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Self-recognition of the endothelium enables
regulatory T-cell trafficking and defines the
kinetics of immune regulation
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Localization of CD4þCD25þFoxp3þ regulatory T (Treg) cells to lymphoid and non-

lymphoid tissue is instrumental for the effective control of immune responses. Compared

with conventional T cells, Treg cells constitute a minute fraction of the T-cell repertoire.

Despite this numeric disadvantage, Tregs efficiently migrate to sites of immune responses

reaching an optimal number for the regulation of Teffector (Teff) cells. The array and levels of

adhesion and chemokine receptor expression by Tregs do not explain their powerful migra-

tory capacity. Here we show that recognition of self-antigens expressed by endothelial cells in

target tissue is instrumental for efficient Treg recruitment in vivo. This event relies upon

IFN-g-mediated induction of MHC-class-II molecule expression by the endothelium and

requires optimal PI3K p110d activation by the T-cell receptor. We also show that, once in the

tissue, Tregs inhibit Teff recruitment, further enabling a Teff:Treg ratio optimal for regulation.
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N
aturally occurring regulatory T cells (Treg), defined as
CD4þCD25þFoxp3þ T cells, play a non-redundant role
in the maintenance of physiological tolerance to self-

antigens and prevention of autoimmune responses1,2. Treg
generation in the thymus is promoted by the recognition of
self-peptides with intermediate affinity3.

Recognition of self-antigen is also required for mature Tregs
activation and function4. Tregs exert their immunomodulatory
role both in lymphoid and non-lymphoid tissue. Localization of
Tregs in the lymph nodes (LNs) is instrumental for the regulation
of T-cell expansion and differentiation5, however, once the
effector response is established, regulation of local inflammation
in target tissue becomes crucial6,7.

Several studies in autoimmunity have highlighted the impor-
tance of the co-localization of Tregs with effector T cells (Teff) in
non-lymphoid target tissues. For example, in Foxp3-deficient
Scurfy mice, widespread autoimmune disease develops that may
be prevented by treatment with Tregs. However, restoration of
the Treg compartment with a-1,3-fucosyltransferase VII-deficient
Tregs that are incapable of migrating to skin results in the
prevention of autoimmune disease in all tissues but the skin8.
Similarly, the loss of CCR4 expression in Tregs prevents their
migration to both the skin and lungs, resulting in skin and lung
inflammatory disease9.

An optimal Treg:Teff ratio, in which over 30% of the
infiltrating T cells are Tregs, is necessary to achieve regulation
in non-lymphoid tissue10. To reach this proportion, rapid
accumulation of Treg relative to Teff infiltration is required to
control tissue damage11, further emphasizing the importance of
effective Treg recruitment. The minute proportion of Tregs in the
peripheral blood (2–5%) and their poor proliferative capacity
suggest that mechanisms must be in place which favour their
convergence and localization to the inflammatory site.

Like Teff cells, activated Tregs also utilize distinct chemokine
receptor and integrin expression to support their trafficking
and retention at sites where regulation is required12–14.
For example, activated Tregs express aEb7, which binds its
ligand E-cadherin and allows efficient localization into inflamed
tissue to suppress the effector phase of immune response15,16.
However, these molecular interactions do not fully account
for the powerful migratory activity of Tregs and their rapid
access to and accumulation in non-lymphoid tissue relative to
Teff. Importantly, Treg-mediated suppression must be
coordinated with that of effector responses so that the
regulatory phase develops with a sufficient delay to allow
the effector phase to ensue, but prior to the occurrence of tissue
damage11. The mechanism coordinating these migratory events is
not known.

There is evidence that Treg trafficking requires antigen
recognition. A recent study has suggested that compartmentaliza-
tion of Treg cells within LNs may be governed by antigen
recognition as indicated by the enrichment of recently activated,
CD69-expressing Tregs in LNs following adoptive transfer17.
Similarly, mice expressing a Ox40-cre allele that is prominently
expressed in Treg cells, and a conditional null allele of the gene
encoding p56Lck, displayed abnormal Treg homeostasis
characterized by preferential redistribution to the LNs, but not
to non-lymphoid tissue18. Given the well-established specificity of
Tregs for self-derived peptides, we tested the hypothesis that
antigen recognition promotes the rapid recruitment of Tregs to
inflamed tissue to reach functionally regulatory numbers. Here we
show that self-antigen presentation by the endothelium leads to
efficient Treg migration into target tissue in vivo. IFN-g-mediated
induction of MHC-class-II molecule expression by the
endothelium is critical to this event. We further show that,
once localized in the tissue, Tregs inhibit Teff recruitment, thus

favouring the establishment of a Teff:Treg ratio which allows
functional regulation.

On the basis of the findings described here, we propose that
recognition of antigen displayed by inflamed vascular endothe-
lium is required for the efficient and coordinated recruitment of
Treg cells to target tissue and defines the kinetics of Treg-
mediated regulation.

Results
Self-recognition is required for Treg trafficking. To establish
whether self-recognition regulates naturally occurring Treg cell
(Tregs) trafficking to non-lymphoid tissue in physiological set-
tings, we adapted a well-established model of T-cell recruitment
to antigen-enriched peritoneum. In this model, local presentation
of endogenous peptides is achieved by intraperitoneal (i.p.)
administration of a low dose of IFN-g, which induces local
upregulation of MHC molecules19.

