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SELF-PROPELLED INTERACTING PARTICLE SYSTEMS
WITH ROOSTING FORCE

J. A. CARRILLO, A. KLAR, S. MARTIN, S. TIWARI

Abstract. A model for self-propelled interacting particles is extended
and investigated. An attraction force to a roosting area is introduced
and added to the particle system. Additionally to patterns like single
mills, new scenarios of collective behavior are observed. The resulting
equations are investigated analytically looking at different asymptotic
limits of the corresponding stochastic model and at the hydrodynamic
moment system. Numerical results and examples for microscopic and
hydrodynamic equations are presented.

1. Introduction

Interacting particle systems have been widely used for the description of
coherent motion of animal groups as schools of fish, flocks of birds or swarms
of insects as well as bacterial growth at cellular level. All these groups are
able to organize themselves in the absence of a leader allowing order to
arise starting from disordered configurations [CDFSTB03, PE99, BDT99].
These systems are usually described by discrete models [VCBCS95, GC04,
CKFL05, CKJRF02] in which some basic rules for modeling animal sociolog-
ical behavior are included such as the social tendency to produce grouping,
the inherent minimal space they need to feel comfortably inside the group
and the mimetic adaptation to a group. Models including these three effects:
attraction, repulsion, and orientation, are usually called 3-zone models that
have widely been used for fishes [HW92, BTTYB09, BEBSVPSS09, KH03,
HK05] and birds [BCCCCGLOPPVZ09, HCH]. Some minimal models have
also been proposed to describe these phenomena by interacting agents using
self-propelling forces, in which the only mimetic part of the model is the
tendency towards a constant speed movement, and pairwise attractive and
repulsive potentials, see [LRC00, DCBC06, CHDB07, CDMBC07, LLE08a,
LLE08b]. Various collective configurations like invariant flocks, rotating
mills, rings and clumps have been observed, studied, and classified.

As the number of particles grows, more compact approaches than trac-
ing the path of each individual become increasingly desirable. For exam-
ple, kinetic (mean-field) mesoscopic [DM08, HT08, HL09, CDP09, CFRT09,
CCR09] and continuum macroscopic models [TT95, MEBS03, TB04, TBL06,
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BCM07] have recently been derived and investigated. These equations de-
scribe the evolution of averaged quantities like the probability density func-
tion, density or mean velocity of the particles. These models are to a certain
extent able to approximate the microscopic dynamics. However, there might
be cases where the fullness of the microscopic solution is not captured by the
macroscopic one, see [CDP09]. We refer to [CDP09, CCR09] for a descrip-
tion of the transition from a microscopic modeling of swarming, to a contin-
uum description via kinetic theory. We finally refer to [CFTV10, CCR10]
for recent surveys about these different swarming models.

The above mentioned models are minimal in the sense that they aim at de-
scribing the basic patterns of self-organization phenomena. However, these
models have to be extended by including other effects through forces and pa-
rameters to capture the behavior of specific groups of animals. For example,
to describe the behavior of aerial displays of birds, typically a force called the
roosting force becomes important, we refer to [HCH, BCCCCGLOPPVZ09]
and references therein. This force describes the preference of the birds to
stay over a ’roosting area’.

Including such additional forces leads to a better understanding of these
aerial displays and to new collective configurations. The purpose of the
present paper is to investigate a self-propelled interacting particle system
where such a roosting force is included considering microscopic, kinetic and
hydrodynamic descriptions and their respective derivations and to compare
them numerically.

The paper is organized as follows: In section 2 we revise the standard
model for self-propelled swarms including a roosting behavior. Moreover,
the associated mean field equation is discussed. In section 3 a random noise
is included in the model. Moreover, a model with constant velocities is mo-
tivated looking at the original system in polar coordinates. For these models
we consider various asymptotic limits: different strength of the interaction
and roosting forces are considered and diffusive and hyperbolic limits are
discussed. In section 4 the hydrodynamic limit and associated milling so-
lutions are considered for the model in section 2. An integral equation for
single mills including the roosting force is derived. Section 5 is devoted to
numerical experiments for the microscopic and hydrodynamic equations.

