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Abstract: Predicting the status of particulate air pollution is extremely important in terms of prevent-
ing possible vascular and lung diseases, improving people’s quality of life and, of course, actively
counteracting pollution magnification. Hence, there is great interest in developing methods for pollu-
tion prediction. In recent years, the importance of methods based on classical and more advanced
neural networks is increasing. However, it is not so simple to determine a good and universal method
due to the complexity and multiplicity of measurement data. This paper presents an approach based
on Deep Learning networks, which does not use Bayesian sub-predictors. These sub-predictors
are used to marginalize the importance of some data part from multisensory platforms. In other
words—to filter out noise and mismeasurements before the actual processing with neural networks.
The presented results shows the applied data feature extraction method, which is embedded in the
proposed algorithm, allows for such feature clustering. It allows for more effective prediction of future
air pollution levels (accuracy—92.13%). The prediction results shows that, besides using standard
measurements of temperature, humidity, wind parameters and illumination, it is possible to improve
the performance of the predictor by including the measurement of traffic noise (Accuracy—94.61%).

Keywords: air pollution; deep learning; prediction; wireless sensor

1. Introduction

The subject of air quality study and prediction is a very important research area [1–3].
As reported by the authors [4], air pollution prediction methods can be divided into statis-
tical, numerical, neural network and hybrid models. One of the most common problems
in the analysis of multisensory systems is the presence of noise and faulty measurements
in the learning dataset. To counteract this state, data marginalization is performed using
Bayesian sub-predictors. Bayesian sub-predictors also allow for extrapolation of missing
data. However, their disadvantage is that they increase the complexity of the algorithm
architecture and increase the computational cost. The novelty of the proposed algorithm is
that it proposes a built-in algorithm for clustering features from non-image data in such a
way that there is a formation of an image of the extracted features, which groups these fea-
tures and thus increases the effectiveness of the neural predictor itself. This paper presents
experimental results for a neural prediction system for particulate air pollution. The input
data are data acquired using a designed self-organizing wireless sensor matrix (WSM).
The decision system was focused on evaluating the influence of atmospheric conditions
and historical particulate matter on smog occurrence. The effects of temperature, humidity,
wind speed and wind direction, and historical particulate matter measurement data on
PM10, PM2.5, PM1 were analyzed. The architecture of a single measurement platform in
terms of Energy Harvesting (EH) system, energy storage system and sensor systems were
also presented. The architecture of communication between the nodes of the WSM network
is also presented. The novelty of the paper is also the use of Deep Learning algorithm,
in addition to classical Neural Network architectures, to extract the features of the raw
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tabular data vector. This approach allows the attainment of better results for the prediction
of future air pollution. The platform presented in this paper is a self-developed embedded
system, whose various versions are present in technology. However, the most important
aspect of this work is the non-Bayesian predictor itself in Deep Learning networks. This
is because data marginalization can however lead to the removal of parts of the data that
are meaningful. Of course, various research centers are working on improving this mech-
anism, but this work presents a different approach. This approach is based on not using
marginalization, but direct inference from raw tabular data, transformed to image form
using a special feature extractor. This approach has improved the quality of prediction and
in the future can be applied for other branches of technology than air pollution prediction,
such as predictive maintenance, medical, economic and social sciences.

2. Study Area

Wireless sensors are of high interest in many academic and business research cen-
ters [5–7]. The biggest advantage of this type of sensor is that no or limited maintenance is
required. Basically, the need to supply power and communication cables to such a device is
eliminated. Most often, in addition to the energy source such a system is equipped with
energy storage in the form of batteries and a wireless communication system [8,9]. The ad-
vantage of such systems makes them applicable in a very wide range of applications—from
monitoring environmental variables to measurements in hard-to-reach places of machines,
devices and systems. The basic requirement for such systems is resistance to external
factors and possibly long maintenance-free operation. This time can be increased by three
strategies: lowering the power demand of the system, using more powerful energy storage
or by using Energy Harvesting (EH). It is best to look for a combination of all three; however,
only EH can extend the maintenance-free time of the platform in a non-linear way and
even beyond the expected lifetime. Many research centers are working on self-powered
sensing circuits for integrating wireless sensing, energy harvesting, power management
and energy storage, and data processing [10,11].Research also includes the development of
antennas [12], energy harvesting from unusual sources such as hydraulic vibrations [13] or
even nanotribological sources [14]. Interestingly, according to [15], the use of multi-scale
sensors and biosensors in the multisensor platform could significantly improve the qual-
ity of detection in medicine as well, more effectively identifying possible SARS-CoV-19
virus infections.

