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Self-propelled motion of a fluid droplet under chemical reaction

S. Yabunaka,1,a) T. Ohta,1,b) and N. Yoshinaga2,c)

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan

(Received 7 December 2011; accepted 31 January 2012; published online 21 February 2012)

We study self-propelled dynamics of a droplet due to a Marangoni effect and chemical reactions in a

binary fluid with a dilute third component of chemical product which affects the interfacial energy of

a droplet. The equation for the migration velocity of the center of mass of a droplet is derived in the

limit of an infinitesimally thin interface. We found that there is a bifurcation from a motionless state

to a propagating state of droplet by changing the strength of the Marangoni effect. © 2012 American

Institute of Physics. [http://dx.doi.org/10.1063/1.3685805]

I. INTRODUCTION

Self-propelled motion of particles has attracted much

attention recently from the viewpoint of nonlinear physics

far from equilibrium. There are several experiments of self-

propulsion of droplets in fluids.1–4 It has been shown that the

Belousov-Zhabotinsky reaction composed in a fluid droplet

triggers a spontaneous motion of a droplet.5 Computer

simulations of convective droplet motion6 and nano-dimer

motors7, 8 driven by chemical reactions have also been car-

ried out. There are theoretical studies of droplet motion due to

an interfacial tension gradient along the droplet surface.5, 9, 10

However, these theories are concerned only with the steady

velocity of a droplet. As a related theoretical study, the meso-

scopic description of the thermo-capillary effect has been

formulated.11 A transition between a motionless and migrat-

ing droplet driven by chemical reactions has been studied in a

system where a droplet is on a solid substrate.12

It should be noted that self-propelled motion of particles

has been investigated in a different field of physics. It has been

known that a pulse or a domain in excitable reaction diffusion

systems exhibits a bifurcation from a motionless state to a

propagation state by changing the system parameters.13, 14 A

reaction-diffusion system is represented by a set of nonlin-

ear partial differential equations, that is often investigated by

numerical simulations due to the limitation of analytical cal-

culations. Nevertheless, the theory of domain dynamics in the

vicinity of this drift bifurcation has been developed, e.g., for

the interaction between domains15–17 and for deformations of

domain.18–20

The purpose of the present paper is to extend the previ-

ous studies in reaction-diffusion systems to the droplet motion

in chemically reacting fluids. We introduce a model system

of binary fluids where a chemical reaction takes place inside

a droplet. The chemical component produced diffuses away

from the droplet and influences the interfacial energy. The

long-range hydrodynamic effects are treated with a Stokes

approximation supposing that the relaxation of the fluid ve-

locity field is much faster than that of the concentrations and

a)Electronoc mail: yabunaka@scphys.kyoto-u.ac.jp.
b)Electronoc mail: takao@scphys.kyoto-u.ac.jp.
c)Electronic mial: yoshinaga@wpi-aimr.tohoku.ac.jp.

that the Reynold number is sufficiently small in the system

considered. We will show that there is a drift bifurcation at

certain threshold of the Marangoni strength as in the reaction-

diffusion systems mentioned above. The time-evolution equa-

tion of the center of mass of droplet is derived near the drift

bifurcation by taking into consideration of the hydrodynamic

effects.

In Sec. II, we describe our model system and the inter-

face dynamics. The equation of motion for the center of mass

is derived in Sec. III. Discussion is given in Sec. IV. The force

acting on the droplet interface is formulated in Appendix A.

Some of the details in the derivation of the velocity of the

center of mass are given in Appendix B. The formulas used in

the evaluation of the coefficients in the time-evolution equa-

tion for a droplet are summarized in Appendix C. The con-

vective effect of the third chemical component is estimated in

Appendix D.

II. MODEL AND INTERFACE DYNAMICS

We consider a fluid mixture where the free energy is

given in terms of the local concentration difference φ = φA

− φB by

F {φ} =

∫

d�r

[

B(c)

2
( �∇φ)2 + fGL(φ) + f0(c)

]

, (1)

where φA(φB) is the local concentration of the component A

(B) and f0(c) = cln c. The coefficient B > 0 is assumed to

depend on c as B(c) = B0 + B1c with B0 and B1 constants

and fGL(φ) is a function of φ such that phase separation takes

place at low temperatures. Here we have assumed existence of

a dilute third component whose concentration is denoted by

c. The logarithmic term (f0(c) = cln c) arises from the transla-

tional entropy of the dilute component. The spatial variation

of c is also assumed to be broad enough compared to that of

φ which constitutes a sharp interface.

