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ABSTRACT

Feedback from massive stars is believed to play a critical role in shaping the galaxy mass

function, the structure of the interstellar medium (ISM) and the low efficiency of star formation,

but the exact form of the feedback is uncertain. In this paper, the first in a series, we present

and test a novel numerical implementation of stellar feedback resulting from momentum

imparted to the ISM by radiation, supernovae and stellar winds. We employ a realistic cooling

function, and find that a large fraction of the gas cools to �100 K, so that the ISM becomes

highly inhomogeneous. Despite this, our simulated galaxies reach an approximate steady

state, in which gas gravitationally collapses to form giant ‘molecular’ clouds (GMCs), dense

clumps and stars; subsequently, stellar feedback disperses the GMCs, repopulating the diffuse

ISM. This collapse and dispersal cycle is seen in models of Small Magellanic Cloud (SMC)-

like dwarfs, the Milky Way and z ∼ 2 clumpy disc analogues. The simulated global star

formation efficiencies are consistent with the observed Kennicutt–Schmidt relation. Moreover,

the star formation rates are nearly independent of the numerically imposed high-density star

formation efficiency, density threshold and density scaling. This is a consequence of the fact

that, in our simulations, star formation is regulated by stellar feedback limiting the amount

of very dense gas available for forming stars. In contrast, in simulations without stellar

feedback, i.e. under the action of only gravity and gravitationally induced turbulence, the ISM

experiences runaway collapse to very high densities. In these simulations without feedback,

the global star formation rates exceed observed galactic star formation rates by 1–2 orders of

magnitude, demonstrating that stellar feedback is crucial to the regulation of star formation in

galaxies.

Key words: galaxies: evolution – galaxies: formation – cosmology: theory.

1 IN T RO D U C T I O N

Feedback from massive stars plays a critical role in the evolution

of galaxies. Cosmological models of galaxy evolution generically

find that, without strong stellar feedback, the net stellar mass formed

from cooled baryons exceeds that observed by an order of magnitude

or more, particularly in lower mass haloes (e.g. Katz, Weinberg &

Hernquist 1996; Somerville & Primack 1999; Cole et al. 2000;

Springel & Hernquist 2003b; Kereš et al. 2009, and references

therein). Related problems exist on smaller scales within galaxies.

The observed relationship between star formation rate (SFR) density

and gas surface density – the Kennicutt–Schmidt (KS) law – implies

⋆E-mail: phopkins@astro.berkeley.edu

†Canada Research Chair in Astrophysics.

that star formation is slow averaged over galaxies as a whole: the gas

consumption time-scale is ∼50 dynamical times (Kennicutt 1998),

much longer than the naive estimate of ∼ a few dynamical times

one might expect in self-gravitating gas. Similar gas consumption

times are found even in dense regions in galaxies (e.g. Krumholz

& Tan 2007; but see also Schruba et al. 2010; Feldmann & Gnedin

2011; Murray 2011). Moreover, observations in the Milky Way

(MW) and nearby galaxies show that individual giant molecular

clouds (GMCs) – the sites of star formation – convert only a few

per cent of their mass into stars during their lifetimes (Zuckerman

& Evans 1974; Williams & McKee 1997; Evans 1999; Evans et al.

2009). One of the leading explanations for this low star formation

efficiency is that stellar feedback disrupts GMCs once enough stars

have formed.

Numerical simulations of isolated galaxies and galaxy mergers,

as well as cosmological ‘zoom-in’ simulations of individual haloes,
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Self-regulated star formation in galaxies 951

can now reach the resolution required to resolve the formation

of GMCs, ∼1–100 pc (see e.g. Saitoh et al. 2008; Tasker & Tan

2009; Bournaud et al. 2010; Dobbs, Burkert & Pringle 2011) (note

that GMCs in massive gas-rich galaxies are ∼ kpc in size, signif-

icantly larger than in the MW). If simulations do not, however,

include physics that disrupts GMCs, they do not have a physically

self-consistent model of the interstellar medium (ISM) on such

scales. All of the gas will be unrealistically locked up in dense

gaseous/stellar clusters, instead of being recycled back into the

more diffuse ISM. Given resolution limitations, most recipes in

galaxy and cosmological-scale simulations have been developed to

treat star formation and feedback in a restricted ‘sub-grid’ manner.

However, without more detailed models of this physics, it is dif-

ficult to assess how appropriate the sub-grid prescriptions are for

different galaxy types. Moreover, the assumptions of such models

break down and are no longer meaningful at the spatial (� pc) or

time evolution (� Myr) scales of individual GMCs and ISM sub-

structure. In particular, whenever a numerical simulation has the

resolution to resolve the formation of bound gaseous structures like

GMCs, we believe that it is equally critical to include physics that

can potentially disrupt such GMCs.