A variety of methods are used in EH to generate energy. One of the most commonly
used is the use of photovoltaic panels. The analysis presented in [16] leads to relationships
determining what initial charge and duty cycle power consumption values are necessary
to obtain a self-sustaining system at a given average sunlight level. The authors formu-
late schemes for adapting duty cycle and other software platforms. The disadvantage of
a photovoltaic-based solution is, of course, the need for access to natural light sources,
i.e., limitations to outdoor applications. Nevertheless, an interesting solution to this prob-
lem is the use of panels based on perovskite [17]. The proposed solution can extract energy
from artificial light quite efficiently [18]. Another family of EH solutions is the extraction of
electricity from thermal energy [19,20]. This method uses direct conversion of temperature
difference into electric voltage according to the Seebeck effect occurring at the interface
between two semiconductors at different temperatures. According to [21], this is one of
the best methods to obtain microenergy to power sensor systems using residual heat. One
possible variation of this method is pyroelectrics [22]. Here, dielectric materials are used
for which the amount of charge released depends on the polarization intensity. Among
other EH methods, one can certainly list: mechanical [23,24], electromagnetic [25,26] or
hybrid [27] methods. A whole range of interesting solutions related to self-powered sen-
sors are solutions based on nanopolymers and other smart materials [28–30]. In this case,
advances in modern materials science allow for unheard of minimization of EH systems.
It is also possible to achieve high efficiency and take advantage of the increasingly lower
differences between energy potentials in power generation. The system presented in this
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paper can use each of the above-mentioned forms of EH separately. The system architecture
also allows for hybrid incorporation of EH sources. The results presented here include
a photovoltaic panel as a source. An essential component of air pollution is particulate
matter (PM). They are formed mostly as a result of combustion reactions, and they are
small particles composed of various substances and chemical compounds. According to
the Polish definition, dusts are solid particles of various sizes and origin, suspended in a
gas for a certain period of time. Aerosol, on the other hand, is a suspension of solid, liquid,
or solid and liquid particles in a gas phase with a negligible rate of drop. On the other
hand, international agencies focused on environmental protection, i.e., the WHO, Geneva
(World Health Organization), US EPA, Washington (United States Environmental Protection
Agency), EEA, Copenhagen (European Environment Agency) provide a definition of the
term particulate matter, or PM (Particulate Matter), as the dispersed phase of aerosol and
define it as a mixture of solid and liquid particles suspended in the air. Particulate matter is
classified by grain size, and three types of particulate matter are distinguished:

• PM10, with particles of no more than 10 µm;
• PM2.5, with particles not exceeding 2.5 µm;
• PM1, with particles not exceeding 1 µm.

Types of dust, resulting from the above division, are characterized by different sources
of formation, and thus properties and chemical composition. Due to these differences, they
affect health differently and their removal requires different methods. As the size of dusts
decreases, their danger increases due to the difficulty of filtration or subsequent removal.
This mainly concerns the possibility of penetration into the breathing systems of humans
and animals. In the scope of work, it was necessary to determine boundary conditions,
which were based on standards of concentration of particulate matter. Further conditions
were determined depending on the type of dust. PM10 dust contains carcinogenic heavy
metals such as benzopyrenes, furans and dioxins. It is dangerous not only because of its
contribution to breathing diseases, but also its high concentration increases the risk of heart
attack and stroke.

• The permissible level of 24 h average concentration is 50 µg/m3, not exceeing more
than 35 days a year;

• The limit for annual average concentration is 40 µg/m3;
• The information level for 24 h concentration is 200 µg/m3;
• The alert level for 24 h concentration is 300 µg/m3.

PM2.5 fine particulate matter contains secondary aerosols and combustion particles. It
is particularly dangerous to human health because it can penetrate the pulmonary alveoli
and thus cause a number of dangerous and even fatal diseases. It remains in the air for
up to several weeks and cannot be removed by sedimentation or precipitation. PM1 is the
most dangerous of the particulates tested. Their fine particles penetrate through the lungs
directly into the bloodstream and spread to the human organs. This causes problems with
the circulatory, respiratory and nervous systems. There are many methods for determining
particulate matter in the air. The gravimetric method, otherwise known as the reference
method, is recognized worldwide as the most precise [31]. Its disadvantage is the long
waiting time for the result, which is three weeks. It involves a daily replacement of the
filter into which atmospheric air is drawn. Each filter is weighed and has its own unique
identification number before being installed. After two weeks, the filters are collected and
transported to a laboratory where they are weighed and conditioned again. The concen-
tration result is given based on the weight difference related to the airflow volume of the
filter. Another method that can be used to measure dust concentration is the laser light
scattering method, or laser diffraction. It is characterized by a low cost of determination
and simple dust collection, although a major disadvantage of this method is the increase in
measurement uncertainty for other than spherical dust grains [32]. It is based on the use
of the ultrasonic method to guide the dust from the measuring strainers to the depressing
medium. Then the actual determination occurs on a laser granulometer. The phenomenon
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of optical diffraction of monochromatic light, which occurs at the boundary between an
impervious medium and a transmissive medium, i.e., dust particles and a depressing liquid
that forms an optical medium, is used to determine the particulate amount.

Indirect methods are a very interesting solution, and are mostly based on image
analysis and using Deep Learning (DL) neural networks [33]. In this case, two datasets
are applied to the model. The learning data contain synthetic images with prepared
PM concentration labels. The second set contains actual images and numerical weather
data from a weather station. The authors [33] present a parameter optimization model
to distinguish fog from smog and improve the accuracy of smog occurrence prediction.
Other neural methods for image analysis are also used. One of the more commonly
used is SVM [34,35]. The proposed SVM method is well suited for classification and
pattern recognition tasks. This method is used in remote sensing of air pollution due to
its characteristics, which makes intensive use of the data itself and is not limited by the
distributional assumptions of the data. The class of supervised learning algorithms used in
air pollution detection can also include Classification and Regression Trees (CART) [36]
and K-Nearest Neighbors (KNN) [37,38]. However, the biggest disadvantage of supervised
algorithms is the need to prepare and label large datasets. Additionally, they can generate
false positives or false negatives when the environment changes.

The use of Unsupervised Learning Networks can solve many of the mentioned
problems. Most importantly, networks with architectures such as Multilayer Perceptron
(MLP) [39], Convolutional Neural Networks (CNN) [40], and Recurrent Neural Networks
(RNN) [41], allows for the direct use of raw data. It also eliminates the need for data
labeling. This is because networks with these architectures have a feature extractor. With its
help, it is possible to transform the raw data into an appropriate feature vector. Deep
Learning Networks learn the hidden features of raw data by using the representation
learning method. Hence, they can detect dependencies in the model that are hidden to the
expert without being biased by incomplete knowledge about the system.

