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We report spontaneous motion in a fully biocompatible system consisting of pure water droplets in an

oil-surfactant medium of squalane and monoolein. Water from the droplet is solubilized by the reverse

micellar solution, creating a concentration gradient of swollen reverse micelles around each droplet. The

strong advection and weak diffusion conditions allow for the first experimental realization of spontaneous

motion in a system of isotropic particles at sufficiently large Péclet number according to a straightforward

generalization of a recently proposed mechanism [S. Michelin, E. Lauga, and D. Bartolo, Phys. Fluids 25,

061701 (2013); S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)]. Experiments with a highly

concentrated solution of salt instead of water, and tetradecane instead of squalane, confirm the above

mechanism. The present swimming droplets are able to carry external bodies such as large colloids, salt

crystals, and even cells.
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The recent surge of interest in active systems has driven an

intense research effort towards the design of self-propelled

polar particles, including walking grains [1,2], rolling [3] or

skating [4] colloids, and a variety of swimmers [5–9]. The

latter often take the form of Janus-like colloids [10], named

after the two-faced Roman god, because their motion

originates from the asymmetry of their surface properties

[7,8,11]. An alternative design of artificial swimmers con-

sists of active droplets, either on interfaces [12,13] or in bulk

fluid [14–17]. Droplets are particularly interesting systems

since they are extensively used in microfluidic devices as

(bio)chemical reactors [18,19]. Replacing the external flow

transport of the droplets by self-propulsion would open new

ways towards yet unexplored applications.

The self-propulsion mechanism of swimming droplets

[14–17] has its origin in the Marangoni flow induced by a

surface-tension gradient. In most cases, this gradient is

maintained through specific chemical reactions, including

the hydrolysis [14,15] or the bromination of the surfactant

[16]. Liquid crystal droplets, stabilized by ionic surfactant,

were also shown to develop spontaneous motion under

certain circumstances of adsorption-depletion of the sur-

factant at the droplet interface [17]. Apart from being

specific, these conditions may also be undesirable due to

possible interactions between the chemicals and the prod-

ucts that are to be transported in the droplets.

Recently, it was shown theoretically that at sufficiently

large Péclet number (strong advection, weak diffusion) the

nonlinear interplay between surface osmotic flows and

solute advection can produce spontaneous and self-sustained

motion of isotropic particles [20,21]. In principle, suffi-

ciently large droplets generating a solute of sufficiently large

molecules or nanoparticles should thus self-propel without

requiring any sort of chemical reaction.

In this Letter, we demonstrate experimentally the

self-propulsion of pure water droplets in a biocompatible

oil (squalane)–surfactant (monoolein) medium [Fig. 1(a)].

To the best of our knowledge, our system also constitutes

the simplest realization of spontaneous motion in a system

of isotropic particles as predicted in Refs. [20,21].

Replacing water with a saturated solution of salt, or

squalane with tetradecane, we prove the robustness of

the swimming mechanism. Finally, we take advantage of

this robustness to illustrate the carrier function of these

new swimming droplets, by transporting large colloids,

salt crystals (which form in the saturated salt solution),

and Dami cells [22] [Fig. 1(b)] inside the droplets.

FIG. 1 (color online). (a) Pure water droplet motion. Trajecto-

ries of ≃50 water droplets in the observation room (diameter

1 cm) filled with Sq–25 mM MO, recorded during 500 s. The

droplet trajectory is color coded with the time preceding its

present location (see movie in Supplemental Material [23]).

(b) Swimming droplets as microfluidic carriers. Transport of

salt crystals (top left), Dami cells [22] (top right), and colloids

(bottom).
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The experimental system consists of pure water droplets

(milli-Q) with typical radii a of 20–60 μm in a continuous

oil-surfactant phase consisting of a solution of 25 mM

of the nonionic surfactant monoolein (MO; 1-oleoyl-

rac-glycerol, 99%, Sigma) in the oil squalane (Sq; 99%,

Aldrich). The surfactant concentration is far above the

critical micellar concentration (CMC) for MO in Sq

(1.5 mM [16]). We also use droplets consisting of an

almost saturated solution of 26 wt % NaCl (Sigma-Aldrich)

in water and replace the continuous phase with tetradecane

(Td; ≥ 99%, Aldrich) with 25 mM MO. The microfluidic

device is made up of a 150-μm layer of UV-curing glue

(Norland Optical Adhesive No. 81) on top of a cover slip

held between two microscope slides [30]. The device

comprises a T junction for droplet production with a

channel section of 50 × 50 μm2 and a circular observation

chamber with a diameter of 1.0 cm and a height of 150 μm.