We first compared the recruitment of Tregs from the
circulation into the peritoneum of syngeneic (C57BL/6, H2b)
and irrelevant (CBA/CA, H2k) mice. To minimize the effects of
in vitro manipulation, CD4þ T cells isolated by immunomag-
netic negative selection from Foxp3-GFP reporter mice20 (107/
mouse) were pooled (to ensure that the same number of Tregs in
the cell preparation) and injected intravenously (i.v.) in IFN-g-
treated or untreated recipients. As it is shown in Fig. 1a,b,
significantly larger numbers of green fluorescent protein (GFP)-
tagged Tregs migrated to the peritoneal cavity of syngeneic
recipients previously exposed to IFN-g, compared with those
detected in the lavage of IFN-g-treated irrelevant (CBA/Ca) mice
and non-treated syngeneic recipients. Notably, 50% of the Tregs
recruited in the peritoneal cavity and draining LNs (dLNs)
upregulated CD69 expression, indicative of recent T-cell receptor
(TCR) engagement in this cell population (Fig. 1c). Similar
observations were made when irrelevant BALB/c (H2d) recipients
were used (Supplementary Fig. 1). Treg cells also preferentially
accumulated in (mesenteric) dLNs of IFN-g-treated syngeneic,
but not irrelevant mice, suggesting that antigen presentation also
affects their localization to secondary lymphoid tissue, as
previously suggested17.

To further confirm that Treg localization is driven by antigen
recognition, we tested the possibility that, within a polyclonal
Treg population, Tregs are selectively recruited based on their
TCR specificity. To this aim, we enriched GFP-tagged Tregs
cross-reactive for H2d alloantigens by in vitro culture with BALB/
c-derived immature dendritic cells (DCs) and IL-2 (ref. 21). In
vitro culture did not affect Treg phenotype and regulatory
activity, which however shifted towards the alloantigen with time
(Fig. 2a–c). We then compared the recruitment of circulating
allospecific Tregs into the peritoneum of IFN-g-treated (i.p.)
allogeneic BALB/c, syngeneic C57BL/6 and irrelevant CBA
recipients. As shown in Fig. 2d,e, allospecific Tregs migrated
more efficiently to the peritoneal cavity of allogeneic BALB/c
mice compared with that of syngeneic C57BL/6 and irrelevant
CBA mice. Similar to what we observed in the experiments with
freshly isolated Tregs, this effect was accompanied by enhanced
allospecific Treg recruitment in the dLNs of IFN-g-treated
alloantigen-expressing recipients.

Having established that antigen presentation regulates Treg
recruitment, we sought to verify that recognition of endogenous
peptides (putative ‘self antigens’) in the context of self-MHC
class II molecules is instrumental for efficient Treg localization
to target tissue. Mice expressing a transgenic TCR specific
for a HY-derived peptide in the context of H2-Ab (Marilyn
mice)22 were crossed with GFP-Foxp3 reporter mice and used
in these experiments. The male minor histocompatibility
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antigen HY is encoded by the Y chromosome, is expressed
by all male cells and plays a role in secondary recurrent
miscarriage23. In male individuals, HY-specific T cells are
removed in the thymus by negative selection24,25. In the F1
Marilyn GFP-Foxp3 mice, the mean percentage of CD4þ Vb6þ

Marilyn T cells as a proportion of total lymphocytes was 12.2%
(±2.5%). In the same mice, the mean percentage of naturally
occurring Tregs (GFPþ ) as a proportion of Marilyn T cells
was 3.5% (±1.4%).

Purified and pooled CD4þ T cells from Marilyn GFP-Foxp3
F1 mice were injected intravenously (i.v.) in IFN-g-treated male
or female C57BL/6 syngeneic recipients (107/mouse). Recipient
mice are genetically identical and express the same MHC
molecules, with the exception of the HY antigen, which is only
expressed in male animals. The presence of GFP Foxp3þ , Vb6þ

T cells in the peritoneal lavage, dLNs and non-dLNs and the
spleen was analysed by flow cytometry. As it is shown in Fig. 3a,b,
Foxp3þVb6þ T cells were significantly enriched in the
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Figure 1 | Antigen recognition facilitates Treg trafficking. Total CD4þ T cells from FoxP3-eGFP reporter mice (107/mouse) were injected intravenously

into syngeneic C57BL/6 or irrelevant CBA (H2k) mice that had received an intraperitoneal injection of 600U IFN-g 72 h earlier. Some C57BL/6

recipient received saline solution alone. The presence of GFPþ Tregs in lavage, dLN and spleen was analysed by flow cytometry 16 h later. Tregs were

identified by gating on the CD4þGFPþ population. Representative dot plots are shown in panel a. The mean number of Treg cells (in the total CD4þ

population) of Treg cells detected in the peritoneal cavity and lymphoid organs is shown in panel b. Error bars represent s.d. Statistical significance

was calculated with unpaired Student’s t-test. (n¼ 3, N¼4) **Po0.01. (c) GFPþ Tregs retrieved in the same sites from IFN-g-treated syngeneic C57BL/6

recipients were stained with anti-CD69-PE/Cy7 (clone H1.2F3). CD69 expression was analysed by flow cytometry. The dotted line shows

non-specific staining with an Isotype-matched control antibody. The histograms are representative of three cell preparations.
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Figure 2 | Allospecific Tregs migrate more efficiently to the peritoneal cavity of allogeneic mice. Allospecific Tregs (H2b) were expanded by

in vitro culture with BALB/c-derived, (H2d) immature DCs and IL-2. Key phenotypic markers are depicted in panels a (CD25 and FoxP3) and b (CCR7 and

CD62L). In panel c, increasing numbers of allospecific Tregs were added to co-cultures of C57BL/6 conventional naı̈ve Tcells (105) stimulated with BALB/

c-derived DCs (103), or CD3/CD28 beads. T-cell proliferation was measured as 3HTdR incorporation in triplicate cultures (N¼ 5). Error bars represent s.d.

