can train other learning programs and which can be 
used for generating games that can be observed by a 
learning program. Furthermore, in later experiments we 
can evaluate the learning programs by playing test-games 
against this expert. To make the expert player we used 
TD-learning combined with learning from self-play using 
hierarchical neural network architecture. This program 
was trained by playing more than 1 million games 
against itself. Since the program was not always improv-
ing by letting it play more training games, we tested the 
program after each 10,000 games for 5,000 test games 
against the best previous saved version. Then we re-
corded the score for each test and the weights of the 
network architecture with the highest score were saved. 
Then after each 100,000 games we made a new opponent 
which was the previous network with the highest score 
over all tests and this program was also used as learning 
program and further trained by self-play while testing it 
against the previous best program. This was repeated 
until there was no more progress, i.e. the learning pro-
gram was not able to significantly beat the previous best 
learned program anymore. This was after more than 
1,000,000 training games. 
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Architecture. We used modular neural network ar-
chitecture, since different strategic positions require dif-
ferent knowledge for evaluating the positions [28]. There- 
fore we used a neural network architecture consisting of 
the following 9 neural networks for different strategic 
position classes, and we also show how many learning 
examples these networks received during training this 
architecture by self-play: 

1) One network for the endgame; all stones are in the 
inner-board for both players or taken out (10.7 million 
examples). 

2) One network for the racing game or long endgame; 
the stones can not be beaten anymore by another stone 
(10.7 million examples).  

3) One network for positions in which there are no 
stones on the bar or stones in the first 6 fields for both 
players (1.9 million examples).  

4) One network if the player has a prime of 5 fields or 
more and the opponent has one piece trapped by it (5.5 
million examples).  

5) One network for back-game positions where one 
player has a significant pip-count disadvantage and at 
least three stones in the first 6 fields (6.7 million exam-
ples).  

6) One network for a kind of holding game; the player 
has a field with two stones or more or one of the 18, 19, 
20, or 21 points (5.9 million examples).  

7) One network if the player has all its stones further 
than the 8 point (3.3 million examples).  

8) One network if the opponent has all its stones fur-
ther than the 8 point (3.2 million examples).  

9) One default network for all other positions (34.2 
million examples).  

For each position which needs to be evaluated, our 
symbolic categorization module uses the above rules to 
choose one of the 9 networks to evaluate (and learn) a 
position. The rules are followed from the first category to 
the last one, and if no rule applies then the default cate-
gory and network is used. 

Input features. Using this modular design, we also 
used different features for different networks. E.g., the 
endgame network does not need to have inputs for all 
fields since all stones have been taken out or are in the 
inner-board of the players. For the above mentioned 
neural network modules, we used different inputs for the 
first (endgame), second (racing game), and other (general) 
categories. The number of inputs for them is: 

1) For the endgame we used 68 inputs, consisting of 
56 inputs describing raw input information and 12 higher 
level features.  

2) For the racing game (long endgame) we used 277 
inputs, consisting of the same 68 inputs as for the end-
game, another 192 inputs describing the raw board in-
formation, and 17 additional higher level features.  

3) For the rest of the networks (general positions) we 
used 393 inputs consisting of 248 inputs describing raw 
board information and 145 higher level features includ-
ing for example the probabilities that stones can be hit by 
the opponent in the next move. 