Protostellar jets, H II regions, stellar winds, radiation pressure

from young stars and supernovae (SNe) all appear to be impor-

tant sources of feedback and turbulence in the ISM of galaxies.

In regions of low-mass star formation it is likely that protostel-

lar jets dominate, but for the ISM as a whole massive stars are

the most important sources of feedback. In relatively low density

gas, heating by photoionization, stellar winds and SNe is critical

(McKee & Ostriker 1977; Matzner 2002). For denser gas, how-

ever, which often corresponds to most of the mass in a galaxy,

energy deposition is ineffective; the cooling time [τ cool = kT/�n ≈
3000(T/104 K)(1 cm−3/n) yr, where � ≈ 10−23 erg cm3 s−1 is the

cooling function] is short compared to the dynamical time for all

but the lowest density gas, so the energy deposited into the gas

by stellar feedback is rapidly radiated away. Even in the MW, the

hot ISM contributes only ∼10 per cent to the total ISM pressure

(Boulares & Cox 1990). In contrast, the momentum supplied by

stellar luminosity, winds and SNe cannot be radiated away, and is

the most important source of feedback for dense gas in galaxies

(e.g. Murray, Quataert & Thompson 2010).

Although it is widely believed that stellar feedback is critical for

understanding the self-regulation of star formation within galaxies,

and for the cosmological evolution of galaxies themselves, it is

quite challenging to treat this in galaxy-scale simulations, especially

with the computational limitations faced by previous generations of

simulations. As a result, many simulations have made the problem

tractable by adopting effective equation of state models in which

feedback processes are treated implicitly (e.g. Springel & Hernquist

2003a; Teyssier, Chapon & Bournaud 2010), accounting for the

(un-resolved) multi-phase turbulent structure of the ISM with an

‘effective’ high sound speed. Unfortunately, in this case many of

the net effects of stellar feedback are then put in by hand – one

cannot predict, e.g. either how efficient feedback is in different

systems or whether stellar feedback drives galactic winds. More

broadly, without simulations that explicitly model feedback, it is

difficult to evaluate the accuracy of the various sub-grid treatments

in the literature.

Galactic-scale simulations that do include stellar feedback ex-

plicitly have often been forced to alter the physics in significant

ways in order to obtain a desired result. The most common treat-

ment is to only include thermal gas heating from SNe. However,

thermal feedback is very inefficient in the dense regions where star

formation occurs, and in the ISM more broadly in starbursts and gas-

rich high-redshift galaxies. These problems are compounded when

simulations cannot resolve the ISM phase structure, and smooth

together dense GMCs and diffuse gas into a single average density

(greatly increasing/decreasing the cooling time in dense/diffuse gas,

respectively). For this reason, in order to make SN feedback have

any significant effect (even in MW-like galaxies), simulators often

‘turn-off’ cooling (often along with star formation and/or other hy-

drodynamic processes) for an extended period of time, much longer

than τ cool (cooling is typically suppressed for ∼107–108 yr, i.e. for

a time comparable to a galaxy dynamical time and ∼104 times

longer than the actual cooling time at the same density; see e.g.

Thacker & Couchman 2000; Governato et al. 2007; Brook et al.

2011). Other models explicitly disable certain interactions between

gas flagged as ‘cold’ and ‘hot’ or deposit feedback energy in a non-

cooling reservoir that serves to move gas from cold to hot phases

(Scannapieco et al. 2008). Even with these adjustments, many such

models have found it difficult to drive winds and suppress star

formation at the level needed to explain the galaxy mass function

(especially at low masses) and observed star formation efficiencies

(see e.g. Guo et al. 2010; Powell, Slyz & Devriendt 2011; Brook

et al. 2011; Nagamine 2011, and references therein).

Simulations with SN feedback that do not ‘turn-off’ cooling have

found that galactic outflows can only be driven if additional physics

is included. For example, Ceverino & Klypin (2009) were able to

drive galactic winds by requiring that SNe explode well outside of

the GMCs in which they formed. However (as they acknowledge),

although this may well be important for galactic winds, it leaves

the problem of locally preventing runaway collapse of dense star-

forming regions.

