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Abstract—In this paper, based on our proposed mal-packet
self-propagation models in wireless sensor networks, we use
TOSSIM to study their propagation dynamics. We also present
a preliminary study of the feasibility of mal-packet defense in
sensor networks. Specifically, based on random graph theory
and percolation theory, we propose the immunization of the
highly-connected nodes in order to partition the network into
as many separate pieces as possible, thus preventing or slowing
down the mal-packet propagation. We study the percolation
threshold of different network densities and the effectiveness of
immunization in terms of connection ratio, remaining link ratio,
and distribution of component sizes. We also present an analysis
of the distribution of component sizes.

I. INTRODUCTION

Because of the low physical security, lack of resilience and

robustness of underlying operating systems [1], and the ever

increasing complexity of deployed applications, new system

vulnerabilities keep being reported about Wireless Sensor

Networks (WSNs). In [14], it has been demonstrated that self-

propagate mal-packets can exploit memory-related vulnerabil-

ities to propagate itself, thus taking over the whole network.

Once the mal-packets start spreading by exploiting the mono-

culture of WSN applications, manual human intervention is

hardly effective based on the past experience gained from de-

fending against Internet worms. Therefore, self-propagate mal-

packets have become an emergent threat towards information

confidentiality, integrity, and service availability for WSNs.

In this paper, based on the implemented CSMA protocol

in TOSSIM [15], we first study the propagation dynamics of

mal-packets. The reason that we use TOSSIM is because it

exploits the WSN domain and TinyOS design, and thus is more

suitable for WSN research. We study the unicast and broadcast

mal-packet propagation models and present their dynamics.

Existing works only focus on mal-packet propagation dy-

namics in sensor networks [14], [9], [10], [13]. Few works

consider how to prevent such kind of propagation. Therefore,

based on percolation theory and random graph theory, we

further study the feasibility of defending against mal-packet

propagation in WSNs. Specifically, we model the deployment
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of sensor nodes as a homogeneous spatial Poisson process

in a two-dimensional space and study the effectiveness of

immunizing some sensor nodes in order to protect WSNs.

Immunizing a node means that the node cannot be infected

by the self-propagate mal-packets. Therefore, our purpose is

to know how to choose the approriate set of nodes in order to

partition the WSN into as many separate pieces as possible,

therefore preventing or slowing down the mal-packet propa-

gation. Percolation theory [12] tells us that with the increase

of immunized nodes, there exists a “critical phenomenon” at

which the network suddenly becomes disintegrated. Intuitively,

we select the most connected nodes to immunize. We study the

impact of the immunization on the network topology in terms

of connection ratio, remaining link ratio, and the distribution

of separate component sizes. Simulation results demonstrate

that the immunization can effectively prevent or slow down

the large-scale outbreaks of mal-packets.

II. MAL-PACKET PROPAGATION MODEL

In [13], we have presented a mal-packet propagation model

based on 802.15.4 WSNs. The CC2420 radio of MicaZ motes

is 802.15.4 compliant and presents development trends for

low-power and low-voltage wireless applications. With the

purpose of fast propagation, an infected node wants to exploit

the channel in order to propagate as fast as possible. Based

on these considerations, one example propagation model is

illustrated in Fig. 1. A node which has a packet ready to send

backs off for a random number of time between 0 and 2BE−1,

where BE is set to 3 by default. If the channel is found to be

busy again after the random backoff, BE increases by 1. This

process is repeated until either BE equals aMaxBE (which

has a default value of 5), at which point BE is frozen at

aMaxBE, or until a certain maximum number of permitted

random backoff stages, denoted as macMaxCSMABackoffs, is

reached, at which point an access failure is declared to the

upper layer.

The mal-packet exchange follows the pattern illustrated in

Fig. 2. Each node can be in one of three states: Invulnerable,

Vulnerable and Infected, and Vulerable and Uninfected. Based

on whether existing applications are unicast or broadcast, mal-

packet propagation can take different formats. For example,

pairwise key or groupwise key mechanisms may be deployed
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Fig. 1. Unslotted CSMA-CA for WSN Worms in 802.15.4 nonbeacon-

enabled mode.
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Fig. 2. Neighbor Feedback.

for different purposes. This may make mal-packet propagation

adopt either unicast or broadcast approaches. We refer readers

to [13] for details.

III. MAL-PACKET PROPAGATION DYNAMICS

Unfortunately, the 802.15.4 standard has not been fully sup-

ported in TinyOS 2.x. Instead, a basic CSMA-CA algorithm is

adopted (See TossimPacketModelC.nc for the implementation

under TOSSIM). Its backoff mechanism is similar to those

described in 802.15.4. Two important parameters play the

same role as NB and BE. The max iterations() value denotes

the parameter macMaxCSMABackoff in 802.15.4, while the

init low() value denotes the lower bound of the backoff range.

