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ABSTRACT

A new method for the calculation of self potentials (SP) based on
induced current sources is presented. The induced current sources are
due to divergences of the convective current which is driven, in turn,
by a primary flow, either heat or fluid. Numerical modeling utilizing
this method has been implemented using a two-dimensional transmission
surface algorithm. When the primary flow is driven by the gradient of
a pbtential, joint modeling of the primary flow and the resultant SP
is possible with this algorithm.

Examples of simple geometrical models in the presence of point
sources for the primary flow are presented and discussed. Lastly, a
field example of the joint modeling of temperature and SP data is

illustrated with data from Red Hill Hot Spring, Utah.



INTRODUCTION

The self potential (SP) method is hased on the measurement of
naturally occurring potential differences generated mainly by
electrochemiéa], electrokinetic and thermoelectric sources. The
multiplicity of sources can be either an advantage or a disadvantaqe.
On the one hand, a number of phenomena can be studied with the
techniques and, on the other hand, the possibility of a number of
different sources can sometimes be confusing.

There has been a mild resurgence in the use of the SP method in
geothermal exploration (Corwin and Hoover, 1979), in_the study of
earthquake related phenomena (Fitterman, 1978; Corwin and Morrison,
1977), and in engineering applications (0gilvy et al., 1969;
Bogoslovsky and Ogilvy, 1973).

0lder methods of interpretation were mostly based on polarized
spheres (de Witte, 1948; Yungul, 1950) or iine dipole current sources
(Meiser, 1962; Paul, 1965). Although these techniques are useful,
they provide little information about @he nature of the priméry
sources. Nourbehecht (1963), drawing on the earlier work of Marshall
and Madden (1959), discussed the source mechanisms in detail and
provided a technique for the solution of coupled flows which
incorporated the primary driving potential. His ;o]ution is
formulated in terms of a total (pseudo) potential composed of the
electric potential and the weighted primary source potential
(pressure, temperature, concentration). In this formulation, the

total (pseudo) potential depends only on the value of the primary



potentia1 at the boundaries where there is a change in the coupling
parameters, and its value inside the various media is immaterial.
Unfortunately, this aspect of the tota]v(pseudo) potential method has
sometimes led to the neglect of the details of the primary flow,
resulting in some calculations for inappropriate models as will be
discussed in a subsequeht section.

The purpose of this paper is to present an alternative method for
the solution of coupled flow problems that explicitly models both the
primary flow and the induced Secondary electric potentials (joint
modeling). The use of this technique with a two-dimensional (2-D)
algorithm for potential problems provides a new flexibility in the

modeling of SP data.



COUPLED FLOWS

The general equation for coupled flows can be written (Marshall

and Madden, 1959; Nourbehecht, 1963)
ri = DolyXs, (1)

where the fluxes T'j (charge, matter, heat, etc.) are related to the
various forces X; (gradients of electric potential, pressure,
temperature, etc.) through the coupling coefficients
("conductivities") Ljj. For many practical applications of coupled
flows, we are concerned with secondary electric current flows and
potentials which are driven by some other primary flow. When the
effects of the secondary electric potentials on the primary flow are
small, the primary flow equation is decoupled and the resulting

equations are

r =-Li1ve, (2)

and JTota] =T2 = 'L21V2; - oV¢ » (3)

whereI'1 is the primary fiow (solution flux, heat flux, etc.), L1y is
the primary conductivity (permeability, thermal conductivity, etc.)
and ¢ is the primary potential (pressure, temperature, etc.), JTotal
is the total electric current, L1 is the cross coupling
"conductivity", o is the ordinary electrical conductivity and ¢ is
the electric potential. The decoupled primary flow problem (equation
2) can be solved separately and used in the solution of the electrical

flow prob]em (equation 3). As noted in the introduction, one



technique for the solution of equation 3 makes use of the total
(pseudopotential) potential ¢, where ¢y = ¢ + Lojz /o . The
technique used in this paper makes use of a different approach.
Starting with equation 3, we note that the first term is a
"convection" current driven by the primary flow and the second term is
the usual conduction current driven by the gradient of the electric

potential. Using this approach, we can write equation 3 as

JTotal = Jeonv * Jeond (4)
where Jeonv = -L21Ve (5)
and Jeond = -0V . -(6)

If no external current sources are imposed and we have NC conditions
(i.e. 9p/3t =0), then the total current is divergenceless