The inefficiency of SN heating in dense gas is physically cor-

rect.1 It is thus by no means clear that turning off cooling is an

appropriate resolution of the ‘problem’ that SN remnants cool! In-

stead, we believe that this points to the importance of including

the momentum supplied by stellar feedback processes. This mo-

mentum input into the ISM can drive strong turbulence and can

itself contribute to unbinding gas from galaxies, even in the limit of

very rapid cooling (Murray, Quataert & Thompson 2005). To date,

however, this has only been treated in a phenomenological way,

given the limited resolution of previous simulations. In particular,

in a widely used implementation in the GADGET smoothed particle

hydrodynamics (SPH) code, gas particles are ‘kicked’ into a ‘wind’

at a rate proportional to either the SFR or young stellar mass, with

the wind velocity set by hand as a constant or a multiple of the

galaxy escape velocity (Springel & Hernquist 2003a; Dalla Vecchia

& Schaye 2008; Oppenheimer & Davé 2008; Sales et al. 2010;

Genel et al. 2010). All hydrodynamic interactions (e.g. shocks and

pressure forces) for the ‘wind particles’ are turned off until they

escape the galaxy (and when this is not done, the effects of winds

are substantially suppressed; Sales et al. 2010). This model is use-

ful for studying the impact of galactic outflows on the intergalactic

medium and the galaxy mass function but it is clearly limited (es-

pecially within galaxies) and cannot predict the nature and origin

of these winds.

Motivated by these considerations, this is the first in a series of

papers studying stellar feedback in numerical models of galaxies

and the resulting implications for problems such as the origin of

1 It is, of course, true that simulations do not resolve the full multi-phase ISM

into which SNe propagate and that this can enable SN energy to propagate

to larger distances.
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952 P. F. Hopkins, E. Quataert and N. Murray

Table 1. Galaxy models.

Model ǫg mi Mhalo c Vmax Mbary Mb a Md rd h Mg rg f gas tdyn

(pc) (M⊙) (M⊙) (km s−1) (M⊙) (M⊙) (kpc) (M⊙) (kpc) (pc) (M⊙) (kpc) (Myr)

Sbc 2.5 130 1.5e11 11 86 1.05e10 1e9 0.35 4e9 1.3 320 5.5e9 2.6 0.36 22

HiZ 3.5 1700 1.4e12 3.5 230 1.7e11 7e10 1.2 3e10 1.6 130 7e10 3.2 0.49 12

MW 2.5 220 1.6e12 12 190 7.13e10 1.5e10 1.0 4.73e10 3.0 300 0.9e10 6.0 0.09 31

SMC 0.7 25 2.0e10 15 46 8.9e8 1e7 0.25 1.3e8 0.7 140 7.5e8 2.1 0.56 45

Parameters describing our galaxy models, used as the initial conditions for all of the simulations:

(1) model name: shorthand for models of a high-redshift massive starburst (HiZ), local gas-rich galaxy (Sbc), MW-analogue (MW) and isolated SMC-mass

dwarf (SMC). (2) ǫg: gravitational force softening in our highest-resolution simulations (ultra-high-resolution). ‘High-resolution’ simulations use twice this

value. ‘Intermediate-resolution’ four times this value. (3) mi: gas particle mass in our highest-resolution simulations (ultra-high-resolution). ‘High-resolution’

simulations use eight times this value. ‘Intermediate-resolution’ 50 times this value. New star particles formed have mass =0.5 mi, disc/bulge particles ≈mi

and dark-matter halo particles ≈5 mi. (4) Mhalo: halo mass. (5) c: halo concentration. Values lie on the halo mass–concentration relation at each redshift (z =
0 for SMC, Sbc and MW; z = 2 for HiZ). (6) Vmax: halo maximum circular velocity. (7) Mbary: total baryonic mass. (8) Mb: bulge mass. (9) a: Hernquist

(1990) profile scalelength for bulge. (10) Md: stellar disc mass. (11) rd: stellar disc scalelength. (12) h: stellar disc scaleheight. (13) Mg: gas disc mass. (14)

rg: gas disc scalelength (gas scaleheight determined so that Q = 1). (15) f gas: average gas fraction of the disc inside of the stellar Re (Mg[<Re]/(Mg[<Re] +
Md[<Re])). The total gas fraction, including the extended disc, is ∼50 per cent larger. (16) tdyn: gas disc dynamical time at the half-gas mass radius.

galactic winds, the physics of gas inflow in galaxy mergers and

the properties of the ISM in high-redshift galaxies.2 Ultimately, we

will present results that include simple models of SN heating, H II

regions and radiation pressure from massive stars (produced by the

absorption and scattering of UV and IR radiation on dust). Feed-

back from a central active galactic nucleus may also be important

for understanding some aspects of star formation in galaxies – par-

ticularly the cessation of star formation in massive galaxies – but

this is a separate problem that we do not consider in this paper.