Therefore, based on TOSSIM, we observe the impacts of these

two parameters on mal-packet propagations. Note that more

details of NB, BE, max iterations(), and init low() can be

found in [13]. We skip their introduction in this paper because

of space limitations.

We randomly pick one node as an infected node. All other

nodes are set to vulnerable and uninfected. Before the mal-

packet begins propagation, every node uses a Hello protocol

to discover its neighbors. We generate the uniform distribution
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Fig. 3. Impacts of Simulation Parameters.

of 700 nodes, 800 nodes, and 900 nodes in a 400m X 400m

area and present its propagation dynamics.

A. Impacts of max iterations()

In this set of simulation runs, we use the normal backoff

values, and present the propagation dynamics under different

max iterations for the 800 nodes in Fig. 3(a).

First, it is obvious that the broadcast propagation is much

faster than that of the unicast. Also, broadcast propagation

may infect much more number of nodes. The results are what

we expect. Unicast propagation needs to transmit more mal-

packets. However, the low transmission rates in WSNs may

introduce more packet collisions. This will lead to more mal-

packets being dropped by the network.

Second, even for broadcast propagation, it is still difficult

to reach an 100 percent infection. WSNs suffer from very low

transmission speed and unreliable transmission links. This may

make packets prone to being dropped.

Third, given the broadcast propagation, the larger the value

of max iterations(), the higher the infection rate is. This is

because a larger value of max iterations() could give the

nodes more chances to exploit the channel, thus increasing the

successful transmissions of mal-packets. Note that in TOSSIM,

a zero value of max iterations() means infinity.

B. Impact of init low()

In this set of simulation runs, we set the value of

max iterations() to 0, and present the propagation dynamics

under different backoff values for the 800 nodes, as illustrated

in Fig. 3(b). In Fig. 3(b), when the value of init low() is 1, it

means that the backoff value is set to 1 * init low(). Similarly,

an init low() of 3 means a backoff value of 3 * init low() is

adopted.

Besides similar observations presented in Fig. 3(a), we can

also see that, for the broadcast propagation, a smaller value of

init low() may make the propagation faster than that of a larger

value of init low(). A smaller init low() value decreases the

random waiting time when sensor nodes perform the backoff.

Therefore, the mal-packet propagation speeds up.

C. Network Density

In this set of simulation runs, we adopt the default values

of max iterations() and backoff, and measure the impact of
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network density on the propagation dynamics, as illustrated in

Fig. 4.
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Fig. 4. Impact of Network Density.

We observe that the denser the network, the higher the

percentage of nodes is infected. Denser networks make nodes

have higher node degrees and higher connectivity. This can

facilitate the mal-packet propagation.

IV. IMMUNIZATION-BASED MAL-PACKET DEFENSE

We present an immunization-based mal-packet defense

mechanism in this section. The following notations in Table I

are used throughout the rest of the paper.

A. Network Model as Random Graph

TABLE I
NOTATIONS.

Symbol Meaning

N Number of sensor nodes deployed
r Communication range of sensor nodes
λ Node density
pk The probability that a randomly picked node has k neighbors

We use a homogeneous Poisson point process to model

the distribution of sensor nodes. We assume that each node

has a communication range of radius r. Therefore, two nodes

are linked together if and only if they are not farther apart

than a certain threshold. Consider N nodes that are uniformly

distributed in a square area with side length of X . Therefore,

for a node A, the number of nodes falling inside the circle

around A, i.e., the number of neighbors of node A, is equal

to r2λ, where λ is the network density and is equal to N
X2 .

Under this assumption, we can use a random graph to

model the deployment of sensor nods. pk, the probability that

a randomly picked node has k neighbors, is then equal to
λk

k! e
−λ, k = 0, 1, 2, . . ..

We perform a simple simulation to demonstrate this match.

We simulate the deployment of 4, 000 nodes in a square area

of 1, 250 × 1, 250 m2. Each node has a transmission radius

of 25. We plot the degree distribution of these sensor nodes,

as illustrated in Fig. 5(a). In Fig. 5(a), the solid line indicates

the theoretical Poisson distribution.

Based on this simulation, we can calculate pk. To illus-

trate whether pk follows a Poisson distribution, we make

a Quantile-Quantile plot (Q-Q plot) between a theoretical
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Fig. 5. Node Degree Distribution.

Poisson distribution and pk, as illustrated in Fig. 5(b). As seen

in Fig. 5(b), most of data points fall almost perfectly along the

line, which is a good indicator that pk is Poisson distributed.