Statistical significance was calculated with unpaired Student’s t-test. *Po0.05, **Po0.01. Panels d,e: CFSE-labelled H2d-allospecific Treg cells were

injected intravenously (107/mouse) into alloantigenic BALB/c, syngeneic C57BL/6 or irrelevant CBA (H2k) mice that had received an intraperitoneal

injection of 600U IFN-g 72 h earlier. The presence of GFPþ Tregs in lavage, mesenteric dLNs, non-dLNs and spleen was analysed by flow cytometry 16 h

later. Representative dot plots are shown in panel d. The mean number of Treg cells (in the total CD4þ population) detected in the peritoneal

cavity and lymphoid organs is shown in panel e. Error bars represent s.d. Statistical significance was calculated with unpaired Student’s t-test. (n¼ 3, N¼4)

*Po0.05, **Po0.01.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4436

4 NATURE COMMUNICATIONS | 5:3436 | DOI: 10.1038/ncomms4436 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


peritoneal cavity and dLNs of male, but not female recipients.
Interestingly, these experiments also revealed a redistribution of
HY-specific Tregs, which were depleted from the ndLN and the
spleen.

Overall, these data suggest that recognition of endogenous
peptides in the context of self-MHC class II molecules can drive
Treg recruitment into non-lymphoid tissue and dLNs.

IFN-c-induced MHC class II molecules drive Treg migration.
The essential role of self-recognition of MHC class II:self-peptide
complexes in Treg migration to target tissue was further con-
firmed by experiments comparing the recruitment of freshly
isolated Treg from the circulation into peritoneum of IFN-g-
treated syngeneic recipients of which some received a rat anti-
mouse MHC class II antibody (clone M5/114) i.v. prior to Treg
transfer. As it is shown in Fig. 4a,b, masking of MHC II molecules
abrogated Treg enrichment in the peritoneal cavity and dLNs.

Induction of MHC class II expression is selectively induced
by IFN-g via the CIITA promoter26. However, IFN-g can
also induce the upregulation of adhesion molecules such as
ICAM-1 (Supplementary Fig. 2), which mediate lymphocyte
recruitment27. To assess the potential contribution of other
adhesion receptors to Treg recruitment to inflammatory sites,
localization of GFP-tagged Tregs in the peritoneum of syngeneic

recipients pre-treated with 20 ng TNFa i.p. was analysed. As
shown in Fig. 5, exposure to TNFa failed to enhance Treg
recruitment (Fig. 5a,b) while the recruitment of endogenous
monocytes within the peritoneal cavity and dLNs was increased
by this cytokine (Fig. 5c). As TNFa does not induce MHC class II
expression (Supplementary Fig. 2 and ref. 26), these data further
support the non-redundant role of IFN-g in sustaining Treg
trafficking to inflammatory sites.

The protective effect of IFN-g signalling in models of
autoimmunity has been long established, although the molecular
mechanisms of this effect are at present unclear28. More recently,
Treg function has been shown be dependent on IFN-g29.
We therefore sought to assess whether the requirement of
this cytokine for Treg function reflects in part its ability to
facilitate Treg localization to target tissue by enhancing
antigen presentation. To distinguish between the impact of
responsiveness to IFN-g by either Treg cells or target tissue,
experiments were performed involving either adoptive transfer of
CD4þ T cells isolated by immunomagnetic negative selection
from IFN-gRKO Tregs (labelled with PKH26) into wild-type
(WT) syngeneic recipients, or injection of CD4þ WT T cells
isolated from GFP-Foxp3 mice in IFN-gR KO syngeneic animals,
in both cases following i.p. treatment with IFN-g. As shown in
Fig. 6a,b, antigen-driven recruitment of IFN-gR KO Tregs
(PKH26þ , Foxp3þ ) was similar to that of WT GFP-Tregs.
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Figure 3 | Self-recognition drives Treg recruitment. Total CD4þ T cells from GFP-Foxp3 Marilyn F1 mice (107/mouse) were injected intravenously

into syngeneic male or female C57BL/6 mice that had received an intraperitoneal injection of 600U IFN-g 72 h earlier. An anti-Vb6 antibody was used to

identify Marilyn T cells22. The presence of GFPþ Vb6þ Tregs in lavage, dLN and spleen was analysed by flow cytometry 16 h later. Tregs were

identified by gating on the CD4þ T-cell population. Representative dot plots are shown in panel a. The mean number of Treg cells (in the total CD4þ

population) of Treg cells detected in the peritoneal cavity and lymphoid organs is shown in panel b. Error bars represent s.d. Statistical significance

was calculated with unpaired Student’s t-test. (n¼ 3, N¼ 2) *Po0.05.
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In contrast, inability of target tissue to respond to IFN-g led to
diminished WT Treg recruitment to the peritoneal cavity and
dLN in IFN-gR KO syngeneic recipients (Fig. 6c,d).