It is still not currently computationally feasible to include all of

the physics of stellar feedback in simulations that focus on galac-

tic scales. The methods we develop therefore still rely on sub-grid

models, but at the sub-cluster or sub-GMC scale, as opposed to

the galaxy scale. The fact that different feedback processes domi-

nate under different physical conditions (e.g. density) highlights the

importance of including a range of physical processes when study-

ing the effects of stellar feedback on galaxies and galaxy formation.

None the less, in this paper, we focus on isolated (non-cosmological)

galaxies and only include feedback by momentum deposition from

massive stars. Our motivation for doing so is several-fold. First, our

model for momentum deposition is sufficiently different from exist-

ing treatments of stellar feedback in the literature that it requires a

detailed explanation. More importantly, however, we show that this

simple model is, by itself, able to explain the KS relation and the

low star formation efficiency in galaxies. Moreover, the SFRs in our

model galaxies typically change by less than a factor of ∼2 when we

include additional feedback processes (though other properties of

the galaxies can change substantially, such as the morphology and

phase structure of the ISM – this is particularly true for low-mass

galaxy models).

The remainder of this paper is organized as follows. In Section 2

we describe our method of implementing feedback due to the injec-

tion of momentum by young, massive stars. The Appendix contains

tests varying some of the parameters of our numerical method. The

galaxy models we study are described in Table 1 and Section 2.3.

We then summarize our key results on the star formation histories

and structural properties of our model galaxies (Section 3). In Sec-

tion 4 we show that these results do not depend strongly on the

physics of star formation at high densities, the uncertain feedback

2 Movies of these simulations are available at https://www.cfa.harvard.

edu/∼phopkins/Site/Research.html

parameters and numerical resolution. We then show that our model

galaxies are consistent with the observed KS relation (Section 5).

Finally, in Section 6 we summarize our results and discuss their

implications.

2 M E T H O D O L O G Y

The methods we present are general and can be implemented in

both Eulerian and Lagrangian simulations. The specific simula-

tions we carried out were performed with the parallel TREESPH

code GADGET-3 (Springel 2005), based on a conservative formula-

tion of SPH, which conserves energy and entropy simultaneously

even when smoothing lengths evolve adaptively (see e.g. Hernquist

1993; Springel & Hernquist 2002; O’Shea et al. 2005). The detailed

numerical methodology is described in Springel (2005), Springel

& Hernquist (2003a) and Springel, Di Matteo & Hernquist (2005).

Our simulations include stars, dark matter and gas, with new im-

plementations of stellar feedback; we describe the salient features

of this additional physics below. These calculations do not include

models of black hole growth and feedback.

2.1 Cooling and star formation

In order to resolve the formation of very dense clumps, we extend

the standard atomic+metal line cooling curves in GADGET (which cut

off when the gas becomes neutral at <104 K) to allow cooling by fine

structure lines. Specifically, we tabulate the cooling function �(T)

from 1 to 104 K with CLOUDY, for a medium with density n = 1 cm−3,

solar abundances and with an ionizing background matching that at

z = 0.3 This is similar to the approach in a number of other simu-

lations (see e.g. Robertson & Kravtsov 2008; Wise & Abel 2008;

Ceverino & Klypin 2009) and gives identical results to the tabulated

�(T) presented in Sánchez-Salcedo, Vázquez-Semadeni & Gazol

(2002). We are not attempting to follow the ISM chemistry and thus

ignore the dependence of the cooling on abundance and radiation

field. For our problems of interest, the cooling rates even at these

3 Recalibrating our ‘baseline’ �(T) at n = 100 cm−3 gives indistinguish-

able results. The difference (modulo the standard n2 dependence) is much

smaller than more dramatic cooling curve variations we consider among

other numerical tests in Appendix A, which all produce nearly identical re-

sults because, in all cases, the cooling time is much less than the dynamical

time.

C© 2011 The Authors, MNRAS 417, 950–973
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Self-regulated star formation in galaxies 953

low temperatures are uniformly much shorter than the dynamical

times in all the systems we model; therefore, even large (factor ∼5)

changes in the cooling curve make no significant difference to our

conclusions (we have checked this explicitly).