The time-evolution equation for φ is given by

∂φ

∂t
+ �∇ · (�vφ) = ∇2 δF

δφ
, (2)

where �v is the local velocity whose equation is given by

Eq. (4) below. Hereafter, we consider an isolated droplet such

0021-9606/2012/136(7)/074904/8/$30.00 © 2012 American Institute of Physics136, 074904-1
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that the concentration variation is φ(x) = φe > 0 inside the

droplet and φ(x) = −φe at the surrounding matrix. The equi-

librium value φe is determined by equating the rhs of Eq. (2)

to zero. The dilute component c is assumed to obey

∂c

∂t
+ �∇ · (�vc) = D∇2c − γ (c − c∞) + Aθ (R − |�r − �rG|),

(3)

where θ (x) is the step function such that θ (x) = 0 for x ≤ 0

and θ (x) = 1 for x ≥ 0. The first term on the rhs of Eq. (3)

arises from �∇ · [L(c) �∇δF/δc] with L(c) = Dc, where D is

positive constant. The c-dependence of the Onsager coeffi-

cient L is necessary for a dilute component.21 The second term

in Eq. (3) indicates consumption of c with the rate γ > 0 due

to a chemical reaction and with c = c∞ for |�r| → ∞ whereas

the last term represents production of c, which occurs inside

a droplet with radius R, whose center of mass is located at

�rG. In the most parts of the present paper, the coefficient A is

assumed to be positive and stands for the strength of the pro-

duction. However, the theory can also hold for A < 0 with a

slight modification.

The Stokes approximation is employed for the local ve-

locity �v and it takes the form

0 = −�∇p − φ �∇
δF

δφ
− c �∇

δF

δc
+ η0∇

2�v, (4)

where p is determined such that the velocity field satisfies the

incompressibility condition �∇ · �v = 0. The viscosity η0 is as-

sumed, for simplicity, to be a constant independent of φ. The

force arising from the first, second, and third terms can be

written as

f α = −∇αp − φ∇α δF

δφ
− c∇α δF

δc
= −∇αp′′ + f α

‖ + f α
⊥ ,

(5)

where p′′ has some additive terms to p, whose explicit form

is unnecessary for incompressible fluids since only the trans-

verse components of the velocity is relevant. In Appendix A,

we show that the normal and tangential forces are given, re-

spectively, by

f α
‖ = −nαB(c)| �∇φ|2( �∇ · �n), (6)

f α
⊥ = (δαβ − nαnβ)(∇βB)| �∇φ|2, (7)

where the unit vector �n is directed to the outside of the droplet,

i.e., �n = −�∇φ/| �∇φ|. The repeated indices imply the sum-

mation. When we are concerned with the large scale com-

pared with the interface width (or the sharp interface limit),

the factor | �∇φ|2 is localized in the interface region. In this

situation, the forces are localized on the interface at a which

denotes a location on the interface so that we may rewrite

Eqs. (6) and (7), respectively, as

f α
‖ (a) = −nασ (a)( �∇ · �n), (8)

f α
⊥ (a) = (δαβ − nαnβ)(∇βσ )I . (9)

The interfacial tension is defined by

σ (a) =

∫

dwB(c)

(

∂φ

∂w

)2

≈ BI (a)

∫

dw

(

∂φ

∂w

)2

, (10)

where w is the coordinate along the normal to the interface

and BI is the value of B at the interface. It should be noted that

the derivative in ∇βσ is not restricted to the two-dimensional

space on the interface regarding σ (a) as σ (c(�r)). After taking

the derivative in three dimensions, we may take the value on

the interface. This interpretation is consistent with Eq. (7) in

which ∇β acts on the weak spatial variation of c. The tangen-

tial component is automatically extracted by the projection

(δαβ − nαnβ). Equations (8) and (9) are consistent with the

boundary condition employed in hydrodynamics with multi-

component fluids.22

Substituting Eq. (5) into Eq. (4) and using the incom-

pressibility condition, the local velocity of fluid is given by

vα(�r, t) =

∫

da′T αβ(�r, �r(a′))nβ(a′)σ (a′, t)K(a′, t)

+

∫

da′T αβ(�r, �r(a′))[δβγ − nβ(a′)nγ (a′)](∇γ σ )I ,

(11)

where da′ is the infinitesimal area on the interface. The inte-

gral is taken all over the interface. The Oseen tensor is given

by

T αβ(�r, �r ′) =
1

8πη0s

[

δαβ +
sαsβ

s2

]

, (12)

with �s = �r − �r ′. The mean curvature is defined by K = −�∇ ·
�n.