It has been suggested that CXCR3 is required for Treg
localization to peripheral tissue19,30. As CXCR3 ligands are
induced by IFN-g, we analysed CXCR3 expression by Treg cells
and their migration to its ligand CXCL10 in vitro. As it is shown
in Fig. 6e,f, a relatively small fraction of Tregs expressed CXCR3
and did not migrate efficiently in response to CXCL10 compared
with the CCR7 ligands CCL19 and CCL22, suggesting that lack of
CXCL10 production by IFN-gRKO recipients is unlikely to
significantly impact on their ability to migrate to target tissue.

Altogether, these data suggest that IFN-g facilitates Treg
migration to non-lymphoid sites of inflammation and dLN by
inducing expression of MHC class II molecules and self-antigen
presentation by target tissue.

Cognate recognition of endothelium induces Treg recruitment.
We and others have shown that cognate recognition of the
endothelium can directly induce migration of effector T cells into
non-lymphoid tissue both in vitro31–33 and in vivo34–37. Recent
studies reported that recruitment of Teff cell is facilitated by both
endothelial cells (ECs) and perivascular DCs38,39, although DCs
do not appear to directly mediate Teff migration through the
endothelium39. Following i.p. administration of IFN-g 72 h earlier,
MHC class II molecule expression was induced in the vascular
endothelium in the peritoneal membrane and dLN (Fig. 7a and
Supplementary Fig. 3) and was upregulated by CD11cþ cells
(putative DCs) in the dLN (Supplementary Fig. 4). However, we

failed to detect any CD11cþ DCs in the peritoneal membrane
(Supplementary Fig. 5), and Treg migration to the dLNs of
phosphate-buffered saline (PBS)-treated mice, in which DCs
constitutively express MHC class II molecules (Supplementary
Fig. 4), was not enhanced (Fig. 1). We therefore focused on the
possibility that antigen display by the vascular endothelium might
mediate Treg recruitment in our model.

This hypothesis was first assessed in vitro by measuring
migration of Tregs through antigen-expressing EC monolayers.
Treg were isolated from FoxP3-eGFP reporter mice20 by cell
sorting and seeded onto IFN-g-treated syngeneic (self) EC
monolayers. As a control, syngeneic untreated EC and IFN-g-
treated monolayers EC derived from irrelevant CBA/Ca mice
were used. As shown in Fig. 7b, Treg migration through B6-
derived EC was significantly enhanced by exposure of syngeneic
EC to IFN-g and compared with migration through IFN-g-
treated CBA/Ca EC. As expected, Treg migration through IFN-g-
treated syngeneic endothelium was reduced by pre-treating the
EC monolayers with an anti-MHC class II antibody in order to
prevent TCR engagement (Fig. 7c). Similarly, migration of B6-
derived H2d-allospecific Tregs selected by in vitro culture (see
Fig. 2a–c) through IFN-g-treated BALB/c-derived EC monolayers
was enhanced compared with that through IFN-g-treated
syngeneic C57BL/6 and irrelevant CBA-derived EC monolayers
(Fig. 7d). Overall these in vitro experiments suggest that cognate
recognition of the endothelium promotes Treg migration.

To directly visualize the impact of cognate recognition of the
endothelium on Treg migration into tissues, intravital microscopy
was used to monitor Treg cell–EC interactions in vivo. For this
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Figure 4 | Treg accumulation requires MHC class II molecule expression by target tissue. Total CD4þ T cells isolated from FoxP3-GFP reporter

mice were injected intravenously into syngeneic C57BL/6 mice (107/mouse) that had received an intraperitoneal injection of 600U IFN-g 72 h earlier. Prior

to Treg adoptive transfer, recipient mice received either 500mg anti-MHC class II antibody (clone M5/114, BioXCell) or isotype control antibody. The
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purpose, events within cremasteric venules of BALB/c (H-2d)
mice, pretreated with intrascrotal administration of IFN-g (72 h),
were quantified. CBA/Ca mice (H-2k) were used as a control.
Similar to what we had observed in the peritoneum, no CD11cþ

DCs were detected in the cremaster muscle irrespectively of
IFN-g treatment (Supplementary Fig. 5). Fluorescently labelled
H-2d-allospecific polyclonal Treg cells were injected intrave-
nously, and responses within the microvascular bed viewed for up
to 40min after injection of cells. No significant differences in
rolling flux were observed (Fig. 7e) in the different groups.
However, the velocity of Treg interacting with BALB/c (H-2d)
vessels significantly decreased and was followed by significant
increases in both T-cell firm adhesion and transendothelial
migration (Fig. 7f–h and Supplementary Movies 1 and 2). Similar
to what we observed in the in vitro studies, these results suggest
that antigenic endothelium directly mediates T-cell recruitment
into target tissue by specifically regulating adhesion and
extravasation. In line with these results, captured in real time,
dissected and sectioned cremaster muscles visualized by fluore-
scent microscopy indicated a large tissue influx of T cells in
tissues from BALB/c but not control CBA mice (Fig. 7i).