Initially, the whole system is filled with the oil-surfactant

solution. Water droplets are then produced at the T junction

using typical flow rates of 10–50 μ1=h and sent to a trash

channel until the desired droplet size and density are

obtained. We then redirect the flow towards the observation

chamber and send 10–100 droplets into the chamber

by greatly increasing the oil flow rate (to typically

1000 μ1=h). When the droplets reach the center of the

chamber we stop all flows. Images are recorded (Falcon II

camera, Teledyne Dalsa) on a Nikon AZ100 macroscope

(AZ Plan APO 1 × NA 0.1 objective) for 2 h at 3 ×

magnification and an acquisition rate of 1 frame per second.

We obtain the droplet coordinates by processing the images

in Labview using object and circle detection algorithms.

Droplet trajectories are tracked using a Matlab algorithm

adapted from Ref. [31].

First, we describe the droplet dynamics in the Sq-MO

solution. After the fluid flows are stopped, the droplets

move spontaneously in random directions. Figure 1(a)

displays a picture of 50 droplets in the observation

chamber, together with their trajectories recorded during

a period of 500 s before the picture is taken. The droplets

exhibit curved trajectories with a typical persistence length

of the order of 500 μm. Interactions between the droplets

are rather involved: we observe repulsion when the droplets

move fast, but also attraction when they are slower.

Some droplets form pairs and swim in parallel [see center

of Fig. 1(a)]. In the following we concentrate on dilute

systems and the short-time dynamics. The characterization

of the long-time dynamics and possible collective effects

are left for future work.

Typically, initial velocities are in the range 10–50 μm=s
and the swimming motion lasts for 2 h, during which the

velocity decays exponentially with time, with a character-

istic decay time τv ≃ 3500 s [Fig. 2(a)]. As a result the

trajectory length extends up to several thousand droplet

diameters, a “cruising range” never achieved before. A

remarkable observation is that the droplet size also

decreases as a function of time [Fig. 2(b)]. The exponential

decay is not as clear as for the velocity, but we can still

estimate a characteristic decay time τa ≃ 8000 s. From this

very basic observation, we infer that there is, in one form

or another, a net flux of water coming from the droplet at

an almost constant rate κ ¼ að0Þ=τa ≃ 5 × 10−3 μms−1,

where að0Þ is the initial droplet radius. A natural question is

how the velocity scales with the droplet radius. However, as

can readily be seen in Fig. 2(a), there are very strong

fluctuations of the velocity: a droplet may slow down by

more than a factor of 100 before recovering its nominal

velocity.

Such fluctuations are completely absent from the radius

dynamics [Fig. 2(b)], suggesting the existence of at least

one other parameter controlling the instantaneous droplet

velocity. Figure 3(a) represents a typical trajectory, which

has been colored according to the instantaneous tangential

acceleration of the droplet. Straight parts of the trajectories

have small tangential acceleration, while curved parts of

the trajectory are preceded by a negative acceleration and

followed by a positive one. This is confirmed in Fig. 3(b),

where the instantaneous velocity v is plotted as a function

of the instantaneous radius of curvature R (the time is color

coded from blue to red). Each time the radius of curvature

decreases below, say, 500 μm, the velocity decreases

strongly and subsequently increases again with increasing

radius of curvature. For a radius of curvature larger than

500 μm, the velocity depends only on time. We checked

that after filtering the velocity data and retaining only the

parts of the trajectories with R > 500 μm, the fluctuations

observed in Fig. 2(a) are suppressed. Note that, in the

absence of inertia, one should not interpret these observa-

tions in terms of “cautious driving.” Here, the curvature

presumably results from the repulsion between the droplets,

which in addition slows the droplets down when they

approach and speeds them up when they separate.

Before discussing the mechanism of self-propulsion, we

consider the robustness of the phenomena. Table I lists the

various systems we have examined. We have separately

varied the surfactant, the oil, and the composition inside
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FIG. 2 (color online). Pure water droplet motion. (a) Velocity

and (b) diameter versus time for a selection of eight trajectories.

Insets: Linear-log plot for a selection of 35 trajectory parts.
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the droplet. The present list is by no means exhaustive, but

aims at testing basic variations in search of the essential

ingredients of the underlying swimming mechanism. The

first result is that MO as a surfactant is a key ingredient of

the microscopic mechanism responsible for swimming.