The right-hand side in the time-evolution equation (2)

for φ can be ignored when the hydrodynamic effects are

dominant.23 From the left-hand side of Eq. (2), we note that

the normal component V(a, t) of the interface velocity is given

by

V (a, t) = vα(�r(a), t)nα(a). (13)

Substituting Eq. (11) into Eq. (13), we obtain

V (a, t) = V1 + V2, (14)

where

V1 =

∫

da′nα(a)T αβ(�r(a), �r(a′))nβ(a′)σ (a′, t)K(a′, t),

(15)

and

V2 =

∫

da′nα(a)T αβ(�r(a), �r(a′))[δβγ −nβ(a′)nγ (a′)](∇γσ )I .

(16)

The velocity �u of the center of mass of an isolated droplet

can be obtained from V(a, t). The geometrical consideration

leads to23

uα =
1

�

∫

daV (a)Rα(a), (17)
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where � is the volume of the droplet and �R(a) is the position

vector directed from the center of mass to the interface. For

a spherical droplet with radius R, we have � = 4πR3/3 and
�R(a) = �n(a)R.

In order to determine the migration velocity �u, we have

to evaluate the interfacial tension and its spatial derivative as

Eqs. (15) and (16), which may depend on the concentration c.

In this way, we take into account the Marangoni effect. To this

end, we assume that the interfacial tension depends on cI as

σ = σ0 + σ1cI , (18)

where σ 0 and σ 1 are constants determined from the expres-

sion of B = B0 + B1c. However, the explicit form of σ 0 and

σ 1 as a function of B0 and B1 is unnecessary in the argument

below. Substituting Eq. (18) into Eq. (17), we obtain for a

spherical droplet with K = −2/R,

uα = uα
1 + uα

2 , (19)

where

uα
1 =−

2σ1

�

∫

danα(a)

∫

da′nβ(a)T βγ (�r(a), �r(a′))nγ (a′)cI (a′),

(20)

uα
2 =

σ1R

�

∫

dada′nα(a)nδ(a)T δβ(�r(a), �r(a′))

× (δβγ − nβ(a′)nγ (a′))∇γ c(a′). (21)

Equations (20) and (21) are manipulated in Appendix B as

uα
1 = −

8σ1R

15�η0

∫

da′nα(a′)cI (a′), (22)

uα
2 =

σ1R
2

5�η0

∫

da′(δαδ − nα(a′)nδ(a′))(∇δc)I . (23)

In Sec. III, we will derive the time-evolution equation for �u
from Eq. (19) with Eqs. (20) and (21) by solving Eq. (3) for

the third component c.

It is remarked that, when c(�r) is set as c = c0

+ c1z instead of solving Eq. (3), we obtain from Eq. (19)

with Eqs. (20) and (21) the stationary migration velocity

u = −2σ 1c1R/(15η0) which agrees with the known result ob-

tained by the conventional theory of the Marangoni effect.24

III. EQUATION OF MOTION FOR A DROPLET

In this section, we derive the equation of motion for

a droplet. Since the major hydrodynamic effects have been

taken into account as in Eqs. (14)–(16), we ignore the con-

vective term �∇ · (�vc) in Eq. (3). We will show in Appendix D

and in Sec. IV that this term causes a shift of the bifurcation

threshold but is not expected to change the bifurcation behav-

ior essentially.

The configuration of the component c around a droplet

can be obtained by solving the following equation:

∂c

∂t
= D∇2c − γ (c − c∞) + Aθ (R − |�r − �rG|) . (24)

Hereafter, we consider the case of A > 0 that the component

c is produced inside the droplet, diffuses away, and vanishes

at |�r| → ∞, i.e., c∞ = 0. The method can also be applied for

A < 0 with the boundary condition c = c∞ �= 0 for |�r| → ∞.

In terms of the Fourier transform, Eq. (24) can be written as

∂c�q

∂t
= −D(q2 + β2)c�q + H�q, (25)

where

β =

(

γ

D

)
1
2

, (26)

H�q = ASqe
i �q·�rG , (27)

with the form factor of a sphere

Sq =

∫

d3r exp (i �q · �r) θ (|�r| − R), (28)

= 4π
sin(qR) − qR cos(qR)

q3
. (29)

The Fourier component c�q has been defined as

c�q =

∫

d3rc(�r)ei �q·�r . (30)

By assuming the relaxation of the composition c is sufficiently

rapid compared to the motion of interface, we solve Eq. (25)

by means of an expansion in terms of the time derivative,

c�q = GqH�q − G2
q

∂H�q

∂t
+ G3

q

∂2H�q

∂t2
− G4

q

∂3H�q

∂t3
+ . . . . .