2. Self-propelled interacting particles with
attraction-repulsion and roosting

To begin with, we consider the attraction-repulsion model of N interact-
ing, self propelled particles with friction in Rd governed by the equations of
motion

dxi

dt
= vi

dvi

dt
= αvi − βvi|vi|2 −∇xi

∑
i6=j

U(|xi − xj |)
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where U is an interaction potential and α, β are effective values for propul-
sion and friction forces, see [LRC00, DCBC06, CDMBC07]. A common
choice is the Morse potential

U(r) = −Cae
−r/la + Cre

−r/lr

which we will use for our computational examples. Ca, Cr are attractive and
repulsive strengths and la, lr are their respective length scales. Various pat-
terns of self-organization emerge and have been categorized in [DCBC06].
Flocks, where particles tend to move at constant density and velocity, and
milling solutions, where rotatory states are formed are of particular inter-
est, see e.g. [LRC00, CDMBC07, CDP09, LLE08a]. These equations are
extended by including an additional force, called the roosting force, describ-
ing an attraction to a roosting area or site. Big groups of birds move in
collective swarms, which often tend to overfly a fixed preferred location (e.g.
nesting area or a food source). Such a roosting force can be modeled in dif-
ferent ways, see, for example, [HCH, BCCCCGLOPPVZ09]. For simplicity
we restrict ourselves to the two-dimensional case d = 2 and assume that the
roosting site is at the origin. Similar to [HCH] one may then model this
individual force with the term

F 1
Roost = − sgn(v⊥i · xi)

(
1 +

vi · xi

|vi||xi|

)
v⊥i
|vi|

.

Here, v⊥i denotes the normal to the velocity direction. The force is always
directed orthogonal to the velocity of the particles giving each particle a
tendency towards the origin. In this case, the roosting force is maximal,
if the particles are directed away from the origin and equal to zero if they
are directed towards the origin. The sign term is necessary in order not
to prefer one sense of rotation for particles directed away from the origin
over the other and induces the correct rotation sense as discussed below.
Alternatively, we may consider the force

F 2
roost = −

[
v⊥i · ∇φ(xi)

]
v⊥i ,

or normalized versions of it. In this case the roosting force is assumed to be
proportional to ∇φ(xi)·v⊥i giving the particles again a tendency towards the
origin, if φ is suitably chosen. The roosting potential φ is a function φ : R2 →
R with the generic example φ(x) = |x|2/2. For such a definition the roosting
force is maximal if the particles are directed orthogonal to the direction to
the origin. The induced sense of rotation for particles directed away from the
origin is correct, in the sense that it is positive if the inner angle between the
position vector and velocity vector is positive and vice versa. Therefore, we
get rid of the sign term. In figure 1, we illustrate individual motion for the
system without interaction forces. The first model yields a circular motion,
whereas the second model gives a more involved pattern with changing radii
around the origin. In the following, we concentrate on the second version of
the roosting force. Compare [GKMW07, BGKMW07, KRS07] for a different
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(a) F 1
Roost with initial particle x =

(2, 0)T , v = (0, 0.5)T .
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(b) F 2
Roost with roosting potential 2.1 and

parameters RRoost = b = 1

Figure 1: Examples of fundamental motion induced by the roosting forces on an
individual particle.

application of such a forcing term to fiber lay down processes and [HCH] for
an extensive biological modeling of swarming behavior. In order to intensify
the roosting force outside a certain area and to diminish it therein, we
henceforth use the roosting potential

(2.1) φ(x) :=
b

4

(
|x|

RRoost

)4

where RRoost is the roosting radius and b is a constant weight.
By using the so-called ’weak coupling scaling’ assumption [Dou79, Neu77,

BH77, Spo91], one rescales the interaction potential with the factor M
N where

M denotes the fixed total mass. It will be normalized without loss of gener-
ality from now on to M = 1. Letting then N go to infinity, one can derive
in the limit of a large number of particles the associated mean field equation
[Dou79, Spo91, CDP09, CCR09]. Thus, our scaled microscopic model states

dxi

dt
= vi(2.2)

dxi

dt
= vi(α− β|vi|2)−

1
N
∇xi

∑
i6=j

U(|xi − xj |)

−v⊥i ∇xi

[
φ(xi) · v⊥i

]
.

In figure 2, we illustrated the effect of the new force. With the introduction
of roosting, patterns like mills can still be observed, but also new phenomena
like local flocks traveling on circular curves (”milling flocks”) are observed.
Further details are presented in section 5.
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Figure 2: The roosting force: A flock of particles traveling at direction (0, 1)T has
crossed the roosting area and particles have started to rotated back to the origin.
(N = 20, Rroost = 20, b = 1

20 , no interaction).