A very interesting model for studying the Air Quality Index based on The Hybrid
EMD–SARIMA method is presented in [42]. In this model, a time series is decomposed
into forecast parts using the seasonal auto regressive integrated moving average method,
followed by forecast re-composition. In air pollution prediction, Machine Learning can
also be used to create spatial maps of elevated PM levels. Such an approach has been used
in [43], where maps of PM10 concentrations were successfully produced from landform
and building data, soil data, and temperature and wind data. Deep Learning predictors
based on gated recurrent unit networks for Internet of Things sensors data have been
presented in [44]. In this case, prediction accuracy was improved by combining partial
forecasts using sub-predictors. The class of methods using Machine Learning also includes
the one presented in [45]. This paper presents a prediction estimation method using the
series causality entropy method. The Bayesian approach in MLP networks presented by Jin
et al. features high robustness to sensor noise. The Bayesian method is used here to obtain
the weight distribution for the sub-predictor. The proposed causal entropy method allows
efficient feature extraction from multi-sensor systems. The novelty presented by Jin et al. is
a multistage Bayesian prediction system applied to reduce the dimensionality of feature
selection to overcome data noise. This is because the effect of data noise affects the learning
efficiency of MLP networks. In general, Bayesian networks determine continuous prior
distributions for each bias and weight. This, however, results in difficult inference due to
the huge parameter space of the [46]. However, the advantage of such networks is that
they lead to improved system calibration, i.e., a more consistent expression of uncertainty.
In such systems, the correctness of the classifier calibration is determined positively if the
confidence of the prediction is equal to the misclassification rate. Such marginalization
therefore improves the accuracy of the modern neural networks [47].
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3. System Architecture

The system consists of 5 wireless platforms including 4 slave nodes and one master
node. The research methodology is to distribute them at a distance of 50 m to collect
information from an area of about 200 m2. The artificial neural network is designed to treat
as input not only the information from the sensors of one platform, but from several at
the same time, and on this basis to predict the future air pollution. The number of sensors
can be expanded. A concept of the system was presented in Figure 1 in a graph form.
The Figure 2, shows pictures of the final form of the executive part of the system, the WSM
from inside and the ZigBee Dongle correspondingly.

Figure 1. The concept of the distributed measurement system using wireless low-power
monitoring devices.

(a) (b)

Figure 2. Picture of executive system devices—WSM, where (a) view with cover, (b) electronics’ view.

The platform was equipped with 9 sensor systems. First, the illuminance sensors (TI
OPT3001) was used. The next sensor was an atmospheric pressure sensor (Alps HSPPAD)
and humidity and temperature sensors (Alps HSHCAL). The measurements of UV-A and
UV-B radiation sensors (Alps HSUDDD) were also studied along with a wind speed and
direction sensor. A PM1, 2.5 and 10 sensor type PMS3003 was also added. In addition, car
traffic volume was found to be an important data for the neural prediction system, hence a
MEMS microphone (STM MP34DT02) was also included.

3.1. Master Control Unit

The Master Control Unit (MCU) has a key role in managing the entire platform. It
is primarily tasked with managing the Energy Harvesting circuits and the energy stor-
age. The state machine of the platform is also implemented in the MCU. This means
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the MCU manages the platform states and ensures power demand reduction and system
self-diagnostics. Another task of the MCU is to collect sensor data, preprocess it and
encapsulate the data into a communication protocol. The last task is communication with
other units and intelligent routing with other nodes in the network and eventually master
node. The main Integrated Circuit (IC) that was applied to the device is CC2630 MCU
manufactured by TI. It is a member of wireless CC26xx family targeting ZigBee and 6LoW-
PAN applications. The family of the ICs are cost-effective, ultralow power and 2.4 GHz
radio frequency capable. Furthermore, it consists of an ultralow power Sensor Controller,
which can be used for collecting analog and digital data autonomously while the rest of
the system is in a sleep mode. That is why the MCU is an accurate choice for its ability
to be powered by small coin cell batteries, energy harvesting, wireless communication
applications. Essentially, the features of the design of the device are following:

• Main CPU: 48 MHz ARM Cortex M3, 128 KB flash memory, 20 KB SRAM;
• Peripherals: 8 × 12-bit ADC 200 ksample/s, I2C, UART, RTC, 31 GPIOs;
• Sensor Controller current consumption in active mode: 394 µA;
• Overall current consumption: 2.94 mA in active mode, 1 µA in standby (RTC running

and RAM/CPU retention);
• Current consumption of the RF module:

– Receiving: 5.9 mA;
– Transmitting at 0 dBm output power (software programmable): 6.1 mA;
– Transmitting at +5 dBm output power (software programmable): 9.1 mA;

• RF receiver sensitivity: −100 dBm;
• Supply voltage range: 1.8–3.8 V.

The MCU provides 4 software configurable power modes: active, idle, standby and
shutdown. The active mode is the mode which provides full performance of the MCU
but it come at a price for power consumption. In this mode, code is actively executed and
all of the peripherals that are currently enabled provide normal operation. The system
clock can be any available clock source. The mode is present for example during UART
communication. Current consumption in this state is about 2.94 mA.

The idle mode is used when the CPU is not being unused; however, the MCU cannot
go into deeper power-saving modes due to the fact that waking up from them consumes
more time than is reserved for power-saving. All active peripherals can be clocked, but the
System CPU core and memory are not clocked as well as code not being executed. Any
interruption event will bring the processor back into active mode. Current consumption in
this state is about 550 µA.