= c
(0)

�q + c
(1)

�q + c
(2)

�q + c
(3)

�q + . . . . ., (31)

where we have defined

Gq =
1

D(q2 + β2)
. (32)

The short time expansion (31) is justified in the vicinity of the

supercritical drift bifurcation where the velocity of a droplet

u = |�u| is arbitrarily small. That is, the smallness parameter

of this expansion is given by

ε =
u

Dβ
≪ 1, (33)

where the denominator is the characteristic time of c. After the

inverse Fourier transform, the composition cI at the interface

is given by

cI = c
(0)
I (�rG+�s) + c

(1)
I (�rG+�s) + c

(2)
I (�rG+�s) + c

(3)
I (�rG + �s),

(34)

where

c
(0)
I (�rG + �s) = A

∫

�q

GqSqe
i �q·�rGe−i �q·(�rG+�s) = A

∫

�q

GqSqe
−i �q·�s,

(35)

c
(1)
I (�rG + �s) = −A

∫

�q

(i �q · �u)G2
qSqe

−i �q·�s = uα ∂

∂sα
Q2(s),

(36)
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c
(2)
I (�rG+�s)=A

∫

�q

(i �q · �̇u)G3
qSqe

−i �q·�s+A

∫

�q

(i �q · �u)2G3
qSqe

−i �q·�s

= −u̇α ∂

∂sα
Q3(s) + uαuβ ∂

∂sα

∂

∂sβ
Q3(s), (37)

c
(3)
I (�rG + �s) = −A

∫

q

(i �q · �u)3G4
qSqe

−i �q·�s

= uαuβuγ ∂

∂sα

∂

∂sβ

∂

∂sγ
Q4(s). (38)

The terms with the higher order time derivatives have been

ignored. The migration velocity is given by

�u =
d�rG

dt
. (39)

We have defined Qn(s) by

Qn(s) = A

∫

�q

Gn
qSqe

−i �q·�s . (40)

Since we have obtained the concentration profile of c for

a given interface configuration, we can now evaluate the ve-

locities in Eqs. (22) and (23), which are carried out in Ap-

pendix C. It turns out that there is a simple relation �u2 =
−(3/4)�u1. From the results obtained in Appendix C, the time-

evolution equation for the center of mass is given up to the

cubic non-linearity by

mu̇α = (−1 + τ ) uα − guα |u|2 , (41)

where

m = −M
∂Q3

∂s

∣

∣

∣

∣

∣

s=R

, (42)

τ = −M
∂Q2

∂s

∣

∣

∣

∣

∣

s=R

, (43)

g =
3M

5

[

−
2

R2

∂Q4

∂s
+

2

R

∂2Q4

∂s2
+

∂3Q4

∂s3

]

s=R

, (44)

with

M ≡
2σ1

15η0

. (45)

As will be shown below, all the coefficients m, τ , and g are

positive. The term proportional to �u2 does not appear, because

it is not a dissipative term. The third order term −g|u|2uα is

needed to make the migration velocity finite. By choosing 1/β

as the characteristic length and 1/(Dβ2) as the characteristic

time of the problem, Eq. (41) can be written in terms of the

dimensionless quantities as

m̂
dûα

dt̂
= (−τc + τ̂ )ûα − ĝûα |û|2 , (46)

where t̂ = tDβ2, û = u/(Dβ), and

τc =
D2β3

MA
=

15η0D
2β3

2σ1A
. (47)

 0

 0.02

 0.04

 0.06

 0  1  2

  ̂
 

m
 

ˆ R 

FIG. 1. The scaled coefficient m̂ as a function of R̂.

Here we consider the case that σ 1A is positive. It is remark-

able that all the parameters in the system are combined to-

gether as τ c given by Eq. (47) so that τ c is the only dimen-

sionless parameter. This is the case even if one takes account

of the convective term in Eq. (3) since it does not contain any

extra parameters. The dimensionless coefficients depend only

on R̂ = Rβ and are given by

m̂(R̂) = mDβ2τc, (48)

τ̂ (R̂) = ττc, (49)

ĝ(R̂) = g(Dβ)2τc. (50)

These scaled coefficients have been evaluated numerically

and plotted in Figs. 1–3 , which indicate that those are def-

initely positive.

IV. DISCUSSION

We have formulated the theory of self-propulsion of a

droplet caused by a Marangoni effect and chemical reactions.