For N going to infinity one obtains the mean field equation for the dis-
tribution function f = f(x, v, t) of the particles:

∂tf + v · ∇xf + Sf = 0(2.3)

with force term

Sf = ∇v ·
(
v(α− β|v|2)f

)
−∇v · ((∇xU ? ρ)f)(2.4)

−∇v ·
([
∇xφ · v⊥

]
v⊥f

)
,

where the density ρ is defined as usual by

ρ =
∫

fdv with
∫

ρ dx = M = 1.

Let us mention that the rigorous passage from the microscopic particle sys-
tem (2.2) towards the kinetic mean-field equation (2.3) as N → ∞ is a
particular case of the theory of well-posedness in measures for the kinetic
equation (2.3) developed in [CCR09]. To be more precise, assuming that
the roosting potential and the interaction potential are locally Lipschitz,
then the sequence of particle solutions constructed as Delta Dirac sums out
of (2.2) converges towards a solution of the kinetic mean-field model (2.3).
This roosting force is an interesting case for the theory developed in [CCR09]
compared to the classical theory in [Dou79, Spo91] since it is not a globally
Lipschitz force in phase space.

3. Stochastic and constant velocity models and their
asymptotic limits

In this section we extend the system to include a stochastic noise term.
Moreover, a model for interacting particles with constant velocities is moti-
vated. Different scalings and asymptotic limits for these models are consid-
ered.
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3.1. Random noise. Adding a random noise to the system and redefining
the propulsion and friction coefficients depending on the strength of the
random noise A, the resulting stochastic differential system reads

dxi = vi dt(3.1)

dvi = vi(γ1 − γ2|vi|2)dt− 1
N
∇xi

∑
i6=j

U(|xi − xj |)dt

−v⊥i

[
∇φ(xi) · v⊥i

]
dt− A2

2
vidt + A dWt.

One can obtain the mean-field equation for the distribution function f =
f(x, v, t) of the particles formally by Ito’s calculus as in [Ri89] or rigorously
as in [Szn91, BCC]:

∂tf + v · ∇xf + Sf = Lf(3.2)

with force term S as above and diffusive part

Lf =
A2

2
∇v · (vf +∇vf) .(3.3)

3.2. Constant velocity model. We rewrite the above stochastic system
using Ito’s calculus in polar coordinates vi = ciτi = ciτ(αi) with ci ∈ R+

and τ = τ(α) = (cos α, sinα)T :

dxi = ciτi dt(3.4)

dci = ci(γ1 − γ2|ci|2)dt− 1
N

τi · ∇xi

∑
i6=j

U(|xi − xj |)dt

−A

2
(ci −

1
ci

)dt + A dWt

dαi = −ciτ
⊥
i · ∇φ(xi)dt

− 1
N

1
ci

τ⊥i · ∇xi

∑
i6=j

U(|xi − xj |)dt +
A

ci
dWt.

Since the tendency of the system in nature is to equilibrate the speed by
the friction and self-propelling forces, we neglect the noise term in the speed
equation and we assume that the speed is already stationary. This motivates
the following model of constant velocity c:

dxi = cτi dt(3.5)

dαi = −cτ⊥i · ∇φ(xi)dt

− 1
N

1
c
τ⊥i · ∇xi

∑
i6=j

U(|xi − xj |)dt +
A

c
dWt.

The associated mean field equation for the distribution function f = f(x, α, t)
can also be rigorously derived, see [Szn91, BCC], and is given by

∂tf + cτ · ∇xf + Sαf = Lαf(3.6)
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with force term

Sαf = SR
α + SU

α = −c∂α

(
τ⊥∇φf

)
− 1

c
∂α

(
τ⊥∇xU ? ρf

)
(3.7)

and diffusion operator

Lαf =
A2

2
1
c2

∂ααf(3.8)

and

ρ =
∫ 2π

0
fdα.(3.9)

3.3. Asymptotic limits. In this section we consider different asymptotic
limits of the mean field equations considered in the last section. We in-
vestigate situations with large and small values for the noise amplitude, the
interaction force and the roosting force. First diffusive limits with a rescaled
time are considered and second a hyperbolic scaling without time rescale is
investigated.