Antigen-driven Treg migration requires PI3K p110d activity.
The observations described above prompted us to further char-
acterize the molecular mechanism of antigen-driven Treg
trafficking.

PI3K p110d activity has previously been implicated in the
regulation of Treg function. Despite T cells with functionally
inactive PI3K p110d respond to IL-2 and only partially lose their
ability to suppress in vitro, lack of this activity leads to a complete
loss of suppressive function in vivo40. We have shown that Teff
cells expressing a functionally inactive PI3K p110d lose
susceptibility to TCR-induced migration and fail to localize
efficiently to antigenic tissue41. We therefore sought to investigate
whether the profound defect of regulatory function of Treg with
inactive p110d selectively observed in vivo could partly be
attributed to their inability to locate to antigen-rich sites.

For this purpose, we used in vitro expanded Tregs with direct
BALB/c allospecificity. First, we tested whether pharmacological
inhibition of p110d activity has any effect on TCR-induced
migration of Tregs by an in vitro transendothelial migration
assay. Tregs with direct BALB/c allospecificity were treated with
the selective PI3K p110d inhibitor IC87114 (5 mM)41 or with PBS
containing vehicle (1% dimethylsulphoxide) at 37 �C for 1 h.
Migration of IC87114-treated and control-treated Tregs through
IFN-g-treated EC monolayers derived from BALB/c and
irrelevant CBA mice was compared. As shown in Fig. 8a,
inhibition of PI3K p110d impaired antigen-induced migration
through BALB/c-derived EC monolayers, while it did not affect
the modest Tregs migration through irrelevant CBA-derived ECs.

To confirm the requirement for p110d activity by antigen-
driven Treg migration in vivo, we compared the recruitment of
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shown in panel a. The mean number of Treg cells (in the total CD4þ population) present in the peritoneal lavage and lymphoid organs is shown in
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IC87114- and vehicle-treated Tregs with direct BALB/c allospe-
cificity from circulation into peritoneum of IFN-g-treated
allogeneic BALB/c and irrelevant CBA mice. DDAO SE-labelled
IC87114-treated Tregs and CFSE-labelled control vehicle-treated
Tregs were mixed in equal numbers and were injected i.v. into
BALB/c and CBA mice that had received an i.p. injection of IFN-
g 48 h earlier. Migration of Treg cells in the peritoneal cavity and
dLN was measured 16 h later. As shown in Fig. 8b,c, removal of
PI3K p110d activity significantly inhibited the recruitment of
allospecific Tregs to the peritoneal cavity and dLNs of allogeneic
BALB/c mice. In line with the in vitro analyses, inhibition of

p110d activity did not affect the minimal migration of Tregs into
peritoneum of irrelevant CBA mice.

These observations suggest that, similarly to Teff cells41,
recruitment of Treg cells by cognate endothelium requires PI3K
p110d activation by the TCR.

Tregs inhibit effector T-cell recruitment into target tissue.
Similarly to the initiation of effector responses, the development
of regulatory mechanisms mediated by naturally occurring Treg
cells is generally thought to require their initial activation in the
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dLNs42. In addition, both Treg and Teff cells rely upon similar
molecular mediators (PI3K p110d) for their recruitment by
antigen-presenting endothelium41. Therefore, antigen-driven
migration of Tregs may not be sufficient to sustain their
preferential accumulation into target tissue compared with that
of Teff cells. Thus, additional mechanisms must be in place,
which allow the establishment of an optimal Treg:Teff ratio to
terminate T-cell-mediated inflammation at the late stages of the
immune response.

Allospecific conventional T cells were generated by i.p.
immunization of B6 mice with BALB/c splenocytes and further
in vitro expansion. The allospecific T-cell population was
composed of a mixture of T cells with effector (Teff) and central
memory (Tcm) phenotype (Supplementary Fig. 6). A comparison
of allospecific (H2d) Treg and conventional memory T cell
crawling over CBA-derived EC monolayers by time-lapse
microscopy did not reveal any significant difference in their
migratory speed (Fig. 9a). Having ruled out differences in
intrinsic motility, we compared the antigen-driven migration of
similar-sized populations of activated, allospecific Treg and Tcm/
eff cells to target tissue. Adoptively transferred H-2d allospecific T
cells preferentially accumulated in the peritoneal cavity of IFN-g-
treated BALB/c mice (Supplementary Fig. 7), as previously
described19. However, when these T cells were co-injected with
equal numbers of H-2d allospecific Tregs, their localization to the
peritoneal cavity and dLN was abrogated (Fig. 9b,c). In contrast,
primed conventional T cells were still retrievable in the spleen
and non-dLNs, suggesting that their absence in target tissue
was not due to Treg-induced apoptosis43. These data show that
once Treg cells have been recruited by antigen-presenting
endothelium, they can inhibit conventional T-cell migration
into the same tissue.

Discussion
The reciprocal dynamics of effector T lymphocytes and naturally
occurring CD4þCD25þFoxp3þ Treg cells localization to

lymphoid and non-lymphoid tissue are instrumental to an
efficient yet regulated immune responses. Treg homing to
dLNs and non-lymphoid target tissue are required for their
function5–7. Remarkably, regulation of effector responses involves
accumulation of a minute population of circulating Tregs into the
tissue to reach an optimal Treg:Teff ratio11. In this study, we
show that Treg trafficking is facilitated by self-recognition
of MHC II: peptide complexes displayed by the endothelium of
target tissue and dLNs. In turn Tregs inhibit the recruitment
of activated Teff cells to the same site, thus favouring the
establishment of optimal Treg:Teff ratios.