Equation of motion for a spherical droplet has been derived

as Eq. (46) which exhibits a drift bifurcation. The hydrody-

namic effects are taken into consideration by the Stokes ap-

proximation for the fluid velocity. This is justified when the

time variation of the concentrations is much slower than that

of the local fluid velocity. We have made two assumptions.

One is the assumption that the interface (surface of droplet)

is infinitesimally thin. This assumption is satisfied when the

droplet radius is much larger than the interface width. The

other assumption is that the relaxation of the component c

 0

 0.04

 0.08

 0.12

 0.16

 0  1  2

ˆ  

ˆ R 

FIG. 2. The scaled coefficient τ̂ as a function of R̂.
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 0

 0.01

 0.02

 0  1  2

  ̂
 g
 

ˆ R 

FIG. 3. The scaled coefficient ĝ as a function of R̂.

is much faster than the interface motion. Since the interface

velocity is arbitrarily small in the vicinity of the drift bifurca-

tion threshold, the second assumption is consistently justified

in the theory.

The mechanism that a droplet undergoes a translational

motion in our model for A > 0 and σ 1 > 0 is as follows.

When a droplet is motionless, there is an isotropic concen-

tration distribution of c around it. The concentration profile

outside the droplet is a decreasing function of the distance

from the center of mass. Let us suppose that the position of

the droplet is shifted slightly. Then, the concentration of c de-

creases (increases) at the front (rear). If the relaxation rate of

the component c is infinite, this concentration unbalance is

recovered instantaneously. However, when the relaxation rate

is finite, the droplet tends to shift further since the interfacial

energy is an increasing function of c. This is shown schemat-

ically in Fig. 4. In fact, it is found that the terms with the

coefficients τ , m, and g in Eq. (41) arise from the higher or-

der terms (c
(1)

�q , c
(2)

�q , and c
(3)

�q , respectively) in the short time

expansion in Eq. (31). Therefore, if the time-delayed effect

τuα dominates the term −uα which corresponds to the Stokes

drag force, the droplet undergoes migration. It is noted that

this argument can also be applied to the case A < 0 and

σ 1 < 0.

We can estimate the effect of the convective term in

Eq. (3) which has been ignored in the treatment in Sec. III.

In Appendix D, we derive the correction from the convective

FIG. 4. Translational motion of a droplet. The droplet is migrating to the

right under the non-uniform distribution of the c component indicated by the

small dots.

term up to the first order of the perturbation expansion. The

coefficient τ is evaluated since this quantity is directly related

to the drift instability threshold. In the limit R̂ → 0, we obtain

τ =
1

τc

2R̂3

15
P. (51)

When the convective term is not considered, we have

P = 1 from Eq. (44). The first order correction from the con-

vective term gives us P = 31/56 as shown in Appendix D.

Since migration of droplet occurs for τ ≥ 1, this indicates

that the stronger Marangoni effect is necessary when the con-

vection of the third component exists.

The reason as to why the convective term of

H (�r) ≡ �v · �∇c tends to suppress the Marangoni effect

can be understood as follows. Substituting the local velocity

given by Eq. (D2), we have the value of H at the interface

HI = �u · �∇c|I . (52)

When A is positive, �∇cI and �u are anti-parallel (parallel)

to each other at the front (rear) of the moving droplet so

that we may expect that H < (>)0 at the front (rear) area.

Since the first order correction to the concentration c is given

by c(�r) = −[−D∇2 + γ ]−1H (�r) and the operator [− D∇2

+ γ ]−1 is positive definite, the concentration c tends to

increase (decrease) at the front (rear). This is just oppo-

site to the concentration variation described above for the

mechanism of translational motion.

One of the characteristic features of the present theory is

that all the parameters in the model equations are combined

as τ c given by Eq. (47) which determines the threshold of the

drift bifurcation. Since τ c is inversely proportional to A and

σ 1, the self-propulsion is easier for the stronger production of

c (i.e., larger values of A) and for stronger Marangoni effect

(i.e., larger values of σ 1). Note that τ̂ is an increasing function

of the radius of droplet. This means that the drift instability is

favorable for larger droplet if other parameters are fixed and

if any shape instability would not occur.

We make a remark on the sign of the Marangoni factor.

We have restricted ourselves to the case of Aσ 1 > 0. When

this quantity is negative, the coefficients m and g are nega-

tive in Eq. (41). Therefore, in this case, we have to take ac-

count of the higher time derivatives and the higher nonlinear

terms of �u. However, this is beyond our present theoretical

formulation.