3.3.1. The limit for large noise, small interaction and small roosting. We
rescale the operator L in (3.2) with L → L/ε and consider a large time scale
t → t/ε. Assuming γ1 = γ2 = 1 this gives

ε∂tf + v · ∇xf + Sf =
1
ε
Lf(3.10)

with

Sf = ∇v ·
(
v(1− |v|2)f

)
−∇v · (∇xU ? ρf)−∇v ·

(
∇xφ · v⊥i v⊥i f

)
and

Lf =
A2

2
∇v · (vf +∇vf) .

Expanding f = f0 + εf1 + · · · , we obtain to order 1 in ε, Lf0 = 0 or
f0 = ρ(x, t)M(v) with

M(v) =
1
2π

exp(−|v|2/2).

To order ε we have v · ∇xf0 + Sf0 = Lf1, and since

v · ∇xf0 + Sf0 = v · ∇xρM + ρ∇v ·
(
v(1− |v|2)M

)
− ρ∇v · (∇xU ? ρM)− ρ∇v ·

(
∇xφ · v⊥v⊥M

)
= v · ∇xρM + (2− 5|v|2 + |v|4)M

+ v · ∇xφMρ + ρv · ∇xU ? ρM

= v · (∇xρ + ρ∇xU ? ρ +∇xφMρ) + (2− 5|v|2 + |v|4)M
we obtain

f1 =− 2
A2

v · (∇xρ + ρ∇xU ? ρ +∇xφρ) M(3.11)
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+ ρ(
|v|2

2
− |v|4

4
)M.

Integrating (3.10) with respect to v gives to first order in ε

∂tρ +∇x ·
∫

vf1dv = 0.(3.12)

Substituting (3.11) yields

∂tρ−
2

A2
∇x · (∇xρ + ρ∇xU ? ρ +∇xφρ) = 0(3.13)

or

∂tρ =
2

A2
∇x · ((∇xU ? ρ +∇xφ)ρ) + ∆xρ.(3.14)

We obtain a drift diffusion equation where the drift term is composed by an
interaction term and a roosting term, compare [CDP09] for the case without
roosting.

Remark 3.1. For the constant velocity model a similar result is obtained
in a straightforward way.

3.3.2. The limit for large angular noise, vanishing interaction and small
roosting. In this subsection we consider the constant velocity model (3.6).
We rescale the operator Lα like Lα → Lα/ε, use again the diffusive time
scale t → t/ε and rescale the operators SU

α like εSU
α . Moreover, we fix c = 1.

This leads to

ε∂tf + τ · ∇xf − ∂α

(
τ⊥∇φf

)
− ε∂α

(
τ⊥∇xU ? ρf

)
=

1
ε
Lαf(3.15)

To order 1 we get

f0 = f0(x) =
ρ(x)
2π

.

To order ε one obtains

τ · ∇xf0 − ∂α

(
τ⊥∇φf0

)
= Lαf1 =

A2

2
∂ααf1(3.16)

or

f1 = − 2
A2

τ · (∇xf0 +∇xφf0)(3.17)

Integrating (3.15) with respect to α gives

ε∂t

∫
fdα + c∇x ·

∫
τfdα = 0(3.18)

Up to order ε we obtain

∂tf0 +
1
2π
∇x ·

∫
τf1dα = 0.(3.19)

Inserting f1 and computing the integral over the tensor product yields the
following equation for ρ:

∂tρ−
1

A2
∇x · (∇xρ +∇xφρ) = 0.(3.20)
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This equation is equivalent to an equation derived in the context of fiber lay
down processes in the limit of large turbulence of the surrounding air flow,
compare [BGKMW07, HKMO09].

3.3.3. The large angular noise and large roosting limit. Finally, a hyperbolic
limit without time rescale is investigated. We consider again equation (3.6)
with c = 1 and the hyperbolic scaling Lα → Lα/ε and SR

α → SR
α /ε. This

gives

∂tf + τ · ∇xf − 1
ε
∂α

(
τ⊥∇φf

)
− ∂α

(
τ⊥∇xU ? ρf

)
=

1
ε
Lαf(3.21)

To order 1 we have

−∂α

(
τ⊥∇φf0

)
= Lαf0 =

A2

2
∂ααf0

or

−
(
τ⊥∇φf0

)
=

A2

2
∂αf0.(3.22)

Equation (3.22) is solved by

f0(x, α) =
ρ(x)
N(x)

exp
(
− 2

A2
τ · ∇φ

)
(3.23)

with

N(x) =
∫

exp
(
− 2

A2
τ · ∇φ

)
dα.

