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Handwritten signatures widely exist in our daily lives. The main challenge of signal recognition on handwriting is in the
development of approaches to obtain information effectively. External mechanical signals can be easily detected by triboelectric
nanogenerators which can provide immediate opportunities for building new types of active sensors capable of recording
handwritten signals. In this work, we report an intelligent human-machine interaction interface based on a triboelectric
nanogenerator. Using the horizontal-vertical symmetrical electrode array, the handwritten triboelectric signal can be recorded
without external energy supply. Combined with supervised machine learning methods, it can successfully recognize handwritten
English letters, Chinese characters, and Arabic numerals. The principal component analysis algorithm preprocesses the
triboelectric signal data to reduce the complexity of the neural network in the machine learning process. Further, it can realize
the anticounterfeiting recognition of writing habits by controlling the samples input to the neural network. The results show
that the intelligent human-computer interaction interface has broad application prospects in signature security and human-
computer interaction.

1. Introduction

The human-machine interface represents an intuitive and
effective approach to bridge the communications between
human and machine equipment. With the deepening of
research, the solution of human-machine interaction has
expanded from usual control terminals such as keyboards
and touch panels to other advanced portable devices [1–
8]. For example, people can directly interact with mobile
phones and smart devices through voice. In addition, it
is possible to control the machine by detecting people’s
intentions through electroencephalogram. Although many
research groups have developed a variety of gesture recog-
nition devices, such as smart gloves, some of these tech-
nologies have some limitations in practical applications,
including the difficulty in identifying and detecting subtle
features and the requirement on external energy supply
[9–17]. Among various sensing mechanisms, triboelectric-
based electronic devices surpass other resistive, capacitive,
piezoelectric, and photoelectric due primarily to the fea-

ture of high output voltages and effective operation with-
out external energy supply [18–32].

As for the signals of the human-machine interface, hand-
written signature signals represent one of the most important
personal characteristics in modern society. In handwriting
recognition, the conventional process begins with converting
the mechanical signal into an image signal, followed by scan-
ning the image signal for digital storage or recognition. These
two signal conversion processes cause the loss of a large
amount of original handwritten signals, thereby leading to
unreliability of handwriting recognition and authentication.
The triboelectric nanogenerator converts mechanical signals
into electrical signals and harvests mechanical energy by
storing electrostatic charge, thus serving as ideal devices for
recording handwritten signals [33–35]. Generally, self-
powered active sensors based on triboelectrification require
a digital array configuration (i.e., digital sensing mechanism)
to detect mechanical signals [36–41]. A large number of elec-
trodes will introduce difficulties in signal reading and data
backend processing. An alternative approach (i.e., analog
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sensing mechanism) exploits only 2 pairs of edge electrodes,
with a relatively low detection area and resolution. Recently,
a research group proposed to combine digital and analog
sensing mechanisms to compromise the number of elec-
trodes, effective area, and resolution [42, 43]. Such device
configurations allow the human-machine interaction system
based on triboelectricity to realize high precision through a
small number of electrodes.

Recently, Lee et al. demonstrated that the combination of
active sensors and machine learning can carry out advanced
human-machine interaction and realize high-precision aug-
mented reality/virtual reality (AR/VR) applications [44–51].
These works inspired us to combine active sensors with
machine learning for smart human-machine interaction
and handwriting recognition. Here, we use a triboelectric
nanogenerator with a horizontal-vertical symmetrical
arrayed electrode to record the triboelectric signal of hand-
written English letters, Arabic numeral, and Chinese charac-
ter. The K-nearest-neighbour (KNN) algorithm serves as an
effective neural network classification method to improve
the accuracy and accuracy of classification and recognition,
due to its insensitivity to outliers (random noise signals)
[52–55]. Using the neural network of the KNN classifier algo-
rithm to study the triboelectric signal enables the successful
recognition of different handwritten characters. Further-
more, we used the principal component analysis (PCA) algo-
rithm to preprocess the multidimensional electrode signal
data for dimensionality reduction, thereby reducing the com-
plexity of the process of building neural networks in machine
learning [56]. The results show that the intelligent handwrit-
ing recognition system as a human-machine interaction

interface has broad application prospects in personal infor-
mation recognition and anticounterfeiting signatures.