(V *JTotal = 0) and
Vedcond = - V*deony = V-(Lp1 Vz ) =V Lg1° vz + Law?2g, (7)

Thus there are sources (non-zero divergence) of conduction current
wherever there are gradients of the cross coupling cbefficient
parallel to the primary flow (flow perpendicular to boundaries) or
wherever there are sources of the nrimary flow. The sources of the
conduction current given by the right-hand side of equation 7 can then
be‘used to determine the resultant electric potential, ¢ . There is
also a similarity between equation 3 and the bhasic equations of
magnetostatiés and electrostatics in material media. For example, in
the case of magnetostatics, Jrgta] is analogous to B (divergenceless),

=L21VZz takes the place of the induced magnetization M and - oV¢ s



analogous to u H. Recall that in magnetostatics, V*M gives rise to
magnetic charge dehsities, just as in the coupled flow problem V
-(Lp; VT ) gives rise to current densities.

The use of this analogy is somewhat limited by the fact that in
geophysical applications we deal with the boundary condition of zero
normal component of the total current flow at the air-earth interface.
The analogous boundary condition on normal B is not commonly used in
magnetostatic problems. However, since many geophysicists are familar
with magnetostatics, this analogy should provide some intuitive
feeling for the form of the induced electrical flows in coupling
problems, if the slightly different boundary conditions are taken into
account.

The use of equation 7 and the nature of the coupling coefficient
can be demonstrated for the case of uniform primary flow perpendicular
to plane boundaries (Fiqure 1). At x = o,h, there are planes of
current sources. Using the boundary conditions of no current flow in
regions 1 and 3, the solution of this problem gives constant
potentials in regions 1 and 3 and a linearly increasing potential in
region 2. .The constant electric field (E=-Vd =1LpVEL /o) in
region 2 drives a current that exactly cancels the convection current
(Lp1 VZ ) and the total current is zero everywhere.

This geometry of flow is similar to that used in typical
laboratory measurements of coupling coefficients. For example, if the
gradients of primary and electric potential {or the potential drops)
are measured under the conditions of zero total current, then‘the

ratio
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=Ll21/o0 = C

JTotal = 0

gives the voltage coupling coefficient (C21) in units of volts per
unit of primary potential. If, in addition, the conductivity is
measured (or the current is measured under the conditions of zero
potential), then the current coupling coefficent (L21) can be
determined. For fluid flow, the primary potential is pressure and the
coefficient Co1 = -(Vé /VP)| Jrotal = 0 is known as the streaming
potential coefficient. The alternative measurement L21 = -(JTotal/ V
P)| V¢ =0 gives the streaming current coefficient. Because the
measurement technique is easier, voltage coupling coefficients are
more commonly reported in the literature and they will be used in the
modeling that follows.

For simple problems with analytic solutions, there are no
particular advantages to using equation 7 compared to the use of
pseudopotentials. However, for more complicated problems requiring
the use of numerical techniques, the application of equation 7 is
straightforward and the solution of the coupled problem (3) requires
no more than the solution of another potential problem. The first
step is to usé an appropriate program to solve the primary potential
problem (fluid flow, heat flow, etc.). The second step consists of
using fhe primary potential solution aTonq with a model for the
cross-coupling‘coeffiCients to calculate the sources for the electric

problem from equation 7. The final step makes use of the current




sources along with an electrical model to determine the resultant
electric potentials.
This procedure has been implemented with a 2-D transmission

surface algorithm for the solution of potential problems.



NUMERICAL MODELING

The transmission surface algorithm for the NC potential problem
is given in Madden (1971). A brief review is given here starting with

'the general potential flow equations,

' =-LVeg , (8)

“and V.= § (9)

where ' is the flux, ¢ is the potential, S is the source and L is the
"conductivity". ‘When L is independent of y (strike direction),
equations 8 and 9 can be Fourier (cosine) transformed in the y-

direction giving

-L(x,z) 3L (x, A ,z) =Ty(x, A,z) (10)
3 X
-L(x,z) 9z (x, A,2) = Z(x,X,z) (11)
92
3Tx dTZ ., 42 -
a>—<—+ 52 ¥ )\LC S(X,)\ :Z) (12)