Because we allow cooling to very low temperatures, we also must

account for finite simulation resolution by including a pressure floor

to prevent artificial numerical fragmentation when the Jeans mass

is not resolved (Truelove et al. 1997). We adopt the prescription in

Robertson & Kravtsov (2008), which ensures that the Jeans length

is always resolved with NJeans smoothing lengths. This density-

dependent pressure floor is

PJeans ≈ 1.2 N
2/3
Jeans γ −1 G h2

sml ρ
2, (1)

where γ = 5/3, ρ is the local density and hsml the smoothing

length. We typically adopt NJeans = 10, but have experimented

with NJeans = 4–15 and find similar results [the morphologies,

SFRs and Schmidt–Kennicutt relations are indistinguishable; see

Appendix A]. We make one small modification to the prescription in

Robertson & Kravtsov (2008), which is to track the numerical pres-

sure floor separately so that it enters into the momentum equations,

but does not explicitly change the gas temperature (relevant, e.g.,

for determining the cooling function). This is a standard approach

in high-resolution simulations (see e.g. Teyssier et al. 2010). At the

typical resolution we adopt, the pressure provided by equation (1)

is much less than the turbulent pressure resulting from our feedback

model (by a factor of ∼102–104); only when we turn-off feedback

entirely is the ISM pressure resolution-limited.

In our simulations, stars are assumed to form from dense gas with

a constant efficiency ǫ per free-fall time tff =
√

3π/32 G ρ, above

some minimum threshold ρ0, i.e.

ρ̇∗ =
ǫ ρ

tff
∝ ρ3/2 for ρ > ρ0. (2)

This is numerically implemented by turning gas particles into stars

stochastically following the calculated SFR [probability p = 1 −
exp (−ρ̇∗ dt/ρ), where dt � 100–1000 yr is the simulation time-

step and also represents how frequently these values are updated].

Because we wish to resolve the dense regions of star formation,

we typically set n0 = 100 cm−3, characteristic of large GMCs. The

efficiency ǫ is empirically measured in dense star-forming regions to

be ≈1–2 per cent, roughly constant over a wide range of densities

∼10−106 cm−3 (Krumholz & Tan 2007); we adopt a canonical

value of ǫ = 1.5 per cent (see also Leroy et al. 2008). We discuss

variations about these fiducial choices in Section 4.1.

2.2 Stellar feedback

For the reasons summarized in Section 1, we model stellar feedback

by depositing momentum into the gas around young star clusters.

This in turn drives strong turbulence in the ISM. For standard IMFs

(e.g. Kroupa 2002), the momentum supplied to the ISM by stellar

winds, SNe and the luminosity of young stars is all comparable

(Leitherer et al. 1999; Murray et al. 2005). If SNe undergo a signif-

icant Sedov–Taylor phase, the Pressure-Volume (P-dV) work done

can increase their momentum by a factor of ∼10 (e.g. Thornton

et al. 1998). Likewise, if the ISM is optically thick to the infrared

radiation produced when dust reradiates stellar UV photons, the

radiation energy density builds up, increasing the radiation pressure

force by a factor of the infrared optical depth τ IR. Modelling these

processes in detail is a daunting task and one that is beyond the scope

of this paper. Instead, we explore the general properties of models

in which turbulence driven by momentum deposition is the domi-

nant stellar feedback mechanism. This is a plausible approximation

even in the MW, since the hot ISM contributes only ∼10 per cent

to the ISM pressure (Boulares & Cox 1990). Moreover, in the well-

studied star-forming region 30 Doradus in the Large Magellanic

Cloud (LMC), observations directly implicate radiation pressure as

the dominant mechanism of stellar feedback (Lopez et al. 2011).

We stress, however, that this is not intended to represent a complete

model of stellar feedback and the ISM; in future work, we will

study how galaxy properties are further modified with the addition

of other mechanisms such as SNe and stellar wind shock heating

and mass loss, and photoionization heating.

In order to make our simplified feedback model as realistic as

possible, we implement the feedback so that it is explicitly associ-

ated with young star clusters. We do so by identifying star-forming

clumps and depositing momentum into the surrounding gas radially

away from the star clusters. In the following sections we describe

the key steps in this method.

2.2.1 Star-forming clumps: identification

The first step is to identify star-forming regions or nascent star clus-

ters in the simulation. Starting from each gas particle, we identify

the nearest dense gas ‘clump’ by iteratively performing a friends-

of-friends search with an adaptive linking length. Specifically, we

search over all gas particles within a radius Nsml hsml (with typical

Nsml = 3) of the initial particle to find that particle with the highest

local density, and iterate either until a higher-density neighbour is

not found or until some maximum cut-off is reached. For the lat-

ter we adopt a maximum of 20 iterations or a distance >20 times

the initial particle hsml (in practice, this limit is rarely reached, but

is necessary to prevent cases where, e.g., the linking chain might

traverse a large fraction of the length of a spiral arm). Some care

is needed in choosing the appropriate value of Nsml, based on the

physical scales that are or are not resolved in a given simulation –

for our resolutions, Nsml < 1 will simply return the local gas particle,

and Nsml ≫ 5 tends to over-link clumps in dense regions such as

spiral arms and galactic nuclei. Our experiments show that within

the range Nsml ∼ 1.5–4 the identification of the peak local density

is converged for >90 per cent of all ‘clumps’ (with the remainder

making little difference in global quantities, as we show explicitly

in the Appendix); the density peaks identified in this way also agree

well with visual identification of overdensities. We thus adopt a

canonical value of Nsml = 3.