We integrate (3.21) over α and obtain up to order ε

∂tρ +∇x ·
∫

τf0dα = 0(3.24)

This can be rewritten as

∂tρ +∇x · (ρV ) = 0(3.25)

with

V = V (x) =
1

N(x)

∫
τ exp

(
− 2

A2
τ · ∇φ

)
dα.(3.26)

Assuming φ(x) = φ(|x|) we have N(x) = N(|x|) and we can rewrite V as

V (x) = λ(|x|)x

with

λ(|x|) =
1

φ′(|x|)|x|N(|x|)

∫
∇φ · τ exp

(
− 2

A2
τ · ∇φ

)
dα.

Thus, the limit equation is

∂tρ +∇x · (ρλ(|x|)x) = 0.(3.27)
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Figure 3: Plot of |x|λ(|x|) for fixed A = 1 and φ(x) = |x|2
2 .

Under suitable assumptions on φ, one shows that λ is negative, i.e. the
velocity V points towards the origin with, V (x) = 0 for x = 0 as expected
for the roosting force. For example, for φ(x) = |x|2/2 we have

|x|λ(|x|) =

∫
cos α exp(− 2

A2 cos α|x|)dα∫
exp(− 2

A2 cos α|x|)dα

which is a negative function with values in (−1, 0) being 0 at x = 0, see
figure 3.

4. Hydrodynamic limit and milling solutions

As in [CDMBC07, CDP09] for the equations without roosting force, one
can derive hydrodynamic limits in the present case as well. Consider the
mean field equation without diffusive part, i.e.

∂tf + v · ∇xf + Sf = 0(4.1)

with

Sf =∇v ·
(
v(α− β|v|2)f

)
(4.2)

−∇v · (∇xU ? ρf)−∇v ·
(
∇xφ · v⊥v⊥f

)
.

Integrating against dv and v dv and neglecting fluctuations gives the conti-
nuity equation

∂tρ +∇x · (ρu) = 0(4.3)

and the momentum equation

∂tu + (u · ∇x)u = u(α− β|u|2)−∇xU ? ρ−
(
u⊥ ⊗ u⊥ · ∇xφ

)
(4.4)

in the support of the density ρ. This is only true if fluctuations are neglected,
i.e, for monokinetic distributions, compare [LRC00, CDMBC07, CDP09].
Equations (4.3,4.4) are numerically investigated and compared to the solu-
tion of the microscopic equation (3.1) without noise term in section 5.
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Remark 4.1. (Stationary distributions) Assuming β|u|2 = α and the sta-
tionary case we obtain from the hydrodynamic equations above

∇x · (ρu) = 0(4.5)

(u · ∇x)u = −∇xU ? ρ−
(
u⊥ ⊗ u⊥ · ∇xφ

)
(4.6)

in the support of the density ρ. Assuming a rotatory solution given by

u =
√

α

β

x⊥

|x|
,

compare [CDP09], and looking for radial densities ρ = ρ(|x|), we obtain the
continuity equation and

(u · ∇x)u = −α

β

x

|x|2
(4.7)

−α

β

x

|x|2
= −∇xU ? ρ− α

β

x

|x|2
x · ∇xφ(4.8)

Assuming φ(x) = φ(|x|) we end up with an integral equation for ρ:

U ? ρ = D +
α

β
(ln |x| − φ(|x|))(4.9)

in the support of the density ρ. A numerical investigation of the stationary
states is performed in the next section. With the same arguments as in
[CDP09] to each milling solution a double mill can be associated.