The flux and the potential are in general 3 dimensional,
depending on the nature of the source. Equations 10, 11, and 12 can
be approximated by Tumped-element rectanqular network (Figure 2) and

the difference equation at a node is

Yx(1,3-D)L g (1,3-1)- £(3,3)] + Yx(i,9)[ g (1,3+1)- £ (3,3)]
¥ (1,02 (i-1,9)-2 (1,9)] + V(8,50 (i+1,d)-2 (1,5)1  (13)
HY(i,d) T (,d) = S(i,j) Axaz

where Yy =LA Z/ A X | (14)



Yo=LAX/ Az (15)

Y= 2% AXA z, (16)
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and

The set of nem node equations can be reorganized into the matrix

equation

Cz =39S (17)
where C = coefficent matrix [nemxn-m] ,

¢ = node potential vector (n-m) ,
and S = node source vector {n-m) .

One method of solution of equation 17 is outlined by Swift (1967), who
also provided the code (Swift, personal comm.). The final solution in
X,Y,z space is obtained by an inverse Fourier transform of a suite of

z (X)) solutions.

The solution of the coupled problem requires three models for the
physical properties, the‘primary flow resistivity (Ly3-1), the voltage
cross-coupling coefficients (C2; = pl21) and the electrical
resistivity (p). For each A value, the primary flow potentials (Z )
are computed for the primary model given a source distribution. From
the divergence equation 7, the é]ectrical source terms are calculated
at each node. In the Tumped circuit, the divergence equation 13 is
used with L replaced by the cross coupling coefficients Lp;. In the
last step, the electrical source terms calculated in the previous step

are used with the resistivity model to determine the electrical

10



potentials (¢).

The solution of these problems is formulated in equation 17 in
terms of a flow source which is commonly taken as a point source.
Finite-length line source distributions can be easily computed by
simple convolution of the point source solution along the source line.
In other applications, a specified potential distribution (Dirichlet
| boundary condition) rather than flow source distributions may be
desirable. A simple procedure for accomplishing this, without
disturbing the formal solution of equation 17, is outlined in Killpack

and Hohmann (1979).

11



MODEL RESULTS

The results of'the model calculation are normalized to
dimensionless primary potentials ( ) and dimensionless electric

potentials (V) defined below

th= (bp3) s ~(18)
I .
- g
and oo 0 ()= o (a) o, (19)
C21 IC C2x ¢
where a = size scale, length dimension of one model unit
and Iz = éource for'primary flow, in units of Ty x area.

The true potentials (z,¢) can»be obtained by multiplication by the
appropriate factor, taking care to use a consistent set of units. One
résu]t of modeling with the vo1tage-coup]ing coefficient (C21) is that
the induced current sources are inversely proportional to the
reéistivity (L21 =‘C21/p). Since the voltage is proportional to the
current-resistivity product, fhe resultant model voltages depend only
on resistivity ratios. That is, the same notentials will result for
all models that differ only By a multiplicative factor in all the
modél resistivities. | |

In the models that follow the distance scales aré}giveh in units
of a and the model parameters ére giveh as resistivities and voltage
coupling coefficients where p = electrical resistivity, ;t = thermal
 resistivity, Pp = hydraulic resistivity or impermeability and c =
voltage coupling coefficient. The parameter unfts, which are

unspecified in most of the models, can be any consistent set or,



alternatively, they can be considered dimensionless. If the value of
a parameter is unspecified, its value is unity. |

Surface boundary conditions for the primary problem require
careful consideration as the form of the f]ow near the air-earth
interface can have a profound effect on the resultant electric
pdtentials. Fbr temperature problems the appropriate bouhdéry ‘
condition is a constant tempebature, which is taken as zero. With
this boﬁndary condition there is a normal flux of heat at the surface
and there will be induced electrical sources here, if the surface
medium has a noﬁ-zero coqp]ing coefficient.

While it is correct that the excess pressure is zero from the
water table up to the surface, uncritica] use of the zero surface
pressure boundary condition in potentia]-f1ow problems often results
in a non-zero normal gradient and therefore a fluid flow at the
air-earth interface. As was noted in Sill and Johng (1979), it is
-much more important to model the flow geometry which is predominantly
horizontal hear the surface or the water table. Horizontal fluid flow
at the surface in a potentia]-fldw problem requires a zero vertical
gradient of the pressure. In the models, zero vertical gradients are
produced’by giving the air a;vahishing]y small hydraulic permeabi]ity.
A watek table below the sﬁrface can bé modeled with a thin; very low-
perﬁeabi]ity layer overlain by more permeable near-surface materia1.
In effect the modeled flow is confined by impermeable layers rather
than having the flow deviated by variations in the height of the water

table.