This friends-of-friends search defines the star-forming clump of

which the initial gas particle is a member.4 The distance between

the original particle and the clump centre (the clump density peak)

defines the ‘clump radius’ Rclump (if this distance is less than twice

the initial smoothing length, we set it to this minimum value, since

the ‘clump’ is effectively unresolved). The enclosed ‘clump mass’

in gas (Mclump, gas) or stars (Mclump, ∗) is defined as the mass of each

component within a distance of Rclump of the clump centre.

4 We have also experimented with using the centre of stellar light or the

stellar density peak as the location of the clump centre (see the Appendix

for details). In the systems we model here, there is no detectable difference

between these choices and our fiducial choice of centring the clump on

the peak gas density. However, the distinction between peak gas and stellar

quantities could be more important in systems where the main-sequence

lifetime exceeds the dynamical time (e.g. galactic nuclei) and massive stars

may wander away from their natal GMCs.

C© 2011 The Authors, MNRAS 417, 950–973
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954 P. F. Hopkins, E. Quataert and N. Murray

2.2.2 Momentum loading

In our model, stellar feedback is tied to the properties of the stars

in the stellar cluster associated with a given gas particle. Moreover,

we only apply the feedback to gas particles that are within 3 hsml of

a young star particle (typically �10 pc). This helps ensure that the

feedback is spatially correlated with young stars.5 We now motivate

our implementation in terms of feedback by radiation pressure on

dust grains.

At each time-step, we identify the stars (of those formed since

the beginning of the simulation) within the previously identified

clump, and sum their bolometric luminosity, which is a function of

the star’s (known) stellar age

Ltot(<Rclump) =
r<Rclump
∑

i

[

L

M
(agei)

]

× M∗, i . (3)

We tabulate L∗/M∗ as a function of age using a STARBURST99

(Leitherer et al. 1999) single stellar population with a Kroupa (2002)

IMF at solar metallicity (this time dependence can be important on

GMC time-scales, in contrast to models where all energy is coupled

instantaneously; see e.g. Slyz et al. 2005). Given the uncertainties

in the mass-loading factors below, and the fact that our initial con-

ditions are all relatively evolved systems, it makes little difference

whether we explicitly allow for a metallicity dependence.6 Assum-

ing that the stellar flux is equally distributed among all of the gas

within Rclump, we obtain the luminosity Lj incident on the particle

in question, which has a mass Mgas, j:

Lj = Ltot(<Rclump)
Mgas, j

Mtot, gas(<Rclump)
. (4)

Because the luminosity incident on a particle in this simple formu-

lation depends on the light-to-mass ratio of the surrounding stars,

we find that our results are relatively insensitive to whether we use

the starlight within Rclump or some multiple of this radius.

Given the incident luminosity, we take the rate of momentum

deposition in the gas to be

ṗj = (1 + ηpτIR)
Lj

c
. (5)

This is the core equation of our feedback model (with typical values

of τ IR in Fig. 5). This force is directed radially away from the clump

centre (i.e. along the vector Rclump). If the particle j itself is the clump

centre, the direction of the force is randomly chosen isotropically.

The first factor of Lj/c in equation (5) represents the momentum

imparted as the optical-UV photons emitted by massive stars are

absorbed by dust, which re-radiates in the IR. The factor of τ IRLj/c

accounts for the momentum imparted by the total number of IR

photons absorbed/scattered within the gas parcel. Note that τ IR is the

optical depth through the clump, not the optical depth of the given

gas particle. It is the former that sets the total momentum supplied

to the gas. Finally, equation (5) includes a dimensionless factor ηp ∼

5 Because the momentum deposition falls off for gas further from the stars,

formally extending this to all of the gas makes no difference to our results.
6 We neglect for now the fact that at extremely high resolution, a <100 M⊙
‘star particle’ may not completely sample the stellar IMF, and simply take

the average L∗/M∗ for the particle age. Since we focus on galaxy-average

quantities, this is probably not a large uncertainty. But in low-mass clusters

and GMCs, a more accurate model – for example one which the stellar mass

range of each particle is sampled stochastically from the IMF, as discussed

in Mashchenko, Wadsley & Couchman (2008) – could give interesting dif-

ferences.