5. Numerical experiments

In this section we present a series of numerical experiments on the micro-
scopic equations (2.2), as well as the hydrodynamic limit (4.3,4.4). Different
situations are studied and various patterns like single mills, milling flocks
and interlaced rotations are investigated. In particular, the differences aris-
ing from the inclusion of the roosting force are considered. The microscopic
equations are solved by a high order adaptive Runge-Kutta scheme for sys-
tems of ordinary differential equations. For a straightforward implementa-
tion, the complete distance matrix (di,j) = |xi − xj | has to be computed
in order to evaluate the interaction potential. Since this is costly, there is
a restriction on the number particles which can be simulated in this way.
Though N = 1000 are still possible to compute in reasonable time, we have
used at most N = 400 particles in our examples, which seem to be suffi-
cient. In order to simulate higher numbers of particles, one has to use more
sophisticated algorithms. The hydrodynamic limit (4.3,4.4) is considered in
detail numerically using a macroscopic particle method, see [TK07]. The
macroscopic particle methods is based on a Lagrangian formulation of the
hydrodynamic equations (4.3, 4.4). We consider

∂tx = u

∂tρ = −ρ
∂u

∂x
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∂tu = αu− β|u|2u−∇xU ? ρ− u⊥u⊥ · ∇xφ.

One evaluates these quantities at the particle locations and approximates
the spatial derivative of u by a difference approximation. The integral over
the interaction potential is evaluated by a straightforward integration rule:

∇xU ? ρ ∼
∑

j

∇xU(|x− xj |)ρjdVj

where dVj is the local area around a particle determined by a nearest neigh-
bour search. The resulting equations are then solved by a time discretization
of arbitrary order. Diffusive terms can be included as well in a straightfor-
ward way. Obviously, this shows that the actual macroscopic computations
are very similar to the microscopic ones. The difference lies in the way the
interaction term is evaluated. In the microscopic case we compute

1
N

∑
j

∇xU(|x− xj |)

instead of the above expression. If the values of ρj and dVj are all equal
then using

1 =
∫

ρ(x)dx ∼
∑

j

ρjdVj

it is easy to see that both simulations are equivalent to each other. However,
in the macroscopic situation the particles are not physical particles as in the
microscopic case. They play the role of discretization points. In particular,
if the number of ’real’ particles is very large, that does not mean that the
number of macroscopic particles in the particle method has to be increased
in the same way. The number of macroscopic particles is only chosen accord-
ing to accuracy considerations. On the other hand, the macroscopic equa-
tions considered here are derived under the assumption of a mono-kinetic
distribution function. Thus, they are not able to capture certain patterns
like superimposed double mills, which are not described by a mono-kinetic
distribution, see [CDP09].

5.1. Numerical experiments with the microscopic system. When
comparing collective patterns of (2.2) with models without roosting, the
first assertion is the disappearance of classical flocking: A state of particles
steadily moving at constant relative distance and constant velocity is not
possible in presence of roosting, since the roosting force quickly dominates
other forces outside the roosting area, and turns particles back to origin.
Secondly, we can preserve collective patterns where particles are moving in
a fixed bounded area around the origin by strongly increasing the roosting
radius, such that the roosting force never comes into play. Let us now look
at single mill solutions. Consider a fixed set of interaction potential pa-
rameters, such that milling solutions can be observed in absence of roosting
[DCBC06], with particles rotating on a radial interval [rl, ru]. For a roosting
radius Rroost > ru, a similar mill will appear again in presence of roosting,
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Figure 4: Singular mills exists for the roosting force, their radial extend shrinks
for decreasing roosting radii. (N=400, Interaction: CA = 20, CR = 50, lA = 100,
lR = 2; Roosting : b = 1

20 ; Propulsion : α = 0.07, β = 0.05, velocity vectors are
scaled for better visibility).

given suitable initial data. For Rroost < ru, milling solution can still be ob-
served. If they emerge, the mill is compressed. Figure 4 shows such singular
mills with [rl, ru] ≈ [10, 30] and Rroost = 30, 15, 10. The corresponding ra-
dial densities are shown in the next subsection. Single mills for Rroost < ru

occur, but other patterns different from classical mills occur more often and
are numerically more stable. Indeed, our simulations yield several collective
states for identical set of parameters, when varying initial data. In figure 5,
we illustrate typical patterns of collective behavior:

In (a), particles group in a local flock of common orientation and move
collectively along a circular curve, so we have a ”milling flock”. In (b), we
show the emergence of two distinct milling flocks. Another pattern is shown
in (c): particles move in two interlaced circular flows at opposite direction.
This pattern is can be considered a double mill, but it is not as symmetric
and ordered as the single mills of figure 4.