13




Figures 3 and 4 show the voltage in a vertical (x, z plane)
plane, generated by point sources of pressure and temperature in a
homogeneous half space. As discussed above, the surface boundary
condition for pressure problems is zero normal gradient of pressure
and for the thermal problem it is zero temperature at the surface.
Comparing these fiqures we see that the pressure source produces an
electrical anomaly at the surface while the temperature source has an
equipotential coincident with the surface. In the case of the
pressure source, the surface fluid flow is parallel td the air-earth
interface and the only induced electrical source is at the pressure
source where V2 P#0, For the temperature problem there are induced
electrical sources at the temperature source where V2T # 0 and at the
surface where there is a normal flux of heat. On the surface, the
induced electrical sources at the interface exactly cancel the effects
of the source at depth.

These two cases can be solved analytically and they both have
zero total current, i.e., the electrical current exactly cancels the
convection cﬁrrent.> The primary potentials and flows have the same
geometry as the'e1ectrica1 potentials and curkents. The analytical
solutions can also be used to check the model calculations. |
Comparisons of results show errors of a few percent for distances from
the source greater than one unit, using a model discretization of
one-quarter ‘unit.

Both Nourbehecht (1963) and Fitterman (1978) state that there is
no:surface anomaly due to a point source of pressure in a homogeneous

half space. The reason for this result is their use of the surface

14



boundary ;ondifion of zero pressure. In this case the desire to have
the total potential equal to the electric potential has lead to the
use of an inappropriate boundary condition. As we have seen above,
the appropriate‘boundary‘condition is zero normal gradient not zero
pressure, in which case there is a surface anomaly. The models
presented in Fitterman (1978, 1979) use the boundary condition of zero
primary potential on the éurface and as such they are appropriate only
for thermal sources even though he proposed them as valid solutions
for pressure-flow problems.

Figure}S shows the effects of pressure source location with
respect to a vertical boundary where there is a change in coupling
parameters only. For curve'l, with the source to the left of the
boundary, we see that the induced electrical sources at the vertical
interface reduce the ﬁégnitude of the potential relative to that in a
homogeneous half space (combare with Figure 3). The anomaly is,
however, symmetric with respect to the source location. When the
source is on'the boundary (curve 2) the anomaly is reduced to one-half
its value in a homogeneous half space. Curve 3 shows a sharp anomaly,
centered at the contact due to the negative induced sources at the
vertical boundary, where there ié flow into the couplinQ medium.

Figure 6 illustrates how changes in tﬁe resistivity ratio
éttenuate or amplify the pressure-induced anomaly with no change in
the form. Figure 7 shows that changes in the "“impermeahility" (pp)
across a\Vertical contact change both the amplitude and the form of
the surface anomaly. A thermal model, similar to the pressure model

of Figure 6 is shown in Fiqure 8. Here, with a homogeneous
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resistivity structure (p1/p2 = 1), the surface anomaly has a

‘symmetrical dipolar form. The positive peak 1s‘over the positive
~induced sources at the air-earth interface and the negative is to the
right of the contact and is due to the V2T#0 source at z = 1.
Changing the resistivity contrast amplifies the anomaly on the
resistive side and reduces it on the conductive side. For a resistive
Fatio of ten the asymmetry}is so pronounced that the dipolar form is
almost obliterated. Figure 9 shows the effects of an overburden on
the vertical contact hode]. Even for a homogeneous resisti?ity the
overburden produces an asymmetric dipolar form. The'reduction of the
positive peak is due to the induced sources at the horizontal contact
being at a gfeater depth. Changing the overburden resistivity
amplifies or attenuates the form.

Changes in the quarter-space resistivities (Figure 10) in the
overburden model also prbducébprofound effects. If the coupling
medium has a resistivity less than the other quarter-space, the
anoma]fes are essentially monopolar and asymmetric. Changes in the
primary flow resistivities éan also produce significant effects on the
form of the anomaly (Fiqure 11). Here the anomalies range from
monopolar to dipolar as the thermai resistivity of the quarter-spaces
is varied. '
| Although the basic pressure anomaly for the quarter space model
s monopolar (Figures 5, 6 and 7), a dipolar anomaly can be produced
if the overburden has a very large permeability so that there is
vertical flow across horizontal boundaries (Fiqure 12). This flow

pattern is then similar to the temperature flow problem in that

16



significant positive electrical sources are induced at the overburden
interface. However, chénges in the quarter-space electrical
resistivities can a]ter>this dipolar form.