For the neural networks we used 7 output units in 
which one output learned on the average result and the 
other six outputs learned a specific outcome (such as 
winning with 3, 2, or 1 point or losing with 3, 2, or 1 
point). The good thing of using multiple output units is 
that there is more learning information going in the net-
works. Therefore the hidden units of the neural networks 
need to be useful for storing predictive information for 
multiple related subtasks, possibly resulting in better 
representations [29]. For choosing moves, we combined 
the average output with the combined outputs of the 
other output neurons to get a single board position 
evaluation. For this we took the average of the single 
output (with a value between –3 and 3) and the combined 
value of the other outputs times their predicted probabil-
ity values. Each output unit only learned from the same 
output unit in the next positions using TD-learning (so 
the single output only learned from its own evaluations 
of the next positions). Finally, the number of hidden units 
(which use a sigmoid activation function) was 20 for the 
endgame and long endgame, and 40 for all other neural 
networks. We call the above described network architec-
ture the large neural network architecture and trained it 
by self-play using TD(λ) learning with a learning rate of 
0.01, a discount factor γ of 1.0, and a value for λ of 0.6. 
After learning we observed that the 2 different evaluation 
scores were always quite close and that the 6 output units 
usually had a combined activity close to 1.0 with only 
sometimes small negative values (such as –0.002) for 
single output units if the probability of the result was 0, 
which only have a small influence on the evaluation of a 
position. 

Now we obtained an expert program, we can use it for 
our experiments in analyzing the results of new learners 
that train by self-play, train by playing against this expert, 
or learn by viewing games played by the expert against 
itself. 

4.2 Experiments with Learning Backgammon 

We first made a number of simulations in which 200,000 
training games were used and after each 5,000 games we 
played 5,000 test games between the learner and the ex-
pert to evaluate the learning program. Because these 
simulations took a lot of time (several days for one 
simulation), they were only repeated two times for every 
setup. 

The expert program was always the same as described 
before. For the learning program we also made use of a 
smaller architecture consisting of three networks; one for 
the endgame of 20 hidden units, one for the long end-
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game (racing game) of 20 hidden units, and one for the 
other board positions with 40 hidden units. We also used 
a larger network architecture with the same three net-
works, but with 80 hidden units for the other board posi-
tions, and finally we used an architecture with 20, 20, 40 
hidden units with a kind of radial basis activation func-

tion: Hj = .These architectures were trained 
by playing training games against the expert. We also 
experimented with a small network architecture that 
learns by self-play or by observing games played by the 
expert against itself. 

ij i j( W I +b )2e 

Because the evaluation scores fluctuate a lot during the 
simulation, we smoothed them a bit by replacing the 
evaluation of each point (test after n games) by the aver-
age of it and its two adjacent evaluations. Since we used 
2 simulations, each point is therefore an average of 6 
evaluations obtained by testing the program 5,000 games 
against the expert (without the possibility of doubling the 
cube). For all these experiments we used extended back-
propagation [30] and TD(λ)-learning with a learning rate 
of 0.01 and an eligibility trace factor λ of 0.6 that gave 
the best results in preliminary experiments. Figures 1 
and 2 show the obtained results. 

First of all, it can be noted that the neural network ar-
chitecture with RBF like activation functions for the 
hidden units works much worse. Furthermore, it can be 
seen that most other approaches work quite well and 
reach equity of almost 0.5. Table 1 shows that all archi-
tectures, except for the architecture using RBF neurons, 
obtained an equity higher than 0.5 in at least one of 
 

 

Figure 1. Results for different architectures from learning 
against the expert, and the small architecture that learns by 
self-play or by observing games of the expert 

 

Figure 2. Results for different architectures from learning 
against the expert, and the small architecture that learns by 
self-play or by observing games of the expert. More detailed 
plot without the architecture with RBF hidden units 
 
Table 1. Results for the different methods as averages of 6 
matches of 5,000 games played against the expert. Note that 
the result after 5,000 games is the average of the tests after 
100, 5000, and 10000 games 

Architecture 5000 100,000 175,000 
Max 
after 

Max 
eval 

Small Network 0.327 0.483 0.478 190,000 0.508

Large architecture 0.290 0.473 0.488 80,000 0.506

Network 80 hidden 0.309 0.473 0.485 155,000 0.505

Network 40 RBF 0.162 0.419 0.443 120,000 0.469

Small network Self-play 0.298 0.471 0.477 200,000 0.502

Small network Observing 0.283 0.469 0.469 110,000 0.510

 
the 80 tests. Testing these found solutions 10 times for 
5000 games against the expert indicated that their play-
ing strengths were equal. If we take a closer look at Fig-
ure 2, we can see that the large architecture with many 
module finally performs a bit better than the other ap-
proaches and that learning by observing the expert 
reaches a slightly worse performance. 