In the standby mode, only the always-on domain (AON) is active. A pin, RTC or
Sensor Controller interrupt event is required to bring the device back to active mode.
The MCU peripherals do not need to be reconfigured when waking up again and the
System CPU continues code execution from where it went into standby mode. All GPIOs
are latched to the state just before entering standby mode. Current consumption in this
state is about 1 µA.

In the shutdown mode, the MCU is turned off entirely, including the AON domain
and the Sensor Controller. All GPIOs are latched to the state just before entering standby
mode. A pin interrupt defined as a wake from the shutdown wakes up the MCU and
acts as a reset. The Sensor Controller is an autonomous processor that can control the
peripherals, which are placed in the AUX domain, independently of the System CPU.
Therefore, the System CPU does not have to wake up, for instance to perform an ADC
sample or poll a digital sensor over I2C. The System CPU saves both current consumption
and wake-up time that would otherwise be wasted. The Sensor Controller is placed in
the AUX domain of the MCU. The AUX is a common description of all the analog and the
digital modules in the AUX power domain such as the Sensor Controller, timers, time to
digital converter, and others. The AUX power domain is located within the AON domain
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of the MCU. The Sensor Controller can conduct its own power and clock management of
the AUX power domain, independently of the System CPU.

The enabling components essential for the MCU include a group of decoupling ca-
pacitors: C1–C4, C6, C8, C9 and C20, capacitors C5, C7, and an inductor L1 is required
for properly work of the integrated DC/DC converter, electromagnetic coupling filter FL1
for GHz noise, pull-up resistor R1 for the reset pin, microswitch SW1 for resetting the
MCU, custom pinout JTAG connector J1 and two quartz crystal oscillators: high frequency
24 MHz and low frequency 32,768 kHz. Generally, the high frequency oscillator is used
in normal work of the MCU, whereas the low frequency oscillator is used in the device
sleeping mode for RTC clocking. The MCU provides internal crystal load capacitance for
high frequency oscillator in the range from 2 pF to 11 pF; thus, external capacitors are
unnecessary. However, the low frequency oscillator are not provided with this feature,
therefore 9 pF external capacitors were included.

The MCU was integrated with the 2.4 GHz radio module supporting ZigBee and
6LoWPAN networks. It supports two front end output options: differential and single-
ended with internal or external bias. The front ends provide different values of sensitivity
and output power. The target front end was selected as differential with internal bias,
which features an −99 dBm sensitivity and +5 dBm output power. The application of the
integrated radio is presented in Figure 3. The radio module was designed to work with PCB
printed or chip antennas. The project application includes the “Inverted F” PCB printed
antenna of which the layout is presented in Figure 4. The dimensions of the antenna are
showed in the Table 1. This solution provides low cost, ultra-low power consumption and
high performance of the radio module.

Figure 3. The application of the integrated radio components.

Figure 4. Inverted F PCB printed antenna layout.
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Table 1. Inverted F PCB printed antenna dimensions.

Label Value (mm) Label Value (mm)

H1 5.70 W2 0.46
H2 0.74 L1 25.58
H3 1.29 L2 16.40
H4 2.21 L3 2.18
H5 0.66 L4 4.80
H6 1.21 L5 1.00
H7 0.80 L6 1.00
H8 1.80 L7 3.20
H9 0.61 L8 0.45
W1 1.21

Some of the peripherals are embedded into the PCB. The LED D1 indicates the success-
ful startup sequence of the device. Microswitch SW2 was used for debugging purposeas.
An I2C sensor application, which consists of 4 sensors with decoupling capacitors and I2C’s
bus pull-up resistors is presented in Figure 5.

Figure 5. The I2C sensors application.

Furthermore, the MEMS microphone and analog sensor connector were applied. They
are showed in Figures 6 and 7, respectively.

Real-time battery voltage monitoring was applied as well. It uses a resistor divider
in order to adapt the voltage to the ADC rating. It is worthwhile pointing out that, if the
device is disabled or a battery is discharged, there are no leakage currents. The feature
is provided by the STM SPV1050. The battery voltage monitoring section is presented in
Figure 8.
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Figure 6. MEMS microphone application.

Figure 7. Analog sensor connector.

Figure 8. GPIOs and battery voltage monitoring section.

Additionally, the external ZigBee module is also part of the device. The module works
at 3.3 V supply and logic level, while the MCU at 1.8 V. Thus, a voltage level translation
was required. The feature was performed with the use of BSS138 N-MOSFET transistors.
A management of turning on/off of voltage translation is performed by the MCU in order
to prevent from leakage current. The Figure 9 shows the feature.
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Figure 9. The1.8–3.3 V voltage level translation.

3.2. Power Management

Integrated Circuits used in the device require 3 different voltage levels. Those are:
1.8 V as the MCU’s supply and all sensors’ digital voltage, 2.5 V as analog voltage for the
UV-A and UV-B sensors and 3.3 V as the ZigBee module’s supply. Moreover, there is a
primary 3.2 V ÷ 4.15 V supply which corresponds to the battery voltage and performs
supply to the entire board. Therefore, power supplies were defined as domains:

• The main power domain (3.2–4.15 V), which is required to be present for the device operating;
• The MCU power domain (1.8 V), which is also required to be present for the device operating;
• The sensor power domain (1.8 V and 2.5 V), which can be enabled and disabled by

the MCU;
• The RF power domain (3.3 V), which also can be enabled and disabled by the MCU.

Figure 10 shows principle of the power management in a graph form.

Figure 10. Power management graph in the WSM.