This concept is well illustrated by studies investigating Treg
function in allotransplantation. The frequency of directly
alloreactive Tregs has been estimated to be over 10%44. Despite
this high frequency, MHC-mismatched vascularized tissue grafts
are rejected acutely via direct allorecognition45. The possibility
that this cohort of allospecific Tregs is not numerically sufficient
to prevent rejection relative to the high frequency of allospecific
conventional T cells does not fully explain the lack of regulation
of alloresponses. In fact, even the adoptive transfer of large
numbers of polyclonal Tregs is relatively inefficient at inhibiting
acute rejection compared with the delivery of Tregs with selected
specificity for the alloantigen10,45. Based on the observations
described here, the absence of cognate endothelium in the graft
might be the main cause of the inefficient Treg-mediated
regulation of alloresponses. Given that Tregs are self-specific,
most Tregs would promptly recognize self-MHC:peptide
complexes on autologous endothelium and migrate into target
tissue to suppress, for instance, autoimmune responses.
In transplantation, only a fraction of recipient Tregs would
cross-react to allogeneic endothelium and gain access to the
allograft in sufficient numbers to regulate the alloresponse. In
addition, unlike conventional T-cell activation, which is
topographically restricted to the LNs, Treg cells can also be
activated in non-lymphoid target tissue itself, and subsequently
migrate to the draining lymphoid stations46. In the absence of
cognate endothelium, the delayed and inefficient recruitment of
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Tregs in allografts might also result in their impaired activation.
In line with this hypothesis, a recent study analysing the
dynamics of alloimmune response in vivo demonstrated
rapid invasion of effector cells in the grafts followed by delayed
arrival of Tregs that were ineffective at controlling tissue
damage11. Similarly, in therapeutic settings, allospecific Tregs
are far superior to autologous Tregs in preventing graft
rejection10,45.

These observations also support the notion that the regulatory
response is kick-started by the release of IFN-g and subsequent
induction of MHC class II molecule expression by the
endothelium of target tissue. Given that naturally occurring
CD4þCD25þFoxp3þ Tregs produce little or no IFN-g upon
activation47, their mobilization would require the production of

this cytokine by other sources, such as activated T cells. Hence,
the strict dependence of Treg recruitment on IFN-g might allow
the coordination of sequential migratory events by Teff and Treg
cells during a physiologic immune response, and ultimately
orchestrate the synchronized development of effector and
regulatory activities. As modelled in Fig. 10, local upregulation
of MHC class II molecules induced by IFN-g produced by primed
conventional T cells might enhance the recruitment and
activation of Tregs in the dLN, and the subsequent inhibition
of conventional T-cell expansion. A similar sequence of events
might occur following the migration of Teff cells to target tissue.
Here, IFN-g-secreting Teff cells would support the subsequent
entry of Tregs and the dampening of T-cell-mediated
inflammation. In a negative feedback loop, Treg access to target
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tissue could in turn prevent the further entrance of Teff cells,
leading to the resolution of inflammation.

This scenario is also indirectly supported by our observation
that the simultaneous targeting of Treg and Teff/cm cells to
antigen-rich tissue totally abrogates Teff/cm cell access to the
tissue. Hence, the concomitant arrival of Treg and Teff/cm to
target tissue would preclude the occurrence of an effector
response. In contrast, both populations co-localized in non-dLN
and spleen of IFN-g-treated recipients, suggesting that Treg cells
must be activated as a consequence of local IFN-g production (by
conventional T-cells) for this effect to occur.

The mechanism(s) by which Tregs prevent primed conven-
tional T-cell access to target tissue is at present unclear. Given
that migrating Tregs are first engaged by cognate endothelium in
our model, it is possible that they modulate molecular interac-
tions involved in the extravasation cascade. We have previously
reported that anergic Treg cells can inhibit recruitment of Teff
cells to target tissue in vivo by inactivating locally produced
chemokines via dipeptidyl peptidase activity48. Similarly, Tregs
have been shown to suppress chemokine production in dLNs,
thus favouring the release of Teff at the early stages of immunity
against viral infections49. In addition, Treg cells can prevent
stable conjugate formation between DC and Teff cells in the LN

in vivo50,51, although the mechanism underlying this property is
unclear. Treg can also modulate T-cell exit from dLNs by indirect
mechanisms including the inhibition of cytokine production and
expression of chemokine receptor by conventional T cells52, and
prevent the migration of DCs from islet allografts to the dLN in a
TGFb and IL-10-dependent fashion46.

Further studies are needed to identify the molecular mechan-
ism/s of this relatively novel function of Tregs, which we propose
to be instrumental to the establishment of Treg:Teff ratios
optimal for cell-mediated immunoregulation.

Methods
Mice. All mice used in this study were between the ages of 7–11 weeks. Male
C57BL/6, BALB/c and CBA/ca mice were purchased from Charles River (UK) and
IFN-gR KO mice were purchased from The Jackson Laboratory (USA). Foxp3/GFP
knock-in female mice on the C57BL/6 background were kindly provided by
Dr B Malissen (Centre d’Immunologie de Marseille-Luminy, Marseille, France).
Marilyn female mice, bearing a transgenic TCR specific for the male minor
transplantation antigen HY peptide epitope NAGFNSNRANSSRSS and restricted
by H2-Ab, have been previously described22. These mice were bred on a
recombination activating gene 2 deficient (RAG2� /� ) background.