Though a classification of initial data, parameters and resulting collective
behavior is unclear at present state, our simulations show that interlaced
rotations of figure 5(c) are more common than double mills in the pure
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(a) Milling flock: Particles travel
at common orientation along
a circular curve (N = 400,
Rroost = 20).
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(b) Two milling flocks: Particles
split into two groups along
the same curve (N = 100,
Rroost = 30).
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(c) Interlaced rotation: Two
opposing circular flows emerge
(N = 400, Rroost = 20).

Figure 5: Milling flocks and interlaced rotations as collective patterns of roosting
(Interaction: CA = 20, CR = 50, lA = 100, lR = 2; Roosting : b = 1

20 ; Propulsion :
α = 0.07, β = 0.05, velocity vectors are scaled for better visibility).

attraction-repulsion scenario. Also, transitions from seemingly stable in-
terlaced rotation situations into milling flocks have been observed, but not
vice versa. Since the roosting force is radially symmetric, all type of mills
rotate around the origin as the central point, whereas in the pure attraction-
repulsion case, single mills can form around other central points.

5.2. Numerical investigation of the hydrodynamic limit. In this sub-
section, we compare numerical results of hydrodynamic equations with den-
sities obtained from microscopic simulation. The results for single mills are
presented in figure 6. We can see, that hydrodynamics densities coincide
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(b) RRoost = 30, radial density

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10 3

r

 (r
)

(c) RRoost = 15, radial density
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(d) RRoost = 10, radial density
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(e) No roosting, tangential velocity
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(f) RRoost = 30, tangential velocity
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(g) RRoost = 15, tangential velocity
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(h) RRoost = 10, tangential velocity

Figure 6: Comparison of microscopic and hydrodynamic radial densities and aver-
aged tangential velocities. Densities: (-) microscopic, (- -) hydrodynamic. Veloc-
ities: (-) microscopic, (- -) equilibrium velocity, (-o) hydrodynamic. (N = 400,
Interaction: CA = 20, CR = 50, lA = 100, lR = 2; Roosting : b = 1

20 ;
Propulsion : α = 0.07, β = 0.05).
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Figure 7: Angular densities for a milling flock. The angular velocity of the flock
is given by the averaged particle circumference per equilibrium speed (Interaction:
CA = 20, CR = 50, lA = 100, lR = 2; Roosting : b = 1

20 , RRoost = 30; Propulsion :
α = 0.07, β = 0.05).

well with microscopic simulations. The only difference is, that the hydro-
dynamic density is nonzero for small r outside the microscopic mill, but
this is due to smoothing properties of the hydrodynamic method. Figure 6
illustrates, how single mills are compressed in radial densities. Therefore,
the hydrodynamic equation yield the same mill shrinking for roosting, as
the microscopic simulation in figure 4.

In figure 7, we show the evolution of the radial density ρϕ(ϕ) =
∫

rρ(r, ϕ)dr
for the milling flock of type figure 5(a). The time is rescaled to
t̃ := t/(2πr

√
α/β), where r̃ is the averaged radius of particles. The milling

flock travels at constant speed with angular speed matching the flocks av-
erage circumference per equilibrium speed. Microscopic and hydrodynamic
simulation are an almost perfect match. In particular, the support of the
angular density is not enlarged in the hydrodynamic simulation for this sce-
nario.

Remark 5.1. We remark, that the simulated radial densities of single mills
are numerically verified solutions of the integral equation (4.9), which in
presence of roosting contains the roosting potential on the right hand side.
The monokinetic ansatz used to derive the integral equation is indeed numer-
ically fulfilled by the microscopic and hydrodynamic simulations. Interlaced
rotations as in figure 5(c) can not be observed in the monokinetic hydrody-
namics.

6. Concluding Remarks

The model for self-propelled interacting particles in [CDMBC07] or
[CDP09] has been extended to include a roosting behavior of the individuals.
The resulting equations have been investigated numerically and analytically.
Several asymptotic limits have been considered and reduced diffusive and
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hyperbolic approximations have been derived. The roosting term forces par-
ticles to turn back to a preferred area, as being motivated from biological
models. We have studied effects of the roosting force on patterns known
from pure attraction-repulsion scenarios, as well as new collective behaviors
like milling flocks. Though the formation of such patterns is verified also in
hydrodynamic simulation, a categorization of initial conditions, parameters,
and resulting collective behavior is unknown at present state.
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