A Li-Ion battery, which is essential to the device operating, was placed in the main
power domain. It can be charged by means of the SPV1050 with any source. The “any”
means that the source can be high impedance (if the source is unable to sustain voltage at
the maximum duty cycle, e.g., with a solar panel) or low impedance (if the source is able to
sustain switching at the maximum duty cycle, e.g., with a USB). The only limitation is a
voltage range which has to be less than 5.5 V.
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3.3. Energy Harvesting Solar Panel

For energy harvesting purposes, a solar panel was used. Due to low-power and small
size of the device, the solar panel was selected to suit these requirements. Features of the
solar panel provided by the manufacturer are as follows:

• Maximum power: PMAX = 0.4 W;
• Open circuit voltage: VOC = 5.5 V;
• Size: 65 mm × 65 mm × 3 mm.

Unfortunately, the manufacturer did not deliver more information. Additional in-
formation such as the voltage–current characteristic is required to take advantage of the
solar panel in the most efficient way. Thus, the data were achieved through measurement.
The measurement circuit is presented in Figure 11.

Figure 11. Scheme of the measurement circuit.

The measurement was made by acquiring voltage and current signals in the time
domain. The exemplary screenshot in Figure 12 shows the process of decreasing load
from 10 kΩ to near 0 Ω, where the additional math function of power was performed.
The function was calculated from Equation (1).

P(t) = U(t)× I(t) (1)

Figure 12. Exemplary screenshot from a digital oscilloscope. Voltage (yellow), current (teal) and
power (red) waveforms in time domain.

A power function is required to acquire the Maximum Power Point (MPP), in which
the solar panel works in the most efficient way.

The measurement consists of 3 datasets. The measurements were performed under
artificial light exposure. Measured data were imported to the MATLAB environment in
order to define electrical characteristics in detail. However, the raw data had to be prepared
before arriving at the conclusion. The unpreparedness was a result of the measurement
method. As was mentioned above, a digital oscilloscope performs measurements in the
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time domain, while the target domain is voltage. The voltage is not a monotonic waveform
due to manual setting of the load at potentiometer as well as occurring noise. The Figure 13
shows the exemplary voltage–current characteristic created from raw data.

Figure 13. Exemplary voltage–current characteristic created from raw data.

To make the data useful, signal processing had to be performed. It contained two steps:

1. Making the voltage dataset monotonic.
2. Filtering current signal.

The first step was to remove the sample of voltage U(i) and I(i) current if the previous
voltage U(i − 1) sample was lower. This method left samples that fulfill statement (2) only:

U(i) < U(i − 1) (2)

If the statement is not met, the U(i) and I(i) samples are removed from the dataset.
After performing this operation, the voltage dataset was monotonic.

The second step was to filter the current datasets by means of the Finite Impulse
Response (FIR) low pass filter. The cutoff frequency and the filter order was set to 5 Hz and
200, respectively. These prepared data from 3 measurements was used to create 2 kinds
of characteristics:

1. Voltage–current (Figure 14).
2. Voltage–power (Figure 15).

Figure 14. Voltage–current characteristics from 3 measurements of the solar panel.
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Figure 15. Voltage–power characteristics from 3 measurements of the solar panel. Black X-marks
indicate the VMPP for each curve.

The voltage–current characteristic is a commonly used curve that provides detailed
information about performance of the solar panel. The voltage–power characteristic was
performed to determine the MPP of the solar panel. It was calculated from Equation (3).

P(U) = I(U)× U (3)

In the plots from Figures 14 and 15, each curve represents one dataset of solar panel
characteristics under artificial light. Black X-marks indicate the VMPP for each curve.
Coordinates of those points are listed in Table 2.

Table 2. The MPP measurement results for 3 datasets.

No. of Dataset VMPP (V) MPPratio

1 4.24 0.77
2 4.30 0.78
3 4.29 0.78

In order to provide the highest performance of the solar panel, operating voltage
should be as close to VMPP as possible, i.e., in range from 4.2 V to 4.35 V, which corresponds
to the MPPratio from 0.76 to 0.79.

After familiarizing with the VMPP and the maximum power value provided by the
manufacturer, the maximum available current can be estimated from Equation (4):

IMAX =
PMAX
VMPP

=
(0.4 W)

(4.28 V)
= 93 mA (4)

3.4. Communication Parameters

All network parameters are programmed in each XBee module; thus, the MCU soft-
ware is omitted in this area. This solution provides independence of the measurement and
network section of the WSMs. Therefore, adding new devices or managing the existing
ones is simplified. For programming the network nodes, Digi XTCU v6.3.2 was used. It is
dedicated software for XBee modules. The considered network topology is mesh topology.
Therefore, the routing path is dynamically established in order to find the shortest way to
the destination node. This solution protects network reliability in the case of unreachability
of some of intermediate nodes, for instance due to power-down of one of the routers.
The process of establishing routes between source and destination devices is called route
discovery. Coordinators and routers can participate in it. Network topology was tested
with regard to the presence of the intermediate node which was the ZR. In Figure 16,
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the case with the ZigBee Router (ZR) was presented, whereas in Figure 17 the case without
the ZR is shown. The network topology was rearranged automatically by the coordinator.
In both cases, data transmission was successfully performed.

Figure 16. Network topology with an available router.

Adding subsequent routers to the network can provide enlargement of the system
range to significant distance. The device specification shows that 400+ node networks are
possible, which theoretically provide a range measured in kilometers.

Figure 17. Network topology with an unavailable router.

Due to the fact that all data are directed to a single device, which is the ZigBee Dongle,
the many-to-one routing approach was selected. This approach of routing is established
by the setting time interval at the AR parameter for sending the many-to-one broadcast
transmission by the data collector. The request has to be sent periodically to update
the reverse routes in the network. Since the WSMs perform measurement every 10 min,
the parameter was set to 0x1E (measured in 10 s units), which means the reverse routes are
updated every 5 min.