Smaller simulations. We also performed a number of 
smaller simulations of 15,000 training games where we 
tested after each 500 games for 500 testing games. We 
repeated these simulations 5 times for each neural net-
work architecture and method for generating training 
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games. Because there is an expert available with the 
same kind of evaluation function, it is also possible to 
learn with TD-learning using the evaluations of the ex-
pert itself. This is very similar to supervised learning, 
although the agent generates its own moves (depending 
on the method for generating games). In this way, we can 
analyze what the impact of bootstrapping on an initially 
bad evaluation function is compared to learning immedi-
ately from outputs for positions generated by a better 
evaluation function. Again we used extended back-
propagation [30] and TD(λ) with a learning rate of 0.01 
and set λ = 0.6. 

In Figure 3, we show the results of the smaller archi-
tecture consisting of three networks with 20, 20, and 40 
hidden units. We also show the results in Figure 4 where 
we let the learning programs learn from evaluations 
given by the expert program, but for which we still use 
TD-learning on the expert’s evaluations with λ = 0.6 to 
make training examples. 

The results show that observing the expert play and 
learning from these generated games progress slower and 
reach slightly worse results within 15,000 games if the 
program learns from its own evaluation function. In Fig-
ure 4 we can see faster learning and better final results 
if the programs learn from the expert’s evaluations 
(which is like supervised learning), but the differences are 
not very large compared to learning from the own evalua-
tion function. It is remarkable that good performance 
 

 

Figure 3. Results for the small architecture when using a 
particular method for generating games. The evaluation on 
which the agent learns is its own 

 

Figure 4. Results when the expert gives the evaluations of 
positions 
 
has already been obtained after only 5,000 training games. 

In Table 2 we can see that if we let the learning pro-
gram learn from games played against the expert, in the 
beginning it almost always loses (its average test-result 
or equity after 100 training games is 0.007), but already 
after 500 training games the equity has increased to an 
average value of 0.26. We can conclude that the learning 
program can learn its evaluation function by learning 
from the good positions of its opponent. This good 
learning performance can be attributed to the minimax 
TD-learning rule, since otherwise always losing will 
quickly result in a simple evaluation function that always 
returns a negative result. However, using the minimax 
TD-learning rule, the program does not need to win 
many games in order to learn the evaluation function. 
Learning by self-play performs almost as good as learn-
ing from playing against the expert. If we use the ex-
pert’s evaluation function then learning progresses much 
faster in the beginning, although after 10,000 training 
games almost the same results are obtained. Learning by 
observing the expert playing against itself progresses 
slower and reaches worse results if the learning program 
learns from its own evaluation function. If we look at the 
learning curve, we can still see that it is improving how-
ever. 

We repeated the same simulations for the large archi-
tecture consisting of 9 modules. The results are shown in 
Figures 5 and 6. The results show that learning with the 
large network architecture progresses much slower, 
which can be explained by the much larger number of  
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Table 2. Results for the three different methods for gener-
ating training games with learning from the own or the 
expert’s evaluation function. The results are averages of 5 
simulations 

Method Eval-function 100 500 1000 5000 10,000

Self-play Own 0.006 0.20 0.36 0.41 0.46

Self-play Expert 0.15 0.33 0.38 0.46 0.46

Against  expert Own 0.007 0.26 0.36 0.45 0.46

Against  expert Expert 0.20 0.35 0.39 0.47 0.47

Observing  expert Own 0.003 0.01 0.16 0.41 0.43

Observing  expert Expert 0.05 0.22 0.32 0.45 0.46

 

 

Figure 5. Results for the large architecture when using a 
particular method for generating games. The evaluation on 
which the agent learns is its own 
 
parameters which need to be trained and the fewer ex-
amples for each individual network. The results also 
show that learning from observing the expert play against 
itself performs worse than the other methods, although 
after 15,000 games this method also reaches quite high 
equities, comparable with the other methods. The best 
method for training the large architecture is when games 
are generated by playing against the expert. Figure 6 
shows faster progress if the expert’s evaluations are used. 