All the in vivo experiments were conducted under the Home Office regulation
following approval by the Queen Mary Unversity of London Ethics Committee.

Reagents. The PI3K p110d-selective inhibitor IC87114 was purchased from
Stratech. IC87114 inhibits p110d kinase activity in cells with an IC50 between 0.1
and 0.5 mM, and only shows cross-reactivity with other PI3K isoforms at con-
centrations above 10mM53,54. We have previously shown that, at the dose used in
this study (10 mM), IC87114 i does not affect the p110gamma/DOCK2/AKT
pathway, which mediate T-cell responses to chemokines41.

The cell linker PKH26 was purchased from Sigma-Aldrich and used at 2 mM.
Fluorescent dye DDAO SE and CFSE were purchased from Invitrogen and
used at 1.5 and 20 mM, respectively. The cytokines TNF-a and IFN-g and the
chemokines CXCL10, CCL19 and CCL21 were purchased from PeproTech
EC Ltd. Blocking anti-mouse MHC Class II antibody was purchased from
BioXCell.

Antibodies and flow cytometry. For immunohistochemistry, the following
antibodies were used: rabbit polyclonal anti-mouse CD31 (1:50) was from Abcam;
Armenian hamster purified anti-mouse CD11c (1:50), purified rat anti-mouse
CD31 (1:50) and rat purified anti-mouse MHC Class II (I-A/I-E, clone M5/
114.15.2, 1:100) were from Biolegend; Alexa Fluor 555-conjugated Goat Anti-Rat
IgG (Hþ L) (1:100), Alexa Fluor 488-conjugated donkey Anti-Rabbit IgG (Hþ L)
and Alexa Fluor 488-conjugated Goat Anti-Hamster IgG (Hþ L) (1:100) were
purchased from Invitrogen/Life Technologies.

All flow cytometry antibodies were used at 1:100 dilutions unless otherwise
specified. Purified rat anti-mouse MHC Class II (I-A/I-E, clone M5/114.15.2),
FITC-conjugated anti-mouse CD54 (ICAM-1, clone YN1/1.7.4), PE-conjugated
anti-mouse CD86 (B7-2, clone GL-1) were purchased from Biolegend; PE-
conjugated anti-mouse CD80 (B7-1, clone 3H5), FITC-conjugated anti-mouse
CD106 (VCAM-1, clone 429), PE-Cy7-conjugated anti-mouse CD25 (clone
PC61.5), PE-conjugated anti-mouse CXCR-3 (clone CXCR3-173), PE-conjugated
anti-mouse CCR7 (clone 4B12), PE-conjugated anti-mouse CCR4 (clone 2G12),
PE-conjugated anti-mouse CCR5 (clone HM-CCR5(7A4)), PE-conjugated anti-
mouse CD11a (LFA-1,clone M17/4) PE-conjugated anti-mouse CD31 (PECAM-1,
clone 390), PE-conjugated anti-mouse CD62L (L-Selectin, clone MEL-14), efluor
450-conjugated anti-mouse CD44 (clone IM7), PE-Cy7-conjugated anti-mouse
CD69 (clone H1.2F3), PE-conjugated anti-mouse CXCR4 (clone 2B11), PE-
conjugated anti-mouse a4 b7 (clone DATK32), FITC-conjugated anti-mouse CD8
(clone 53-6.7) and APC-conjugated anti-FOXP3 (clone FJK-16s) were purchased
from eBioscience; PE Texas red-conjugated anti-mouse CD4 (clone RM4-5) and
Alexa fluor 488-conjugated Goat anti-Rat Antibody (1:200) were purchased from
Invitrogen.

For intracellular Foxp3 staining, the Anti-Mouse/Rat Foxp3 Staining Set APC
from eBioscience was used according to manufacturer’s instructions. For surface
staining, cells were labelled with the appropriate concentration of fluorescence-
conjugated antibodies or isotype control according to manufacturer’s instructions,
and analysed by a four-laser BD LSRFortessa (BD Biosciences). Acquired samples
were analysed using Flowjo 7.6 (TreeStar Inc.).

Lymphocyte transmigration assays. Murine vascular ECs were isolated from
mouse lungs55. ECs were treated with 600Uml� 1 IFN-g (PeproTech, London,
UK) for 48–72 h to induce upregulation of Class II MHC molecules. A total of
3� 104 IFN-g treated ECs were seeded and cultured on gelatin-coated (Sigma)
Transwell tissue culture well inserts (diameter, 6.5mm) containing 3-mm pore size
(Costar) polycarbonate membranes for 16 h to from a monolayer. T cells (5� 105)
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in RPMI 1640 supplemented with 2% fetal bovine serum (Sera laboratories
International Ltd) were added into each insert and left to migrate through the
monolayer; the well volume was also replaced with fresh media. The number of
migrated T cells was determined by hemocytometric counting of the cells present
in the well media at different time points over a 24-h period. Results are expressed
as percentage of transmigrated cells.