Monopolar temperature anomalies can be produced with horizontal
boundaries (layer over a half space) as in Fiqure 13. The sign of the
anomaly can be changed by making the overburden the stronger
cross-coup]ihg medium.

The interactions of point sources with two vertical interfaces
are shown in the dike models of ngures 14 and 15. With a point
source located in the center of the dike (model 1, Figures 14 and 15),
the surface anomaly is symmetrical because the flows and the induced
sources are symmetrical with respect to the center of the dike. For
" the temperature source, fhe anomaTy is positive over the dike, due to
the positive induced sources at the air-earth interface, with negative
wings off to the sides. The negative portions are due’to the larger
effect of the divergence of the heat flow from the point source when
viewed from the sides. Moving the point temperature source to the
1éft_side of the dike (model 2, Figure 14) enhances the negative
| effect frbm the divergence of heat f]oﬁ énd produces a dipolar form.
A7dipolar form fs also pfoduced by a sequential increase in the
coupling (model 3; Figure 14).

Revérsing the contrast in the thermal model 1 of Figure 14 so
‘fhat c = 0 in the dike and"c = 1 exterior causes a revebsal in signs
df the anomaly (not shown). The same (eversa1'in contrast in the
preésure modé], Figure 15-model 3, cauées no change in‘the sign but

there is a change in the form and a large change in the magnitude. In
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this case there are only negative induced sources on the planes at x =
o, 1 dﬁe to the outward flow." |

Moving.the pressure source to the left side of the dike produces
an asymmetric, negative anomaly (model 12, Figure 15) the brdad
negative to the left is due to the larger effect of the divergence at
the source. As the observation point moves toward the right side the
positive induced source on the plane at x = 1 rapidly cancels the
effects of the negative electrical source at the point source of the
divergence of the flow.

Consideration of the results from model 2, ﬁigure 15 indicates
that the combination of a positive pressure source at x = o0 and a
negative source at x = 1, on either side of the dike, would produce a
dipolar anomaly. In‘general, any relatively uniform flow across a
dike would tend to produce a dipolar form.

Plan views (z = o) of the contoured surface vo]tage are shown for
models 1 of Figures 14 and 15 are shown in Figure 16. For a
temperature source, Figure 16a, the positive part of the dipolar
- anomaly is elongated a]ong strike (y direction) and for a pressure
source, Figure 16b, the monopolak anomély tends>to be elongated

perpendicular to strike.
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FIELD EXAMPLE

The Monroe-Red Hill (Utah) geothermal system is an example of
deep circulation along a fault zone that has been relatively well
studied (Mase et al., 1978). A limited SP survey over the Red Hill
area (Figure 17) showed a modest anomaly of dipolar form that
correlated reasonably well with certain features of the electrical
resistivity anomaly as delineated by dipole-dipole measurements.
Figure 18 shows the physical properties model and the location of the
thermal sources. The resistivity model is a generalization of models
in Mase et al; (1978). The main features are a steeply dipping fault
separating the volcanics on the east (20am) from the alluvium on the
west; Away from the fault and near the surface the alluvium is
moderately resistive (25-500m). Near the fault and at depth the
alluvium is more conductive, probably due to the leakage of thermal
waters and alteration. The thermal fesistivity contrast between the
volcanics and the alluvium is based‘on average values reported in Mase
et al. (1978). The heat source distribution in the model represents
the circulation of hot water up the fault and horizontal leakage into
the alluvium. The temperature distribution from these sources is
shown in Figure 18b; also shown are the observed temperatures at 25 m
increments for four drillholes along the profile (Mase et al., 1978).
The drillhole temperatures have been corrected for the mean
temperature and the thermal gradient (i5°C/km) which ére not
represented in the model calculations. The calcd]ated and observed