To ensure the lowest current consumption of the XBee modules, I/O pins should never
be left floating. Therefore, the unused I/O pins were set to outputs with a low logical
level. Moreover, the transmit output power for the WSMs is limited to +1 dBm by means of
disabling Boost Mode. However, the ZigBee dongle is set to provide full power.

The test lasted for about 2 h with a successful result. Achieved data are presented in
the real-time plots in Figure 18. Each measurement is saved with its exact time of arrival at
a PC.



Energies 2022, 15, 1962 15 of 26

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 18. Exemplary real time plots of the measurements, where signals are from: (a) humidity
sensor, (b) humidity sensor (dry air), (c) pressure sensor, (d) temperature sensor, (e) UV sensor, (f)
second UV sensor, (g) illuminance sensor, (h) force sensor, (i) voltage sensor.
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3.5. Current Consumption of the ZigBee End Device

A lifetime estimation of the device required measurement of a current consumption.
The device works periodically. Therefore, in order to receive full overview of the current
consumption, measurement of one period is sufficient. Figure 19 presents current consump-
tion in 3 states of the WSM work. When the sensor power domain is enabled, measurements
are performed. This section lasts for 300 ms. Maximum current consumption is about 4
mA. The second section shows current consumption during the process of communication
that includes powering the Xbee module, searching and joining determined network as
well as sending the measured data. Moreover, in this section the System CPU is in active
mode which also has an influence. The process lasts for about 570 ms. The time can vary
depending on the result of the network finding. Current consumption of this section is
critical for the device lifetime due to the amount of required energy. It is about 35 mA dur-
ing transmitting and 8.5 mA in an idle state of the Xbee module. The last section concerns
the sleep state of the device and fill the rest of the time which is about 9 min and 59 s in
every cycle. Current consumption in this state was determined in 3 measurements with the
use of Keysight Technologies 34461A high precision multimeter. Results are presented in
Table 3. The exemplary waveform of the current consumption is presented in Figure 20.
An average current consumption during sleep state was assumed as 7.9 µA.

Figure 19. Current consumption of the WSM.

Figure 20. Current consumption during sleep state of the WSM—waveform.
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Table 3. Current consumption during sleep state of the WSM—measurement results.

Number of Measurement Current Consumption (Average)

1 7.824 × 10−6 A
2 7.966 × 10−6 A
3 7.876 × 10−6 A

Average: 7.889 × 10−6 A

Lifetime estimation started from calculation of the integral of the current consumption
in time at active and sleep state separately. The active state current consumption result was
separated and is presented in Figure 21.

The total active state charge was calculated from (5).

Qactive =
∫ b

a
I(t)dt =

b − a
2N

N

∑
n=1

(I(tn) + I(tn+1)) = 0.00467 C (5)

[mAh] =
[C]

[s]
× 3.6[s] = 3.6[C] (6)

Qactive = 3.6 × 0.00467C = 0.016812 mAh (7)

Figure 21. Current consumption during the active state of the device.

The result of the charge amount used during the state is equal to Q = 0.00467 C.
The unit that is more suitable for comparing with battery capacity is mAh. The result unit
can be converted with the use of Equation (6). According to Equation (7), the charge is equal
Q = 0.016812 mAh. Amount of consumed charge during the sleep state was calculated
with the use of the average value of current and time of the state. The result provided by
Equation (8).

Qsleep = Iavg × tsleep × 3.6 = 7.889 × 10(−6) A × 599 s × 3.6 = 0.017 mAh (8)

Therefore, total consumed charge within 10 min was calculated from Equation (9).

Qtotal = Qactive + Qsleep = 0.0338 mAh (9)

The last step was to calculate the total consumed charge during the course of a day in
order to deduce if the device is able to work as long as required. The minimum lifetime
for 1 battery charging is 24 h. Assuming that solar panel is able to fully charge the battery,



Energies 2022, 15, 1962 18 of 26

the device is estimated to work as long as required without intervention. The whole day of
the device’s operating consumes the amount of charge calculated from Equation (10).

Qday = 24 h × 6
1
h
× Qtotal = 4.8672 mAh (10)

Total consumed charge during the course of the day is less than capacity of the battery
(120 mAh); therefore, the condition is met. The estimated lifetime of the device without the
external energy source is about 24 days.

4. Methodology of Prediction

The following sensor measurements were the input data for the predictive system:

• Temperature;
• Humidity;
• Atmospheric pressure;
• Sensor indications of PM10, PM2.5 and PM1 (separately);
• Noise level;
• Wind speed and direction.

The data aggregated by a single platform was clustered into 7 process variable vectors
in 3 data sets (PM1, PM2.5 and PM10 separately) and then sent to the master node. The data
were not neurally processed in WSM, but rather sent to the master processor. The acquired
data (Figure 22) were archived in a .csv file, where the timestamp was stored in the unix
format. The data range from the beginning of the measurements on 29 January 2017 to 7
May 2019 was selected for further processing and analysis.

Figure 22. PM10 records for whole measurement period.