2. Concept

In the human body’s perception system, the perception and
processing of information rely on receptors and neural net-
works distributed throughout the organism. These networks
closely and effectively solve complex real-world perception
problems. The receptors capture external stimuli and envi-
ronmental information and then transmit them to the ner-
vous system for intelligent learning and processing.
Building artificial systems that can sense and process external
stimuli similar to living organisms is very important for
future intelligent robots and human-machine interfaces.

Inspired by the sensory system of living organisms, we
adopt single-electrode triboelectric nanogenerators to sense
external stimuli (Figure 1(b)). When mechanical stimulation
occurs on the surface of the device, the device will generate a
corresponding triboelectric signal spontaneously. At the
same time, the rapid development of machine learning algo-
rithms in the field of artificial intelligence (AI) provides a
brand new solution for the realization of intelligent sensing
functions (Figure 1(a)). For specific sensor applications,
using appropriate learning models can extract comprehen-
sive information for sensors. Classification and recognition
of handwritten characters are possible through the training
of capture and output of different handwritten character
signals. The handwriting recognition system proposed here
can (1) act as a human-machine interaction interface, (2)
yield a database about handwritten characters through

Train

(a) (b)

(c)

Figure 1: Schematic of the human-machine interface based on an intelligent handwriting recognition system: (a) artificial neural networks
inspired by biological perception systems; (b) active sensor based on single-electrode triboelectric nanogenerators; (c) smart recognition
application of handwritten characters.
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more training samples, and (3) create opportunities for
establishing intelligent systems that integrate perception
and feedback functions.

3. Results and Discussions

Figure 2(a), <i>-<iii> shows an illustrative diagram of the
preparation process of the device part of the intelligent
human-machine interaction system. As demonstrated in
Figure 2(a), <i>, a laser is used to cut the polyimide (PI) film
into a designed electrode array. Among them, each electrode
is formed by connecting five square patterns, and the gap
between the electrode and the electrode exactly matches the
square pattern. After attaching a PI mask onto a polydimeth-
ylsiloxane (PDMS) substrate, a spray gun sprays the silver
nanowire (AgNW) solution evenly on top of the PI-PDMS
structure. At this time, AgNWs will form a layer of an inter-
laced conductive network on the surface of PI-PDMS.
Because the PI mask can be easily torn off from the PDMS
substrate (Figure 2(a), <ii>), the designed patterned electrode
array will be left on the PDMS substrate. Further, spin-coated
PDMS on the surface of AgNWs isolates the first electrode
arrays from the second electrode arrays. Afterwards, the

upper electrode array is sprayed again using a PI mask, as
demonstrated in Figure 2(a), <iii>.

Figure 2(a), <iv> demonstrates an illustration of the
device, indicating that the pattern of the two-layer AgNW
conductive network array has been specially designed. There-
fore, the two electrode patterns are complementary to each
other to form a crisscross structure. We designate the upper
layer of AgNW conductive network electrodes as bit elec-
trodes (electrodes B1-B5) and the lower layer of AgNW con-
ductive network electrodes as word electrodes (electrodes
W1-W5). Figure 2(a), <v> shows the SEM image of the con-
ductive network of silver nanowires. It can be seen that the
AgNWs are interlaced with one another, which also increases
the overall flexibility, stretchability, and transparency of the
device. The soft feature of the PDMS substrate yields a con-
formal interface between the device and human skin.
Figure 2(a), <vi> demonstrates the physical photo of a device
placed on the wrist of a human.

Figure 2(b) demonstrates the working principle regard-
ing the intelligent human-machine interaction system. When
a slider (e.g., human finger) contacts with the top of the
device, contact electrification occurs (as shown in
Figure 2(b), <i>-<ii>). Because PDMS is strongly tribonega-
tive (i.e., attracting electron), it usually carries negative
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Figure 2: (a) Schematic diagram and preparation process for the device. <i>-<iii> Patterned PDMS-AgNW electrode spray preparation
process. <iv> Schematic showing the detailed structure of the device. <v> SEM photo of AgNWs on PDMS flexible substrate (the scale
bar is 1 μm). <vi> Optical image of the device attached to the skin for handwritten character sensing (the scale bar is 4 cm). (b) <i>-<v> A
illustrative diagram of the triboelectric signal of handwritten characters based on triboelectric nanogenerators.
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charges on the surface while countering objects bearing pos-
itive ones. As a result, a contact electrification phenomenon
leads to “a signal source” for powering, eliminating the need
for additional powering.