1 that accounts for other sources of momentum and uncertainties

introduced by our simplified treatment. Note, e.g., that we do not

explicitly include the momentum deposited by stellar winds and

SNe separately from that due to the radiation of massive stars; ηp �

1 crudely accounts for these additional contributions.7 On the other

hand, ηp � 1 might be appropriate if photons efficiently leak out

through holes in the gas distribution (see Appendix B).

Why do we associate the feedback with the clump and direct

it from that centre of density, as opposed to simply identifying it

with each star individually? Recall, we are modelling the effects of

radiation pressure in the limit in which the gas is at least somewhat

optically thick. If the UV/optical photons could free-stream, then

the appropriate sources would indeed be each star particle. How-

ever, if a number of stars are embedded in a gas clump, then in the

limit of large optical depth, all of the stellar luminosity is trapped

and re-radiated, so that the momentum flux is everywhere the full

dτ L/c directed radially from the clump centre of density and fol-

lows the scalings we adopt here. This is trivially true in spherical

or cylindrical (filamentary) geometries, but is a good approxima-

tion even for complex density distributions if the optical depths are

sufficiently large. This is an important distinction that makes radia-

tion pressure a particularly efficient feedback mechanism in dense

regions (relative to other sources of energy or momentum such as

SNe or stellar winds). In Appendix B we discuss the more compli-

cated case of an inhomogeneous density distribution. However, to

the extent that it modifies our conclusions, it is usually equivalent

to variations in the net efficiency (encapsulated in ηp), rather than

the spatial distribution or direction of the flux. Of course, if desired,

the momentum could be isolated to each star by simply taking the

limit Nsml → 0.8

Given that the local density structure of the gas is at least par-

tially resolved, we use this information to estimate the IR optical

depth τ IR = 	eff κ IR where 	eff ≃ Mclump/πR2
clump is the gas surface

density of the clump of interest.9 The opacity at IR wavelengths is

approximately constant for dust temperatures ∼100–1000 K, so we

adopt κ IR ≈ 5 cm2 g−1 (this is convenient given that we are not per-

forming radiative transfer and thus do not have information about

the true dust temperature). Note that both the weighting of Lj and

this calculation of τ IR implicitly scale so that gas near the density

centre where the flux and optical depth are largest will be more

strongly accelerated than gas in the outskirts of the system.

We can apply the force associated with ṗj from equation (5) in

two ways, either stochastically or as a continuous acceleration (the

latter is the simplest to implement in grid-based calculations). In the

stochastic model, we model the momentum deposition by randomly

‘kicking’ particles, with an average mass flux set by

Ṁw vw = ṗj , (6)

7 We have considered experiments where we include a separate, explicit

ṗj term for the direct momentum flux from stellar winds and SNe ejecta,

with both tabulated in STARBURST99 as a function of stellar age. The absolute

magnitude of these is, for a constant SFR, ∼L/c. We find this makes no

difference compared to equivalent variation in ηp.
8 In Appendix A we show that directing the momentum from the cloud

density peak, centre of gas mass or centre of stellar mass or luminosity

makes no difference to our conclusions. Likewise allowing for more complex

geometries by directing momentum along the local density gradients gives

nearly identical results.
9 For an LN density distribution within a given clump, the effective optical

depth of the inhomogeneous clump is typically within 30 per cent of the

mean optical depth (Murray et al. 2010). Thus, using the latter to determine

ṗj is sufficiently accurate for our purposes (see also Section 3.3).
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Self-regulated star formation in galaxies 955

where Ṁw is the mass loading and vw is the initial velocity. What is

the appropriate ‘initial’ velocity vw? Models of momentum-driven

outflows argue that gas should be accelerated to the local escape

velocity from the star clusters and/or clouds from which they are

launched (Murray et al. 2010). We therefore take

vw ≈ vesc ≈ ηvvdim(Mclump, ρ, . . .), (7)

where vdim is an estimate of the escape velocity as a function of

the simulation parameters and ηv is a normalization parameter that

accounts for details such as the exact mass profile shape, micro-

physical acceleration as a function of position, etc. In practice, we

have experimented with a variety of choices for the velocity and

will show that it makes relatively little difference. This is because

the key parameter that determines the effect of the feedback is the

total momentum/force (equation 5).