temperatures and vertical heat fluxes are in reasonable agreement
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considering the coarseness of the mesh (25 m) and the fact that
several of the observed heat fluxes are based on gradient data at
depths 1e§s than 10 m. The total heat input into the model is .36MW,
which is much less than the total conductive heat loss ( 1.5MW) from
Red Hill. However, the thermal anomaly at Red Hill is elongated along
the direction of the fault. For a 400 m swath normal to the fault
(about ﬁhe width of the SP anomaly) the total conductive heat loss is
about .SMN, which is only slightly greater than thé heat input to the
model. A comparison of the observed and calculated SP anomalies are
shown in Figure 19. The comparison is reasonably good although it
should be noted that the observed anomaly is not exactly symmetrical
about the centerline. The cross-coupling coefficients in the model
are all larger than those typically reported in the literature, which
seems to be é common problem (Fitterman and Corwin; 1981; Corwin et
al,, 1980). However, it should be noted that most samples reported on
in the past were relatively unaltered material and the effects of
elevated temperatures on the,crosé-coupling coefficients are not well
known. Intkeasing temperatnres shouldvincrease the current
cross;coupling parameter through thevfncrease fn the diffusion
.cdnsfant,'but'for the voltage cross-coubling parameter this will be

somewhat offset by the increase in conductivity, since C = L/g.
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Summary

‘An alternative method for modeling SP based on induced current
sources due to primary flows has been presented. The method has been
implemented using a transmission surface algorithm that provides
modeling capabilities for three-dimensional distributions of sources
and two-dimensional structures.
| The model results presented demonstrate the basic forms of the
induced SP response and how the anomalies are changed in form and
amplitude by changes in the mode]l parameters.

A field exampTe demonstrates the joint mode]ing of thermal and SP
data at Red Hill Hot Spring, Utah. Although the derived
cross-éoupling coefficients might be considered large, thé modeling
teChhique provides a method for testing the constraints on the

physical parameters.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

" Figure 5.

Figure 6. 3

FIGURE CAPTIONS

One-dimensional coupled flow. The discontinuity in
convective current at x = o, h produce planes of cur-
rent sources giving rise to a linear potential increase

in region 2.

Lumped-element rectangular network

Normalized voltage in the vertical plane (y = o) for a

point pressure source in a homogeneous half-space. The
boundary condition at the surface is zero normal
pressure gradient. The source of unit strength is at x

=0, z =1 and distances are in units of a.

Normalized voltage in the vertical plane (y = o) for
a point temperature source in a homogeneous half-space.

The boundary condition at the surface is zero

 temperature. The source of unit strength is at x = o,

z =1 and distances are in units of a.

Surface voltage (y = 0, z = 0) for a point pressure

source and a vertical contact, location of the source

varies with respect to the contact.

Surface voltage (y =0, z=0) for a point temperature

source and a vertical contact, variations in the

resistivity ratio across the contact.
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Fiqure 7.

Figure 8.

Figure 9.

Figure 10.

~Figure 11.

|
“Fiqure 12.

: Figuke 13.

Surface voltage (y = o, z = o) for a point pressure
source and a vertical contact. Variations .in the

permeability across the contact.

Surface voltage (y = o, z = 0) for a point temperature
source and a vertical contact. Variations in the

resistivity ratio across the contact.

Surface voltage (y = o, z = o) for a point temperature
source and a vertical contact - overburden model.

Variations in the overburden resistivity.

Surface voltage (y = 0, z = o) for a point temperature

source and a vertical contact-overburden model.

Variations in the quarter-space resistivities.

Surface voltage (y = 0o, z = o) for a point temperature
source and'a vertical contact-overburden model.

Variations in the quarter-space thermal resistivites.

Surface voltage (y = o, z = o) for a point pressure

source and a vertical contact-overburden model. vHigh

. permeability qverbukden and variations in the quarter-

space resistivites.

Surface voltage (y = o, z = o) for a point temperature
source and an dverburden model. Vafiations in the

source location.
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Figure

Figure

Figure

Fiqure

Figure

Figure

14,

15.

16.

17.

18.

19.

Surface voltage (y = o, z = o) for a point temperature
source and a dike. Variations in the source locations

and coupling parameters.

Surface voltage (y = 0, z = o) for a point pressure
source and a dike. Variations in the source locations

and coupling parameters.

Contours of surface voltage (x, y plane, z = o) for
point sources and a dike. (a) Point temperature source

(model 1, Fiqgure 14) (b) Point pressure source (model

1, Figure 15).

Plan map of SP anomaly at Red Hill Hot Spring, Utah.

(a) Physical properties used to model the data at
Red Hi11; (b) Comparison of the observed and calculated

temperatures at Red Hill.

Comparison of the observed and modeled SP anomaly at

Red Hill. Model properties in Figure 15a.
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