As displayed in Figure 2(b), <ii>, when a slider begins to
slide across an electrode, positive charges on it will progres-
sively balance negative charges on the surface of the PDMS
substrate. This leads to current from the electrode to the
ground. During the process of approximation of the slider
to electrodes, the electric field is restrained between the slider
and the PDMS. In the meantime, electrode outputs will be
unaffected from the negatively charged PDMS upper layer;
therefore, no net current flow presents in the circuit. After-
wards, the slider moves away from the electrode
(Figure 2(b), < iii>); the negatively charged PDMS introduces
positive charges on the corresponding electrode. As the slider
finishes sliding over an electrode and is moving towards adja-
cent another (Figure 2(b), <iv>), an identical process will
take place, as current flows from the electrode into the
ground. The process shown in Figure 2(b), <iv>-<v> is a
reversed process compared with that shown in Figure 2(b),
<ii>-<iii>. Hence, we can determine the successive motion
trajectory and status of the object on the device by measuring
the sequence and number of peaks in signals on electrodes.
Furthermore, we are able to obtain the speed and acceleration
of the object’s motion on top of the device.

Figure 3(a) presents an illustrative diagram of the finger
moving along four basic paths. As the object moves on top
of the device, multiple word electrodes and bit electrodes will
go across. As a result, inferring the trajectory of finger move-
ment is possible through the number of triboelectric signal
peaks on different electrodes and the sequence of appearance.
Figure 3(b) corresponds to the triboelectric signals of the four
different trajectories in Figure 3(a). Figure 3(a), <i> displays
the motion of a finger across the 45° angle. The finger moves
across ten electrodes successively (electrode B1 to electrode
B5 as the bit electrodes and electrode W1 to electrode W5

as the word electrodes). As shown in the electrical output to
the right, the resulting waveform matches quite well with
the finger. Figure 3(a), <ii> shows the motion of the finger
across the vertical direction. In the electrical outputs, there
are five voltage peaks between electrode B4 and electrode
B5 with respect to five patterns between electrode B4 and
electrode B5. The finger continuously moved across each
word electrode W1 to W5, leading to the voltage peaks on
the electrode W1 to electrode W5 appearing one by one.

Figure 3(a), <iii> shows the motion of a finger along the
horizontal direction. The electrical output on the right shows
that 5 voltage peaks on the W2 and W3 electrodes present
with respect to 5 patterns between the electrodeW2 and elec-
trode W3. The finger successively moves across through each
bit electrode B5 to B1; therefore, the voltage peaks between
electrode B5 and electrode B1 are generated continuously.
Track <iv> demonstrates the motion of a finger along a single
electrode (W4) on top of the device. Electrical output to the
right shows that 5 voltage peaks exist on the W4 electrode
with respect to 5 patterns on the W4 electrode. From bit
electrodes B5 to B1, the finger moves across each electrode
one by one, so the voltage peaks on the B5 to B1 elec-
trodes present one by one. Although trajectory <iii> is
very similar to trajectory <iv>, they are still distinguish-
able, thereby suggesting a reliable basis for the intelligent
handwriting recognition system.

Such trajectory data form a basis for further exploration
of the triboelectric signals that correspond to complex trajec-
tories. To this end, collecting the triboelectric signals by
handwriting English letters on the surface of the device is
necessary. The device consists of a 5 by 5 array of electrodes,
with a total of 25 pixels. The number of pixels is sufficient to
decompose 26 English letters into different trajectories.
Figure 4(a) shows the triboelectric signal diagrams on the
corresponding word electrode and bit electrode, associated
with English letters of “M,” “E,” “M,” and “S” written in
sequence on the surface of the device. The signal diagrams
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Figure 3: (a) Schematic diagram of different trajectories on top of device. (b) Time-domain voltage output generated by the word electrodes
and bit electrodes corresponding to the 4 basic tracks in (a).
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prove the feasibility of decomposing complicated trajectories
of English letters. In these cases, each basic trajectory can
yield a unique sequence of triboelectric signals. Since all
English letters are based on a collection of multiple basic tra-
jectories, the triboelectric signal diagram corresponding to
each English letter is also unique. This creates good condi-
tions for extracting feature vectors and intelligent recognition
through machine learning.