The data were then grouped into a 3D array of 24 × 7 × 5 where each 24 × 7 array was
a combination of all the readings from one day, and each subsequent layer corresponded
to the preceding days. The data prepared this way were used for training both classical
neural networks and deep learning networks. In addition, a data set with daily averages of
measurements was prepared, which was used for teaching classical neural classifiers as well
as regression networks and time series prediction networks. On the basis of daily averages,
separately for PM10, PM2.5 and PM1 particles, permissible levels were determined with
the application of the Directive on ambient air quality and cleaner air for Europe (OJ
EU.L.2008.152.1 from 11 June 2008) and individual days were categorized depending on
exceeding permissible levels of PM10, PM2.5 and PM1 particles.
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4.1. Classical Neural Classifiers

The objective of the classification was to determine, based on the previous 5 measure-
ment days and current measurements, whether the PM10 particulate matter permissible
level would be exceeded in five days. The MATLAB environment was used for learning,
in which data processing was previously performed. In order to preliminarily determine
the best performing classifiers, basic types of classifiers were trained without structure
optimization. The following machine learning methods were tested in a first series of
tests: decision trees, discriminant analysis, logistic regression, naive Bayes classification,
support vector machines, k-nearest neighbor classifiers and some ensembles classifiers.
The classifiers which obtained the best results were then selected and training of these
classifiers with parameter optimization was performed. KNN, optimizable ensembled,
SVM and discriminant analysis classifiers were used in this part of testing.

The experimental results listed in the article fitting all the data. We did not do any
modification, any erasing of existed data or extrapolation missed data. Deep learning
methods were using raw data. The data division were 70% for training, and 30% for testing.
In order to protect models from overfitting, an external testing set was used. In some
algorithms, cross-validation was used as overfitting protection. Leave-one-out as well as
k-fold methods were used. Leave-one-out is an exhaustive method of cross-validation
which means it utilizes all combinations of training and testing data, it uses one sample for
validation and other samples for training. On the contrary, k-fold is non-exhaustive method
of cross-validation which means that not all combinations are used. K-fold [48] randomly
splits dataset into k subsets and uses one as validation and the rest as training [49].

4.2. Deep Learning Classifiers

After testing the selected classical classification methods several times, it was decided
to test deep learning classifiers. For simplicity of learning and lower data requirements,
the Alexnet structure was chosen. The structure of the layers was adapted to the available
data. Learning of the network took place on a computer equipped with a Nvidia RTX 2070
SUPER 8 GB graphics card.

Several prediction scenarios were conducted. First, neural prediction was performed
for all input data for each of the 5 platforms separately, and then the results were averaged.
The above neural predictors were also built when the input data were retrieved from all
platforms at once. In the next case, the prediction results of each neural predictor were
compared for data from all platforms simultaneously and for all platforms without noise
measurement. No external weather stations or weather forecasts were used because WSM
is intended to operate on current data and self-generated historical data. For the Deep
Learning methodology, a modified Deepinsight algorithm described by [50] was used.
The part that was not changed from the original is the method of creating images from
vector data. What has been changed is the decision system, which was based on the
Alexnet approach. The neural system is described in more detail in [51]. The methodology
of creating images from vector data is based on a special transformation that transforms a
feature vector to a feature matrix. The position of each pixel depends on the similarity of
the features. The algorithm used in this case was Kernel Principal Component Analysis. It
is a nonlinear dimensionality reduction and feature extraction algorithm that exploits the
spatial structure of multidimensional features. It allows the recognition of more complex
hidden layers (distances between pixels created from data). This algorithm assumes that
once the location of a feature is determined, it is possible to map the feature values. This
results in a unique image for each feature vector. An example image from the measurement
data obtained from the presented self-powered platform is shown in Figure 23. Such images
were then used to teach Alexnet-type networks.
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Figure 23. Feature vector mapping using Kernel Principal Component Analysis.

In the case shown in Figure 23, two rectangles and a set of pixels are shown. The points
marked denote not the values for a feature, but only the locations of the features. The small-
est rectangle containing all features (the black rectangle) is determined first. This approach
reduces white noise in the data for the later neural-based reasoning system. For optimiza-
tion purposes, the rectangle is rotated into a red rectangle using the convex hull algorithm.
Only such an image is analyzed further by the neural network.

5. Results

First, the study was performed for PM10 particulate data using classical neural net-
works. The network learning results are presented collectively in Table 4 and graphically
in Figure 24 for KNN. The data in Table 4 were calculated based on known formulas for
Precision (11), Recall (12) Specificity (13), Accuracy (14) and F1 Score (15) presented in [52].

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

Speci f ity =
TN

TN + FP
(13)

Accuracy =
TN + TP

TN + FP + TP + FN
(14)

F1Score = 2 × Precision × Recall
Precision + Recall

(15)

where:

TP—true positives.
TN—true negatives.
FP—false positives.
FN—false negatives.
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Figure 24. KNN learning results for different neural networks excluding noise level (PM10 variant).

The first approach to analyzing the results was performed excluding the measurements
from the noise sensor.

The field seen in Figure 24, which is at the coordinates of (0, 0) stands for True
Negative, which indicates the number of negative ( not having the feature) cases that were
correctly detected. The field with coordinates (0, 1) indicates False Positive elements, which
means elements which were negative but were classified as positive. The coordinates (1, 0)
indicate False Negative items, which are positive items that were classified as negative. The
coordinates (1, 1) indicate True Positive results, which are positive and correctly classified.
The remaining fields, expressed as percentages, are the resulting percentages converted
with True Positive and True Negative, or False Positive and False Negative, or calculated
from True (Positive and Negative) or False (Positive and Negative).

Table 4. Results for different neural networks without considering the noise level (PM10 variant)

Neural Network Precision
(%) Recall (%) Specificity

(%)
Accuracy

(%)
F1 Score

(%)

KNN 92.85 83.87 94.87 89.99 88.13
NaiveBayes 100 48.38 100 77.14 65.21

OptDisc 84.37 87.09 87.17 87.14 85.71
OptSVM 84.84 90.32 87.17 88.57 87.50

The KNN network had the best Accuracy, while the NaiveBayes network had the
worst Accuracy. The OptSVM network had comparable Accuracy to KNN. This can be
explained by the fact that they are natively designed for classification tasks, whence may
be their better usefulness in classifying whether the next day will be a PM10 air pollution
exceedance day.