In the present theory, the third component is produced

inside a droplet. However, if it is produced only on the droplet

surface, the step function in Eq. (3) should be replaced by

the delta function. We expect that the results obtained in the

present paper are not essentially altered if the component c

diffuses to the inside of droplet as well as the outside. Such a

model has been studied where the time-evolution equation of

surfactant on the surface of droplet is introduced explicitly.27

A self-propulsion of an oily droplet has been observed in

a μm size.2 In this experiment, the molecules which constitute

the droplet are produced by a chemical reaction which takes

place at the droplet surface. Another experiment by Thutu-

palli et al.4 shows that an aqueous droplet of the order of

100 μm surrounded by oil with surfactant molecules under-

goes migration by causing a non-uniform surface tension due
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to bromination on its surface. In these experiments, however,

it seems that the bifurcation from a stationary state to a mov-

ing state predicted in the present study has not been observed.

Further systematic experiments are desired.

Since fluid droplets are soft, they are generally deformed

in migration. A coupling between migration velocity and

shape deformations has been formulated recently in an ex-

citable reaction-diffusion system.19 Extension of such a the-

ory to the present hydrodynamical system will be carried out

in the future.
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APPENDIX A: DERIVATION OF THE FORCES

In this appendix, we derive the formulas (6) and (7). The

force Eq. (5) is written as

f α = −∇αp − φ∇α δF

δφ
− c∇α δF

δc
. (A1)

Substituting the free energy Eq. (1) into Eq. (A1), we obtain

the modified pressure

p′ = p + φ
∂fGL

∂φ
− fGL + c

∂f0

∂c
− f0, (A2)

and

f α =−∇αp′ − (∇αφ)(∇βφ)(∇βB) − B(c)(∇αφ)∇2φ

+
1

2
(∇αB)| �∇φ|2 = −∇αp′+| �∇φ|2(∇βB)(δαβ−nαnβ)

−B(c)(∇αφ)∇2φ −
1

2
(∇αB)| �∇φ|2, (A3)

where �n = −�∇φ/| �∇φ|. In the last term on the first line of

Eq. (A3), we have used the relation (∇αc)∂B/∂c = ∇αB. Note

the formula

∇2φ = −∇β (nβ | �∇φ|) = −( �∇ · �n)| �∇φ| + nβ∇β | �∇φ|

= −( �∇ · �n)| �∇φ| + nγ ∇γ (nβ∇βφ)

= −( �∇ · �n)| �∇φ| + nγ nβ∇γ (∇βφ) + nγ |∇φ|nβ∇γ (nβ)

= −( �∇ · �n)| �∇φ| + nγ nβ(∇γ ∇βφ), (A4)

where we have used the fact that nβ(∇γ nβ) = (1/2)∇γ (nβ)2

= 0 since (nβ)2 = 1. Substituting this into Eq. (A3), we

obtain

f α =−∇αp′+| �∇φ|2(∇βB)(δαβ−nαnβ)−B(c)nα( �∇ · �n)| �∇φ|2

−
1

2
(∇αB)( �∇φ)2 + B(c)nα| �∇φ|nγ nβ(∇γ ∇βφ)

+
1

2
∇α(B( �∇φ)2) −

1

2
∇α(B( �∇φ)2)

=−∇αp′′+| �∇φ|2(∇βB)(δαβ−nαnβ)−B(c)nα( �∇ ·�n)| �∇φ|2

−B(c)nα| �∇φ|nγ nβ(∇γ ∇βφ) + B(c)(∇α∇βφ)(∇βφ)

=−∇αp′′+| �∇φ|2(∇βB)(δαβ−nαnβ)−B(c)nα( �∇ ·�n)| �∇φ|2

+B(c)(∇γ ∇βφ)(∇βφ)(δαγ − nαnγ ), (A5)

where

p′′ = p′ +
1

2
B(∇φ)2. (A6)

Therefore, the force �f can be divided into the normal and the

perpendicular components,

f α = −∇αp′′ + f α
‖ + f α

⊥ , (A7)

where

f α
‖ = −nαB(c)| �∇φ|2( �∇ · �n), (A8)

f α
⊥ = (δαβ − nαnβ)[(∇βB)| �∇φ|2 − B(c)| �∇φ|(∇β∇γ φ)nγ ].

(A9)

The second term in Eq. (A9) is negligible compared to the

first term in the sharp interface limit. In fact, we have

| �∇φ|(∇β∇γ φ)nγ ] = | �∇φ|
[

(∇βnγ )| �∇φ| + nγ (∇β | �∇φ|)
]

nγ

=
1

2
∇β | �∇φ|2, (A10)

where we have again used the formula nγ (∇βnγ )

= (1/2)∇β(nγ )2 = 0. The integral of B(c)∇β | �∇φ|2 across the

interface vanishes provided that B varies weakly across the

interface. Therefore, we ignore the second term in Eq. (A9).