Effect of λ. Finally, we examine what the effect of dif-
ferent values for λ is when the small architecture learns 
by playing against the expert. We tried values for λ of 0.0, 
0.2, 0.4, 0.6, 0.8, and 1.0. When using λ = 1 we needed to 
use a smaller learning-rate, since otherwise initially the 

weights became much too large. Therefore we used a 
learning rate of 0.001 for λ = 1.0 and a learning rate of 
0.01 for the other values for λ. Figure 7 shows the results 
averaged over 5 simulations. It can be seen that a λ-value 
of 1.0 works much worse and that values of 0.6 or 0.8 
perform the best. Table 3 shows the results after 100, 
500, 1000, 5000, and 10,000 games. We can see that 
higher values of λ initially result in faster learning which 
 

 

Figure 6. Results for the large architecture when using a 
particular method for generating games. Results when the 
expert gives the evaluations 
 

 

Figure 7. Results for the small architecture when using dif-
ferent values for λ. The games are generated by self-play 
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Table 3. Results for different values of λ when the small 
architecture learns against the expert 

λ 100 500 1000 5000 10,000 

0.0 0.004 0.13 0.31 0.42 0.43 

0.2 0.002 0.24 0.34 0.43 0.45 

0.4 0.002 0.26 0.35 0.44 0.44 

0.6 0.007 0.26 0.36 0.45 0.46 

0.8 0.06 0.34 0.39 0.44 0.45 

1.0 0.12 0.23 0.31 0.39 0.40 

 
can be explained by the fact that bootstrapping from the 
initially random evaluation function does not work too 
well and therefore larger eligibility traces are profitable. 
After a while λ values between 0.2 and 0.8 perform all 
similarly. 

4.3 Discussion 

Learning a good evaluation function for backgammon 
with temporal difference learning appears to succeed 
very well. Already within few thousands of games which 
can be played in less than one hour a good playing level 
is learned with equity of around 0.45 against the expert 
program. We expect this equity to be similar to a human 
player who regularly plays backgammon. The results 
show that learning by self-play and by playing against 
the expert obtain the same performance. 

Learning by observing an expert play progresses ap-
proximately two or three times slower than the other 
methods. In our current experiments the learning pro-
gram observed another program that still needed to select 
moves. Therefore there was no computational gain in 
generating training games. However, if we would have 
used a database, then in each position also one-step 
look-ahead would not be needed. Since the branching 
factor for a one-step look-ahead search is around 16 for 
backgammon, we would gain 94% of the computational 
time for generating and learning from a single game. 
Therefore learning from database games could still be 
advantageous compared to learning by self-play or play-
ing against an expert. A problem of using a (small) data-
base is that overfitting the evaluation function may occur. 
This may be solved by combining this approach with 
learning by self-play. In the large experiment, the learn-
ing behavior of the method that learns by observing the 
expert is a bit more fluctuating, but it still obtained equity 
a bit larger than 0.5 during one of the test-games in the 
large experiment and additional tests indicated that its 
playing strength at that point was equal to the expert 
player. 

We also noted that training large architectures initially 
takes longer which can be simply explained by the larger 
number of parameters which need to be learned and 
fewer examples for individual modules. After training for 
a longer time, such bigger architectures can reach higher 
performance levels than smaller architectures. We note 
that since the agent learns on the same problem as on 
which it is tested, in these cases overfitting does not oc-
cur. A large value for λ (larger than 0.8) initially helps to 
improve the learning speed, but after some time smaller 
values for λ (smaller than 0.8) perform better. An an-
nealing schedule for λ may therefore be useful. Finally 
we observed in all experiments that the learning pro-
grams are not always improving by playing more games. 
This can be explained by the fact that there is no conver-
gence guarantee for RL and neural networks. Therefore 
testing the learning program against other fixed programs 
on a regular basis is necessary to be able to save the best 
learning program. It is interesting to note the similarity to 
evolutionary algorithms evolving game playing programs 
which also use tests. However, we expect that temporal 
difference learning and gradient descent is better for 
fine-tuning the evaluation function than a more random-
ized evolutionary search process. 