Figure 4(a) additionally shows that the triboelectric sig-
nals of the same letter “M” can have subtle differences due
to the inaccurate nature of handwriting. In order to study
the inaccuracy of handwritten triboelectric signals,
Figure S1 shows the signal diagrams of 10 groups of
different letter “M” and letter “E” traces on each electrode.
Figure 4(c) shows the signal of 10 groups of letters “M” and
“E” on electrode W5. It can be seen from Figure 4(c) that
although the handwritten signal corresponds to the same
letter, the triboelectric signal still has slight differences (e.g.,
the time delay between the signal peaks) due to different
writing habits. 10 sets of electrode data appear in Figure S1.
At the same time, for the same letter, the key characteristics
of the triboelectric signal (including the number of signal
peaks and time series) are consistent. However, because the

original writing trajectory is completely different between
letters, the key features of the corresponding triboelectric
signals are also completely inconsistent. Such features make
it possible for supervised machine learning to train neural
networks that can be intelligently identified.

Therefore, repeatedly writing the same letter can yield
multiple groups of different triboelectric signal sequences,
which serve as samples for further extraction of feature vec-
tors to train artificial neural networks. It can quickly and
accurately recognize the handwritten letters based on the
trained artificial neural network. Figure 4(b) shows the sche-
matic diagram of the KNN neural network algorithm. As the
KNN neural network algorithm performs classification and
recognition by comparing the difference between the input
feature vector and the feature vector in the model within a
certain range, selecting an appropriate range of k values
allows for high-precision intelligent identification and elimi-
nates the interference of individual abnormal noise signals.

Figure 4(d) shows the intelligent recognition method of
the human-computer interaction system. It is particularly
worth noting that we did not directly treat the signal data
obtained from the test as the output of the training neural
network. The amount of data in the direct test is too large,

W1

W2

W3

W4

W5

B1

B2

B3

B4

B5

M E M S
(a) (b) KNN

Nearest-
Neighbour

Class A

Class B

Letter ‘M’ on W5

(c)

Letter ‘E’ on W5

Handwriting

Training

O
u

tp
u

t: E

(d)

Data preprocess:
PCA method

Transmission

0

–3

3

0

5 10

Time (S)

V
o

lt
ag

e 
(V

)

Time (S)

Time (S)

0

0 1 2

–1

1

0

1 2

V
o

lt
ag

e 
(V

)
V

o
lt

ag
e 

(V
)

–1

1
0

1

2

A

B

E

Z
10

Figure 4: (a) Write English characters “M,” “E,” “M,” and “S” in sequence on the device. The corresponding signals generated by the word
electrodes and bit electrodes. (b) Schematic diagram of KNN neural network algorithm. (c) Ten sets of handwritten signals of letter M and
letter E on electrode W5. (d) The principle diagram of feature extraction and feature learning of a hardware-based intelligent handwriting
recognition system.
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which makes the training volume extremely complicated.
Therefore, we use the PCA dimensionality reduction algo-
rithm to decrease the dimensionality of the test data first.
The main point of the PCA algorithm is to calculate the
eigenvectors and eigenvalues of the variance and covariance
matrix in the data. The eigenvalues are sorted, and the eigen-
vectors that have little impact on the structure are discarded
to reduce the dimensionality of the data. In addition to
greatly reducing the computer computing overhead when
training the neural network, it can also mitigate the impact
of noise on the results. The PCA algorithm codes we used
are presented in the supplementary note.

In the neural network trained by the KNN algorithm, we
can customize the neural network we need according to spe-
cific needs. As shown in Figure S2a, we can mark the
handwritten triboelectric signals of different people as
different training samples. Since different people have
different writing habits, we can divide Class B in
Figure 4(b) into Class B1 and Class B2 according to
different writing habits. Figure S2b-c shows the signals on
the electrodes B1-B5 when different people write the letter
“M.” If the difference of these triboelectric signals is

artificially distinguished, a very complicated threshold
formula needs to be set. With the help of neural network
algorithms, the computer can automatically calculate the
characteristic differences of the input signal and perform
automatic classification. Therefore, the intelligent
handwriting recognition system can not only recognize the
traces of written letters but also has great potential for
anticounterfeiting recognition.