The parameter for the Poisson distribution can be estimated

as λ = 5.2160. Therefore, in the following, we assume that

pk follows a Poisson distribution and perform the analysis.

B. Effect of Selective Immunization

Our basic idea is to select an appropriate set of nodes to

immunize. By immunization, we mean that these nodes are

immune to the propagated mal-packets. In this way, the se-

lected node can help disintegrate the network, thus preventing

or slowing down the large-scale propagation of mal-packets.

In practice, after we identify this set of nodes, we can take

various approaches to immunize.

Therefore, our question becomes how to choose the appro-

priate set of nodes in order to partition the WSN network into

as many separate pieces as possible.

It is not a good idea to immunize all the sensor nodes

because the potential large scale deployment of WSNs. In-

tuitively, the immunization of those most highly-connected

nodes can help slow down the propagation of mal-packets be-

cause more connections between nodes are removed under this

situation. In the following, we conduct a series of simulations

to demonstrate the effect of selective immunization.

We simulate the deployment of 5, 000 nodes over square

areas of 1, 250× 1, 250 m2, 1, 300× 1, 300 m2, and 1, 350×
1, 350 m2, respectively. These deployments can lead to reason-

able network densities. A sparse deployment which leads to

a disconnected network can prevent the large-scale infection

of mal-packets. On the other hand, if a network is densely

deployed, for example, every sensor node has a connection to

almost all the other nodes, it is helpless to immunize only a

portion of nodes.

We use the following metrics to measure the effect of

immunization:

• Connection ratio Cp: The ratio of the size of the largest

component to the size of the remaining network when

we remove the top p percent most connected nodes (and

their related edges);
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Fig. 6. Simulation Results.

• Remaining link ratio Lp: The fraction of remained links

after we remove the top p percent of most-connected

nodes;

• Distribution of component sizes: The distribution of the

sizes of connected components in terms of nodes. Here, a

connected component is a subset of vertices in the graph

each of which are reachable from each other through

some path.

In case the initial infected node starts infection from within

the largest remaining component, the size of the largest

remaining component gives the best situation that the infection

can spread. Therefore, the distribution of component sizes can

give us some idea about the infection effect.

1) Connection Ratio: Simulation results of the connection

ratio are illustrated in Fig. 6(a). We have the following

observations.

First, given a fixed immunization rate, the sparser the net-

work, the smaller the largest remaining component becomes.

This is what we expect.

Second, there exists a percolation threshold [12] for these

simulations, where Cp drops dramatically when the immu-

nization rate exceeds the threshold. For example, for the

1, 350×1, 350 m2 area, the threshold is roughly 0.22. We can

see that the sparser the network, the smaller the percolation

threshold becomes. This indicates that fewer nodes are needed

to be immunized in order to disconnect the network.

We also observe a dramatic decrease of the largest com-

ponent when the immunization rate reaches some value. For

example, given the 1, 300 × 1, 300 m2 area, when the immu-

nization rate reaches 30%, its largest component size drops

dramatically. This phenomenon, which has been extensively

studied in random graphs, is called percolation [12]. Therefore,

in Section IV-B3, we further extend our study when 30%
percent nodes are removed.

2) Remaining Link Ratio: Simulation results of the remain-

ing link ratio are illustrated in Fig. 6(b). We observe a slight

decrease of the remaining link ratio when the network becomes

sparser. This is also what we expect.

3) Distribution of Component Sizes: Simulation results of

the distribution of component sizes are illustrated in Fig.

7(a). We can see that when the network is sparser, after the

removal of top 30% percent most connected nodes, there are

more small components and fewer large components. Smaller
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components can slow down or prevent the propagation of mal-

packets.

C. Analysis of Distribution of Component Sizes

The distribution of component sizes is an important indica-

tion of mal-packet propagation. In this section, with the help of

random graph theory [12], we present the theoretical analysis

of the distribution of component sizes.

First, we need to study the probability distribution of the

number of second neighbors of one node, say node A, in

one graph. To do this, we use qk to denote the normalized

distribution of the number of edges k emanating from vertex

B other than the edge AB. Based on [12], we have

qk =
(k + 1)pk+1∑

j jpj

(1)

where we recall pj gives the probability that a randomly

picked node has k neighbors. Here
∑

j jpj is the average

degree of a vertex and its purpose is for normalization [12].

We further define the probability generating function for pk

as G0(x) =
∑

∞

k=0 pkxk. The generating function for qk is

defined as G1(x) =
G′

0
(x)
z

[12], where z denotes the mean

number of neighbors of a randomly chosen vertex.