Another approach that receives a lot of attention in re-
cent RL research and good results for particular control 
problems is kernel-based least policy iteration (LSPI) 
learning [31]. However, it is unlikely that RBF kernels 
will generalize well to the huge state space of backgam-
mon and that therefore kernel based LSPI is not likely to 
be successful. In fact, we implemented Support vector 
machines with RBF kernels for the game of Othello, and 
this showed indeed that RBF kernels are not good for 
games involving huge state-spaces. For this sigmoid 
functions are needed, but they are difficult to use as ker-
nels, since they require a lot of structural design. The use 
of neural networks with sigmoid activation functions is 
therefore the current method of choice for difficult 
games. 

5. Conclusions 

In this paper different strategies for obtaining training 
examples for learning game evaluation functions have 
been examined. The possible advantage of playing against 
or observing an expert, namely that games are initially 
played at a high level was not clearly shown in the ex-
perimental results. We will now return to our research 
questions and answer them here. 

1) Question 1. Which method combined with temporal 
difference learning results in the best performance after a 
fixed number of games? Is observing an expert player, 
playing against an expert, or self-play the best method?  

Answer. The results indicate that observing an expert 
play is the worst method. The reason can be that the 
learning program is never actively involved in playing 
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and therefore can not learn to penalize particular moves 
that it may have overestimated. Learning by playing 
against an expert seems to be the best strategy. Another 
approach that could be useful is learning from the expert 
combined with learning by self-play. 

2) Question 2. When the learning program immedi-
ately receives accurate evaluations of encountered board 
positions, will it then learn faster than when it uses its 
initially randomized function approximator and TD- 
learning to estimate the board evaluations?  

Answer. Initially, learning goes much faster when ac-
curate evaluations are given. However, after 10,000 
training games, the disadvantage of the initially random-
ized function approximator has almost disappeared.  

3) Question 3. Is a function approximator with more 
trainable parameters more efficient for learning to play 
the game of backgammon than a smaller representation?  

Answer. Yes, in general the larger function approxi-
mators obtain better performance levels, although in the 
beginning they learn at a slower rate. Since the agent is 
tested on exactly the same problem as on which it is 
trained (different from supervised learning), overfitting 
does not occur in reinforcement learning. 

4) Question 4. Which value for λ in TD(λ) works best 
for obtaining the best performance after a fixed number 
of games?  

Answer. Initially larger values for λ result in a faster 
learning rate. However, the final performance is best for 
intermediate values of λ around 0.6. It should be noted 
that this observation is quite problem specific.  

Future work. Although in this paper it was demon-
strated that learning from observing an expert is not prof-
itable to learn to play backgammon, we also mentioned 
some advantages of using an expert or a database. Ad-
vantages of learning from experts are that the system 
does not explore the whole huge state-space and that in 
some applications it is a safer method for obtaining ex-
periences than learning by trial-and-error. Furthermore, 
learning game evaluation functions from databases has 
the advantage that no look-ahead during game-play is 
necessary. 

Learning from experts or databases can also be used 
for other applications, such as learning in action or stra-
tegic computer games for which human games played 
with a joystick can be easily recorded. Furthermore, for 
therapy planning in medicine, databases of therapies may 
be available and could therefore be used for learning 
policies. For robotics, behavior may be steered by hu-
mans and these experiences can be recorded and then 
learned by the robot [32]. Thus, we still think that learn-
ing from observing an expert has many advantages and 
possibilities for learning control knowledge, although 
care should be taken that the learner tries out its own 
behavior during learning. 
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