Neither Span 80 nor oleic acid, which have the same apolar

tail but different polar head groups, leads to swimming

motion [32]. Furthermore, it is crucial that the MO

concentration is above the CMC, telling us that micelles

play a key role in the physicochemical mechanism. When

Sq is replaced with Td, the swimming motion still occurs,

suggesting that the choice of the continuous phase is not as

crucial. However, the use of water-saturated Sq, obtained

by keeping the Sq-MO system in contact with water during

several days, suppresses the swimming motion. This clearly

indicates that gradients of water (in some form) around the

droplet are essential to the swimming mechanism. Coming

now to the discrete phase, we added NaCl to the water

in order to test whether osmotic pressure, which tends to

keep water inside the droplet, would prevent swimming. As

we show below, the presence of salt alters the swimming

motion, but does not suppress it, even at a salt concentration

of 26 wt %, close to saturation. Finally, inspired by the

work of Thutupalli et al. on swimming water droplets [16],

we added successively all the compounds of the Belousov-

Zhabotinski (BZ) reaction (sulfuric acid, sodium bromate,

malonic acid) to the water, except for the catalyst, using

the same concentrations as in Ref. [16]. Amazingly, the

droplets are still swimming, suggesting that the mechanism

at play in the present work may also be present in the

system of Ref. [16]. Focusing more quantitatively on the

most relevant systems described above, namely, the water

in Sq-MO, the water in Td-MO, and the salt-saturated water

in Sq-MO systems, it is observed [see Fig. 4(a) and

Table II] that a larger decay rate of the droplet size hκi
corresponds to a faster initial swimming velocity hvð0Þi
and a shorter duration of the swimming motion Tswim.

From the macroscopic observations (the droplet radius

decreases in time) we know that, in some form or another,

water leaves the droplets, hence producing a gradient of

solute outside each droplet. This is a situation very similar

to the one investigated theoretically in Refs. [20,21]: a

spherical particle of radius a emits (A > 0) or captures

(A < 0) a solute with a uniform surface emission rate

(activity) A. The solute interacts with the spherical particle

on a small length scale λ ≪ a, giving rise, whenever a

surface gradient of solute ∇∥C develops, to a slip velocity

vs ¼ M∇∥C that drives a net flow outside the particle.

The phoretic mobility M ≈�kBTλ
2=2ηo, where ηo is the

viscosity of the surrounding fluid, can be either positive or

negative depending on the particle surface-solute interac-

tion potential [33]. The trivial solution to the coupled

Stokes flow and advection-diffusion of the solute corre-

sponds to an isotropic solute concentration and no fluid

motion. However, when AM > 0, this isotropic solution

is linearly unstable above a critical Péclet number
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FIG. 3 (color online). Correlation between velocity and local

radius of curvature of the trajectory. (a) A typical trajectory

colored by the instantaneous tangential acceleration (μms−2).

(b) Velocity as a function of the radius of curvature of the

trajectory shown in (a). The color code indicates time (s) from the

beginning of the trajectory.

TABLE I. Realization of swimming motion for various water-

oil-surfactant systems. The surfactant concentration is above the

CMC unless indicated otherwise (see text for details).

Discrete phase Continuous phase Surfactant Motion

H2O Sq MO Yes

H2O Sq MO (< CMC) No

H2O Sq Span 80 No

H2O Sq Oleic acid No

H2O Td MO Yes

H2O Water-saturated MO No

Sq

H2Oþ salt Sq MO Yes

H2Oþmalonic acid Sq MO Yes

H2Oþ inhibited BZ Sq MO Yes

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

0 1000 2000
10

−1

10
0

10
1

10
2

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

(b)(a)

FIG. 4 (color online). Comparison of three different systems.

(a) Decay of the relative droplet radius versus time for three

droplets under different conditions: water in Sq-MO (blue squares),

water in Td-MO (green diamonds), water-26 wt% NaCl in Sq-MO

(red circles). Inset: Velocity versus time for the same three droplets.

(b) Parametric plot of the velocity versus a × κ for droplets under

the same three different sets of conditions; each point represents a

different droplet during a different period of time corresponding to

a straight part of its trajectory.
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Pe ¼ U�a=D, where U� ¼ jAMj=D is the characteristic

autophoretic velocity and D is the diffusion coefficient of

the solute. This leads to a spontaneous symmetry breaking

of the concentration field and propulsion (see Fig. 5,

with ηi →∞).

Extending this result to active droplets follows easily

from two essential properties shared with the autophoretic

particle problem: (i) the solute is released at the droplet’s

surface and advected by the outer flow and (ii) this flow

results from tangential motion of the surface of an

impermeable force-free spherical body. The two configu-

rations differ, however, on the existence of a flow within

the droplet with viscosity ηi, and on the hydrodynamic

boundary conditions at the interface: the slip velocity is

replaced by an analogous velocity jump vj ¼ M∇∥C
(phoretic effect) complemented by a tangential stress

jump τj ¼ −∇∥γ across the interface (Marangoni effect).

The surface tension gradient originates from a number

of physicochemical mechanisms, including the solute-

surface interaction or potentially the desorption of the

surfactant from the interface [17]. The common cause for

all these mechanisms is ∇∥C, and to linear order, we

expect ∇∥γ ¼ K∇∥C, where K ≈�kBTλ. Under this

assumption, the droplet velocity is now obtained as [33]

U ¼ −M0h∇∥Ci; with M0 ≡
aK þ 3ηiM

2ηo þ 3ηi
; ð1Þ

where h·i denotes the average over the interface.