APPENDIX B: DERIVATION OF THE MIGRATION
VELOCITY

In this appendix, we derive Eqs. (22) and (23). In or-

der to obtain Eq. (22), the following formula for a spherical

droplet25 is necessary:
∫

da′nα(a)T αβ
(

�r(a), �r(a′)
)

nβ(a′)Ylm(a′) = ElYlm(a),

(B1)

where

El =
R

η0

2l(l + 1)

(2l − 1)(2l + 1)(2l + 3)
, (B2)

and Ylm(a′) is the spherical harmonics. The representation of

the unit vector �n in terms of Y1, m is also necessary,

�n = (sin θ cos φ, sin θ sin φ, cos θ ) , (B3)
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=

(

√

2π

3
(−Y11 + Y1−1) , i

√

2π

3
(Y11 + Y1−1) ,

√

4π

3
Y10

)

.

(B4)

Applying these formulas to Eq. (20), one can carry out the

integral over a so that Eq. (22) is obtained.

Next we calculate Eq. (21). First, we make an ansatz as
∫

da′T αβ
(

�r(a), �r(a′)
)

nβ(a′)nγ (a′) = Xδαγ + Ynα(a)nγ (a).

(B5)

The unknown constants X and Y are determined as follows.

We note the identities,
∫

da′T αβ
(

�r(a), �r(a′)
)

nβ(a′)nα(a′) = 3X + Y, (B6)

∫

da′nα(a)T αβ
(

�r(a), �r(a′)
)

nβ(a′)nγ (a)nγ (a′) = X + Y.

(B7)

The left-hand side of these expressions is readily evaluated as

∫

da′T αβ
(

�r(a), �r(a′)
)

nβ(a′)nα(a′)

=
R

8η0

∫ 1

−1

d(cos θ )
1 + sin2(θ/2)

sin(θ/2)
=

2R

3η0

, (B8)

∫

da′nα(a)T αβ
(

�r(a), �r(a′)
)

nβ(a′)nγ (a)nγ (a′)

=
R

8η0

∫ 1

−1

d(cos θ ) cos θ
cos θ − sin2(θ/2)

sin(θ/2)
=

4R

15η0

, (B9)

where θ (> 0) is the angle between �n(a) and �n(a′). Therefore,

we obtain

X =
R

5η0

, (B10)

Y =
R

15η0

. (B11)

By using the formula (B5), Eq. (23) is readily obtained.

APPENDIX C: DERIVATION OF THE COEFFICIENTS

In this appendix, we derive the migration velocities by

evaluating Eqs. (22) and (23). Substituting Eqs. (35)–(38) into

Eq. (22), we obtain

uα
1 = u

(1)α
1 + u

(2)α
1 + u

(3)α
1 , (C1)

where

u
(1)α
1 = −

2E1σ1

�
uβ ∂Q2(s)

∂s

∣

∣

∣

∣

∣

s=R

∫

da′nαnβ

= −
2E1σ1

R
uα ∂Q2(s)

∂s

∣

∣

∣

∣

∣

s=R

, (C2)

u
(2)α
1 =

2E1σ1

�
u̇β ∂Q3(s)

∂s

∣

∣

∣

∣

∣

s=R

∫

da′nαnβ

=
2E1σ1

R
u̇α ∂Q3(s)

∂s

∣

∣

∣

∣

∣

s=R

, (C3)

u
(3)α
1 =−

2E1σ1

�
uδuβuγ

∫

da′nα ∂

∂sδ

∂

∂sβ

∂

∂sγ
Q4(s)

= −
2E1σ1

R

[

−
6

5R2

∂Q4

∂s
+

6

5R

∂2Q4

∂s2
+

3

5

∂3Q4

∂s3

]

uα |u|2,

(C4)

with E1 = 4R/(15η0). In these derivations, we have used the

following relations:

R

�

∫

danαnβnγ nδ =
1

5

(

δαβδγ δ + δαγ δβδ + δαδδβγ

)

,

(C5)

R

�

∫

danαnβ = δαβ . (C6)

In order to calculate uα
2 in Eq. (23), we need the gradient

of the concentration c

∇γ c(1) = uα ∂

∂sγ

∂

∂sα
Q2(s)

= uα

[

1

R

(

δγα − nαnγ
) ∂Q2

∂s
+ nαnγ ∂2Q2

∂s2

]