The machine learning algorithm can expand the scope of
intelligent recognition from English letters to Arabic charac-
ters and Chinese characters. Figure 5(a) shows the triboelec-
tric signals on each electrode, corresponding to 4 Arabic
characters “1,” “2,” “3,” and “4.” Figure 5(b) displays the tri-
boelectric signal sequence diagram obtained by handwriting
two common Chinese characters “纳” and “米” in turn. Sim-
ilar to the process of recognizing English letters, multiple
groups of triboelectric signal sequences through a large num-
ber of repetitions can serve as samples to train artificial neu-
ral networks. The final neural network structure, with 10
groups of neurons corresponding to 10 electrodes, appears
in Figure 5(c). After debugging and optimization, we deter-
mine the optimal number of hidden neurons in the middle
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as 128 in order to obtain more accurate recognition perfor-
mance. Finally, the number of output neurons depends on
the number we need to classify. For example, setting it to
26 enables the identification of English letters; changing it
to a specific number affords the capabilities in recognizing
Chinese characters and Arabic characters. Combining the
signal of the sensor with the artificial neural network yields
an intelligent human-machine interface system, with efficient
and quick communication performance between human and
machine or equipment.

4. Conclusion

Herein, we reported a self-powered human-machine interac-
tion interface system for smart handwriting recognition. In
this system, we design a horizontal-vertical symmetrical
arrayed electrode structure, with only five bit electrodes and
five word electrodes to realize the identification of 25 pixels.
It provides an effective method for decreasing the total elec-
trode amount when enhancing the number of pixels. The
entire device is based on a soft and transparent PDMS sub-
strate and can integrate seamlessly to the human arm as a
human-machine interaction interface. Combining the self-
powered active sensing capability of the triboelectric nano-
generator with KNN’s efficient classification and recognition
algorithm enables the classification of handwritten charac-
ters. According to the operating principle of the TENG, the
device can operate properly without external energy supply.
The PCA algorithm can reduce the dimensionality of the data
and reduce the computational overhead. Using the KNN
neural network algorithm, the human-machine interaction
interface system not only can effectively classify and identify
data but also can adjust the label of the sample according to
the demand to achieve anticounterfeiting identification. In
general, the self-powered intelligent handwriting recognition
system provides a communication window for people and
equipment, machines, and virtual environments and com-
bines triboelectric signals with machine learning methods
for the next generation of intelligent systems.

5. Materials and Methods

5.1. Patterned PDMS-AgNW Thin Film Fabrication. First, the
PDMS base solution (Sylgard 184, Dow Corning) is mingled
with the cross-linking agent at a mass ratio of 10 : 1, respec-
tively. Thirty minutes is then required for the mixture to be
evacuated before being disposed of on a smooth glass surface
to drop through the spin coating at 1000 revolutions per min
which lasts 100 seconds. Afterward, the blended solution is
heated at 90°C for forty-five minutes for it to cure sufficiently.
Then, we further cut a polyimide (PI) mask through laser, as
demonstrated in Figure 2(a), <i>, and place the modified PI
mast on the surface of the PDMS. In addition, we conduct
necessary oxygen plasma treatment towards the surface of
the PDMS film, which was then annealed at 90°C for fifteen
minutes after repeatedly spraying the AgNW ethanol solu-
tion. Ultimately, the patterned PDMS-AgNW film is
obtained by peeling off the PI mask.

5.2. Device Fabrication. Specifically, with the two patterned
PDMS-AgNWs being successfully fabricated, we first stack
them vertically while also ensuring them connected by liquid
PDMS. Ten minutes is required to heat the stacked thin films
on a hot plate at 90°C. Lastly, in order to better protect the
AgNW from being exposed, the sensor is encapsulated with
liquid PDMS then cured, contributing to a total thickness
of the electronic skin of 550μm.
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