Repeating the analysis of Ref. [20], we consider an

axisymmetric perturbation of the isotropic concentration

distribution C̄ðrÞ ¼ Aa2=Dr. Its first azimuthal moment,

C0
1
ðr; tÞ, satisfies at leading order

∂C0
1

∂t
−
D

r2

�

∂

∂r

�

r2
∂C0

1

∂r

�

− 2C0
1

�

¼
Aa2U

Dr2

�

a3

r3
− 1

�

: ð2Þ

Because h∇∥Ci ¼ 2C0
1
ða; tÞez=3a, Eqs. (1) and (2) are

strictly identical to the dimensional form of Eqs. (10) and

(11) of Ref. [20]. The linear stability results are therefore

directly applicable here provided the phoretic mobilityM is

replaced by M0. The change in boundary conditions

impacts, however, the nonlinear dynamics and steady-state

velocity (see Supplemental Material [23]).

The relative importance of Marangoni and phoretic effects

is given by the comparison of the viscosity ratio ηi=ηo with
the length scale ratio a=λ. For droplets in general, and in the
present case in particular (ηi=ηo ¼ 1=36), Marangoni effects

largely dominate so that M0 ¼ ðaK=2ηoÞ. The spontaneous
propulsion of the droplets indicates that the delicate balance

of the physicochemical mechanisms at play ensures K > 0,

the necessary condition for the linear instability to take place,

provided the Péclet number Pe ¼ ðAM0a=D2Þ is greater than
Pec ¼ 4 [20].

In order to proceed, we specify in what form water leaves

the droplets. We have seen that empty reverse micelles of

MO are necessary for the realization of the swimming

motion. Following Refs. [17,34], we propose that the water

is solubilized by the reverse micelles that are present in

the continuous oil phase, forming swollen reverse micelles

that act as the “solute.” This is consistent with the

observation that using a water-saturated Sq-MO oil phase

prevents both the shrinkage and the swimming of the

droplets. Furthermore, dynamic light scattering experi-

ments on the Td-MO oil phase that had been in contact

with water droplets for 1–3 h, which were removed by

centrifugation, reveal a typical radius δ ≈ 10 nm for the

swollen reverse micelles, while no objects of this size are

present in the native oil phase.

In the present context, the activity A is easily related to

the decrease rate of the droplet radius κ ¼ jda=dtj by

equating the number of swollen reverse micelles of radius δ

formed per unit time, dN=dt ¼ 4πa2A, to the change in

volume of the droplet divided by the volume of a swollen

reverse micelle, ð1=δ3Þðda3=dtÞ ¼ 3κða2=δ3Þ, from which

TABLE II. Swimming motion characteristics at initial times for three systems of interest: (1) H2O in Sq-MO,

(2) H2O in Td-MO, (3) H2Oþ 26 wt% NaCl (see text for details).

System hDð0Þi hκð0Þi (μm=s) hvð0Þi (μm=s) Tswim (h)

(1) 91� 5 4.5 × 10−2 � 5 × 10−3 20� 2 2

(2) 93� 5 7.5 × 10−2 � 5 × 10−3 22� 2 1=2
(3) 63� 5 1.2 × 10−2 � 5 × 10−3 11� 2 > 2

FIG. 5 (color online). Swimming mechanism behind the

spontaneous autophoretic and Marangoni-driven motions of an

isotropic droplet.
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it follows that A ¼ ð3=4πÞðκ=δ3Þ. Taking the diffusion

coefficient of the solute D ¼ kBT=ð6πηoδÞ, we then obtain

for the typical droplet velocity

U� ¼
AM0

D
≈
9

4
κ
aλ

δ2
: ð3Þ

The linear scaling of the droplet velocity with κa is indeed

observed in Fig. 4(b). Furthermore, assuming λ≃ δ and

δ ≈ 10 nm, we find a characteristic velocity of a few tens of

μm=s and Pe ≫ 1, in agreement with the observations and

the linear instability condition.

In summary, we have established the first experimental

evidence of spontaneous swimming of pure water droplets.

The conditions of swimming are threefold: (i) water droplets

must be stabilized in an oil medium with surfactant above

CMC; (ii) the surfactant inverse micelles must be prone to

extract water from the droplets; (iii) the Péclet number must

be large enough (large droplets, high oil viscosity, fast

kinetics of the water transfer to the micelles). Apart from

confirming a very general instability mechanism, it opens

new ways to a plethora of applications. As a first step in this

direction, we have demonstrated the versatility of these

droplets as universal carriers: Figure 1(b) illustrates the

transport of colloids, salt crystals, and cells. We found that

the swimming of the droplets was also maintained for

pH ∈ ð3–11Þ. Such robustness indicates that there is room

for optimization, which in turn calls for a detailed inves-

tigation of the physicochemical mechanisms at play.
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