Lymphocyte chemokinesis assays. About 5–10� 105 T cells were seeded onto
Transwell tissue culture well inserts (diameter, 6.5mm) with 5-mm pore size
(Costar, High Wycombe, UK) polycarbonate membranes and chemokine contain-
ing media was placed in the bottom of the well. The number of migrated cells was
determined by hemocytometric counting of the cells present in the well media at
indicated time points. Results are expressed as percentage of transmigrated cells.

Generation of H2d-allospecific Treg cells. CD4þCD25þ Treg cells were isolated
from spleen and LNs using the EasySep immunomagnetic isolation kit (StemCell
Technologies SARL). To expand H2d-allospecific CD4þCD25þ Tregs, cells
isolated from C57BL/6 mice were stimulated weekly with irradiated immature
BALB/c-derived DCs at a ratio of 5:1 (Treg:DC). The co-cultures were maintained
in RPMI 1640 supplemented with 10% heat inactivated foetal bovine serum
(Sera laboratories International Ltd), 2mM glutamine (Gibco), 100Uml� 1 peni-
cillin (Gibco), 100 mgml� 1 streptomycin (Gibco), 1mM sodium pyruvate (Gibco),
10mM HEPES (Gibco), 50 mM 2-mercaptoethanol (Gibco) and 10Uml� 1

IL-2 in a 24-well plate. Cells were harvested and seeded at an optimal density
of 1.5� 106 Treg cells per well of the 24-well plate each week.

Timelapse microscopy. About 5–7� 104 murine ECs were seeded onto wells of a
24-well tissue culture plate to obtain confluent monolayers. A total of 5� 105 Treg
or Teff/cm cells were seeded onto confluent endothelial monolayers and their
migration was recorded using a Nikon Eclipse TE2000 microscope, equipped with
a � 20 objective and Metamorph software (Molecular Devices LLC). Images were
taken every minute for a 60-min period and the migration speed (mmmin� 1) of
the cells was determined using ImageJ analysis software. About 30–40 cells were
tracked in each experimental condition.

Intravital microscopy. T cell–EC interactions were visualized by intravital
microscopy of the cremasteric muscle vasculature of male mice pre-treated with
intrascrotal injection of 1,200U IFN-g for 72 h. Mice were then anesthetized by IP
administration of ketamine (150mg kg� 1) (Ketalar; Parke-Davis, Cambridge, UK)
and 7.5mg kg� 1 xylazine (Rompun; Bayer, Newbury, UK) and placed on a cus-
tom-built, heated (37 �C) microscope stage. The jugular vein was cannulated and
the cremaster muscle was exteriorized through an incision in the scrotum. One
testis was gently drawn out to allow the cremaster muscle to be opened and pinned
outflat over the optical window within the microscope stage. The tissue was kept
warm and moist throughout each experiment by superfusion with 37 �C bicarbo-
nate buffered saline. A total of 2.5� 107 CFSE (20 mm) labelled T cells were infused
into the cannulated jugular vein and the cremaster muscle post capillary venules
were imaged 1 h later using an Olympus BX61W1 microscope with an Olympus
UMPlanFL � 20/0.50 W water immersion objective (Carl Zeiss Ltd.). The set-up
was connected to an Olympus BXUCB lamp, Uniblitz VCMD1 shutter driver and
DG4-700 shutter instrument. The set-up used a Hamamatsu C9300 digital camera
with a Videoscope VS4-1845 image intensifier attached. All videos were captured
and analysis carried out using Slidebook 5.0 software (Intelligent Imaging TTL).

Rolling cells were defined as fluorescent T cells moving slower than the flowing
erythrocytes, and rolling flux was quantified as the number of rolling cells moving
past a fixed point on the venular wall per 5min. Firmly adherent leukocytes were
defined as fluorescent T cells that remained stationary for at least 30 s within a
450 um vessel segment. Transmigrated cells were defined as those cells in the
extravascular tissue of the 340–450 mm field of view, either side of the vessel
segments quantified. at least two sections of 2–5 vessels were studied in each
animal.

Widefield fluorescence microscopy. Tissues were sampled and embedded in
Optimal Cutting Temperature compound (OCT; Agar Scientific), snap-frozen and
stored until analysis. Frozen tissue sections were laid onto Polysine Microscope
slides (VWR International), air dried and then fixed with ice cold acetone for
10min. Tissue sections were washed in PBS, blocked with PBS containing 2% goat
and rabbit serum and stained using rabbit anti-mouse CD31 (Abcam), rat anti-
mouse MHCII antibodies (BioXCell) antibodies at 4 �C for 24 h. Excess antibody
was washed away with PBS and tissues were stained with indicated secondary
antibodies along with DAPI (40 ,6-diamidino-2-phenylindole) (Invitrogen/Life
Technologies) for 30min at room temperature. Slides were washed, mounted in
ProLong Gold Antifade Reagent (Invitrogen/Life Technologies, Paisley, UK) and
visualized using a Zeiss Z1 fluorescence microscope (Carl Zeiss, Cambridge, UK)
equipped with an AxioCam MRm Cooled monochrome digital camera and an
Apotome 2 Imaging unit. Images were acquired using a Plan Apochromat 20x/0.8
NA objective and Axiovision software version 4.8.

Statistical analysis. Results are expressed as mean standard error of the mean
(s.e.m.) or mean s.d. To assess significance, unpaired Student’s t-tests were
performed. A P-value of o0.05 was regarded as significant.
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