Randomly pick one edge in a graph, for example, edge AB.

Following edge AB, we can reach vertex B. Consider the

distribution of the sizes of those clusters reachable by node

B and let H1(x) be the probability generating function that

generates the distribution of the sizes of these clusters. Based

on [12], we have

H1(x) = x

∞∑

k=0

qk[H1(x)]k = xG1(H1(x)) (2)

If we randomly pick one vertex, the distribution of the sizes

of the clusters to which this randomly chosen vertex belong

to is:

H0(x) = x

∞∑

k=0

pk[H1(x)]k = xG0(H1(x)) (3)

Assuming that pk follows a Poisson degree distribution, as

we have illustrated in Section IV-A, following the basic ideas

proposed in [12], we have G0(x) = G1(x) = ez(x−1).
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Based on Equation (2), we have:

H1(x) = x(q0 + q1H1(x) + q2H1
(2)(x) + . . .) (4)

Note that q0 = p1

<k>
= z1e−z

1! /z = ez . Starting from

H1(x) = q0x, substituting this into the right part of Equation

(4), and ignoring the part at order x2 and higher, we have

H1(x) = x(q0 + q1q0x), where q0 = ez . Based on Equation

(1), q1 = 2p2

z
= ze−z . Therefore, H1(x) = xe−z + (xe−z)

2
z.

Substituting this into the right part of Equation (3), we have

H0(x) = x(p0 + p1(xe−z + (xe−z)
2
z) + . . .).

By computing the coefficient of
dH0(x)

dx2 , we can get the

probability P2 of a randomly chosen vertex belonging to

components of size 2 is P2 = ze−2z .

Following this approach, we can iteratively compute the

component size distribution for a given WSN network [12].

We simulate the empirical distribution of the component

sizes. The simulation configuration that we use is 1, 350 by

1, 350 with 5, 000 nodes, in which top 35% percent most

connected nodes are immunized. We use the Depth-First-

Search algorithms to compute the component sizes. Based on

our analysis in Section IV-A, we use a Poisson distribution to

generate pk and use the above methodology to calculate the

theoretical distribution of component sizes.

The result is illustrated in Fig. 7(b). The curve correspond-

ing to theoretical analysis presents the analytical results by

the above methodology. Note that the theoretical analysis

proposed in [12] is used for a very large network. Here we use

a limited number of nodes which is typical for WSNs. This

may account for the mismatch.

With the above analysis, we present a simple approach to

identify immunization nodes in order to prevent or slow down

the large-scale mal-packet propagation in WSNs. Based on

how many nodes are deployed over how large an area, we can

estimate the percolation threshold to disintegrate the network.

This threshold enables us to calculate the number of neighbor

threshold, denoted as Nth, above which one node should be

immunized. Each node is then pre-equipped with Nth. After

the deployment, each sensor node can measure connectivity

information through a local Hello protocol and count the

number of one-hop neighbors, denoted as Nn. If Nn of one

node A is larger than Nth, node A should be immunized. Node

A can then report its location to the field officer.

After collecting these locations, some further actions can

be taken. For example, different types of sensor nodes can

be installed at these locations to avoid monoculture of the

underlying WSN hardware. For a WSN consisting of Mica

motes from xbow corporation, the more powerful IMote2

motes can be deployed at these locations. As a different

example, for applications which are not time-sensitive, we

can make sensor nodes deployed at these locations control

and intentionally delay traffic flows in WSNs. In this way, the

speed of mal-packet propagation can be effectively reduced.

V. RELATED WORK

Few research works are focused on mal-packets on wireless

networks. Yan et al. [7], [8] analyze the worm propagation

in Bluetooth networks and investigate the impact of mobil-

ity patterns on Bluetooth worm propagation. Khayam et al.

[9] propose a topologically-aware worm propagation model

(TWPM) for WSNs. By incorporating MAC and network

layer considerations, TWPM captures both time and space

propagation dynamics. De et al. [10] model the node com-

promise in WSNs based on epidemic theory. Gu et al. [14]

present attack approaches to construct specially crafted data

message to facilitate mal-packet propagation in wireless sensor

networks. Based on percolation theory, Zou [16] also apply

immunization based approach to protect worm propagation in

Email networks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a mal-packet propagation model

in WSN and a preliminary analysis of this model using

TOSSIM. Based on percolation and random graph theory,

we propose an immunization based countermeasure to protect

WSN. We select the most connected nodes to immunize and

study their impact on preventing and slowing down mal-

packet propagation. Future work includes demonstrating the

effect of different network topology, the realistic characteristic

of wireless sensor network including radio irregularity and

transmission unreliability, and comprehensive evaluation of the

proposed schemes.
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