In the course of the work, it was detected that monitoring ambient noise can affect the
accuracy of the predictions made by the neural networks. The results of network learning
for such a case are presented in Figure 25 and Table 5. Interestingly, a slight improvement
occurred only in the case of dedicated classification solutions, that is, for KNN and OptSVM
networks. In the other cases, there was a deterioration in the results.
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Figure 25. KNN learning results for different neural networks including the noise level (PM10
variant).

Table 5. Results for different neural networks including the noise level (PM10 variant)

Neural Network Precision
(%) Recall (%) Specificity

(%)
Accuracy

(%)
F1 Score

(%)

KNN 88.88 91.42 88.57 90.00 90.14
NaiveBayes 73.52 71.42 74.28 72.85 72.46

OptDisc 88.23 85.71 88.57 87.14 86.95
OptSVM 91.17 88.57 91.42 90.01 89.85

Next, the Deep Learning network was applied for the same data and scenarios as the
classical networks.

Using the network with the algorithm to image the vector data improved the reasoning
Accuracy, as shown in Table 6. Compared to the best KNN (without noise sensor) and
OptSVM (with noise sensor) solutions, the DL solution was better by 2.14% and 4.60%,
respectively. Interestingly, the DL network obtained a better result without the noise sensor
than the classical network with additional noise sensor data.

Table 6. Accuracy for learning classical and DL type networks

Neural Network Data Accuracy (%)

KNN Without noise sensor 89.99
OptSVM With noise sensor 90.01

Deep Learning Without noise sensor 92.13
Deep Learning With noise sensor 94.61

A similar pattern can be observed by analyzing the data in Table 7. For each test
and particulate variant, better Accuracy was obtained compared to the classical approach.
For each type of particulate matter, the prediction of exceeding the acceptable concentration
on the next day was better by several percent than the classical methods. A significant
improvement in the results for the system with noise data can also be observed.
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Table 7. Increase in Accuracy for learning DL networks over classical neural networks for different
data sets.

Type of PM
measurements KNN (%) NaiveBayes (%) OptDsc (%) OptSVM (%)

PM10 without noise sensor 2.13 14.99 4.99 3.56
PM10 with noise sensor 4.61 21.76 7.47 4.60

PM2.5 without noise sensor 2.53 12.83 4.99 4.01
PM2.5 with noise sensor 4.81 22.03 7.55 4.95

PM1 without noise sensor 1.95 13.11 4.78 3.27
PM1 with noise sensor 4.58 20.80 7.17 4.52

6. Conclusions

The project of the distributed wireless measurement system was realized with sat-
isfactory results. The system is composed of the four executive units—WSMs and the
coordinating unit—the ZigBee Dongle. The system measures environmental parameters,
i.e., humidity, temperature, pressure, illuminance, UV-A and UV-B irradiance as well as
wind speed and direction and air pollution. The system uses the RF ZigBee protocol to
communicate wirelessly. The network topology is a self-healing mesh, which provides a
reliable solution in the case of node failures. The WSMs are energy-independent due to the
double-source power supply––a rechargeable battery and solar energy. The ZigBee Dongle
connected to a PC via USB port coordinate the wireless network and provides easy data
acquisition and processing in the MATLAB environment.

The ZigBee network was configured to meet the project’s assumptions of a self-healing
mesh, and low-power construction of the system. The proposed concept can enlarge the
network area to significant distances with multiplication of the network nodes. It can
be achieved by using the router functionality of the WSM. In order to utilize measured
data, an algorithm for data acquisition and processing in the MATLAB environment was
developed .

Examination of the designed system is presented. Tests were performed in the field
of power consumption and related lifetime of the WSM in both functionalities—as an end
device and as a router. The estimated lifetime result of the WSM as the end device is about
a month on a single coin battery without solar exposition. That makes the system a low-
power construction. The tests included also confirmation of the energy harvesting capability,
showing that the designed WSM is an energy-independent device. The final verification
was the test, which confirmed the system as a whole work according to the assumptions.

As a result of the research work, the following conclusions were found:

• Among all the applied neural classifiers, the highest effectiveness was achieved by
those belonging to the Deep Learning group. Networks of this type can independently
explore relationships unknown to experts, and, thus, for large sets of input data, find
hidden correlations between them.

• Array deployment of wireless sensors over a larger area can improve prediction
performance already at the level of predictor architecture. Over the course of the
research, it was shown that the effectiveness for the same data for averaging results
from individual platforms is lower than for an inference system in which the network
simultaneously covers data from all platforms.

• An unexpected result of the study is what effect noise measurement has by WSM.
If the neural network also considers this parameter as an input parameter, there is
an improvement in the performance of predicting the occurrence of air pollution
exceeding established limits. In this way, the DL network indirectly discovered the
relationship there is an increase in the use of combustion vehicles when the weather is
worse. In this way, without using data from weather stations, it implicitly discovers
increased combustion in urban traffic and low emissions, which impacts the increased
probability of occurrence of air pollution exceeding established limits.
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Further work will focus on the influence of the number and deployment of the plat-
forms with the established neural network architecture on the quality of air pollution
prediction. The optimal number of wireless sensor platforms will be determined in terms of
economic aspects. The optimal number of platforms, whose increase will not significantly
improve prediction efficiency, should be determined. Work will also be carried out on
optimizing the energy consumption of a single WSM platform.
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