,

(C7)

∇γ c(2) = −u̇α ∂

∂sγ

∂

∂sα
Q3(s) + uαuβ ∂

∂sγ

∂

∂sα

∂

∂sβ
Q3(s)

= −u̇α

[

1

R

(

δγα − nαnγ
) ∂Q3

∂s
+ nαnγ ∂2Q3

∂s2

]

,

(C8)

∇γ c(3) = uαuβuδ ∂

∂sγ

∂

∂sα

∂

∂sβ

∂

∂sδ
Q4(s)

= +
3

R3
[−uγ |u|2 + 3 |u|2 uαnαnγ + 3uγ uαuβnαnβ

− 5uαuβuδnαnβnδnγ ]
(∂Q4

∂s
− R

∂2Q4

∂s2

)

+
3

R

[

|u|2 uαnαnγ + uγ uαuβnαnβ

− 2uαuβuδnαnβnγ nδ

]

∂3Q4

∂s3

+uαuβuδnγ nαnβnδ ∂4Q4

∂s4
. (C9)
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Substituting these into Eq. (23), we obtain

u
(1)α
2 =

2Xσ1

R
uα ∂Q2

∂s

∣

∣

∣

∣

∣

s=R

, (C10)

u
(2)α
2 = −

2Xσ1

R
u̇α ∂Q3

∂s

∣

∣

∣

∣

∣

s=R

, (C11)

u
(3)α
2 =

2Xσ1

R

[

−
1

R2

6

5

∂Q4

∂s
+

1

R

6

5

∂2Q4

∂s2

+
3

5

∂3Q4

∂s3

]

s=R

|u|2 uα, (C12)

where X has been defined by Eq. (B10). Comparing

Eqs. (C2)–(C4) with Eqs. (C10)–(C12), we note that �u2

= −(3/4)�u1.

APPENDIX D: CORRECTION FROM THE CONVECTIVE
TERM

In this appendix, we calculate the coefficient τ by taking

account of the correction from the convective term in Eq. (3).

Up to the first order of �∇ · (�vc), Eq. (44) has an additive cor-

rection as

τuα = −M
∂Q2

∂s

∣

∣

∣

∣

∣

s=R

uα −
MR

�

∫

da′nα

[

∫

�q

Gqe
−i �q·(�rG+�s)

×

∫

�r ′

d3rei �q· �r ′
(�v(�r ′) · i �qc(0)(�r ′))

]

, (D1)

where we have used the relation �u2 = −(3/4)�u1. The vector

�v(�r) in the second term is the velocity field around (and in-

side) the droplet moving at a constant velocity u along the

z-axis and is given by26

�v(�rG + �r) =

⎧

⎪

⎨

⎪

⎩

u
[(

5
2

− 3r2

R2

)

ez + 3z
2R2 r

]

(for r < R)

u
[

−
(

R3

2r3

)

ez + 3R3z
2r5 r

]

(for r > R) .

(D2)

Analytical evaluation of the integrals in Eq. (D1) seems im-

possible in a general condition. Here we consider the limit

R̂ = βR → 0. In this case, we may approximate G(�r) as

G(�r) = 1/(4πDr) and τ is calculated as

τ = −
MR

�

4π

27D2
AR5

[

3

2

(

1

5
−

1

7

)

−

(

1 −
1

4

)]

=
MR

�

4π

27D2
R5A

93

140
. (D3)

If the second term in Eq. (D1) is ignored, the factor 93/140 is

replaced by 6/5.

We can also calculate the coefficient m by taking account

of the correction from the convective term in Eq. (3).

mu̇α =−M
∂Q3

∂s

∣

∣

∣

∣

∣

s=R

u̇α+
MR

�

∫

da′nα

[

−

∫

�q

G2
qe

−i �q·(�rG+�s) ∂

∂t

×

∫

d3rei �q· �r ′
(�v(�r ′) · i �qc(0)(�r ′))

]

. (D4)

The lowest order contribution from the first term is given by

−M
∂

∂s
Q3(s)

∣

∣

∣

∣

∣

s=R

=

[

AMR5

24D3

1

R̂
+ (terms finite for R̂ → 0)

]

. (D5)

The second term due to the convection of the composition c

has no term which is infinite for β → 0. Thus, the contribution

to the coefficient m from the convection of component c is

found to be higher order of βR. We expect the same situation

for g but have not confirmed it since the expression is very

complicated. Finally, we make a remark that the smallness of

ε in Eq. (24) is independent of the smallness of R̂.
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