The escape velocity from the clump as resolved by our simula-

tions is vdim ≈
√

2 GMclump/Rclump. However, some fraction of the

clump will turn into stars in a dense stellar cluster, the internal dy-

namics and peak density of which are unresolved. The true relevant

escape velocity from the location where the outflows are driven is

probably the escape velocity from that cluster. We therefore take the

mass in young stars in the clump to be the ‘star cluster’ mass and

use the empirical size–mass relation of clusters (e.g. Murray 2009)

to determine the cluster escape velocity:

vdim =
(

2 GM∗, cl

Rcl

)1/2

≈ 66

(

M∗, cl

106 M⊙

)1/4

km s−1 (8)

for M∗,cl ∼ 105–109 M⊙. In our models, we take vdim to be the

maximum of either the resolved clump escape velocity or the in-

ferred star cluster escape velocity; the latter is almost always larger.

In a time-step �t, the probability that the particle of mass Mgas, j is

‘kicked’ is then given by

Pw = 1 − exp {−(Ṁw �t)/Mgas, j}. (9)

The particle then has a momentum �pj = Mgas, jvw added to its

initial momentum, directed radially away from the clump centre.

In addition to the stochastic acceleration of particles described

above, we can alternatively accelerate the particles continuously

rather than with individual ‘kicks’; in this case the particle is simply

given a �vj = ṗj �t/Mgas, j every time-step. Which prescription

is more physically appropriate depends on whether the outflows

generated by stellar feedback are being accelerated at reasonably

large radii (e.g. at the outskirts of clouds), or whether they are

launched in the dense central regions near the star cluster. We show

below that the two methods yield similar results.

Many implementations of stellar feedback in the literature turn-

off the hydrodynamics, pressure forces, cooling and/or star forma-

tion for some period of time, often chosen such that a wind escapes

the galaxy entirely (or until the wind reaches some distance from

its launching point; see Springel & Hernquist 2003a; Oppenheimer

& Davé 2008; Sales et al. 2010). In our models, by contrast, there

is no such modification of the underlying equations. We are able

to directly model the feedback and the resulting dissolution of star

clusters for three reasons: first, our high resolution allows us to

resolve a multi-phase ISM structure into which outflows can propa-

gate; secondly, we identify massive star-forming regions and drive

outflows coherently from them, rather than randomly within those

regions; and thirdly, because the feedback is momentum-driven, it

drives strong turbulence even in dense, highly radiative environ-

ments. In situations where a lower resolution is inevitable (e.g.

cosmological simulations), it may be necessary for numerical rea-

sons to modify the methods proposed here in order to maintain an

efficient source of stellar feedback. This will be studied in future

work.

The feedback model used in this paper is ultimately defined by

the two key parameters ηp and ηv (equations 5 and 7). We will

discuss the consequences of different choices for these parameters

below; we take ηp ∼ 1 and ηv ∼ 1 as our physically motivated

default values.

2.3 Galaxy models

Our goal in this paper is to study the effects of stellar feedback on

the ISM structure and star formation in galaxies. We do so using

idealized models of disc galaxies with initial conditions motivated

by galaxies in both the local and high-redshift Universe. We do

not attempt to model the cosmological evolution of these discs,

and so do not include extended gaseous haloes or cold flows from

which they would accrete. Rather, our goal is to study how a given

feedback mechanism will change behaviour given a specific set of

(observed) disc properties. The methodology for building the initial

galaxies follows that described in detail in a series of papers (see e.g.

Di Matteo, Springel & Hernquist 2005; Springel et al. 2005; Cox

et al. 2006; Robertson et al. 2006; Younger et al. 2008). The discs

each include an extended dark-matter halo with an NFW profile

(Navarro, Frenk & White 1996), a stellar bulge (typically with a

Hernquist 1990 profile), and exponential stellar and gaseous discs.

In all of the models, the initial vertical pressure support for the gas

disc is provided by thermal pressure. As we describe in Sections 3

and 4, however, this thermal energy is quickly radiated away and the

system approaches a new statistical equilibrium with star formation

and stellar feedback determining many of the properties of the gas

disc.

The simulations are carried out at several different resolutions:

the ‘standard’ resolution has a total of ≈3 × 106 particles, with

≈106 particles in the gas+stellar disc (the initial bulges are small

and so have fewer particles – thus most of the remaining particles

are in the dark-matter halo). Our ‘high’ resolution simulations use

10 times as many particles, reaching ≈107 particles in the disc.

We also have at least one ‘ultra-high’ resolution simulation per

galaxy model with >108 particles in the disc (to our knowledge,

these are the highest-resolution galaxy-scale SPH simulations that

have been performed to date). The models are generally all run for

≈20 dynamical times at Re (≈3 orbital times), but they typically

converge to quasi-steady-state behaviour after just ≈4–5 tdyn. After

this the evolution is essentially just slow, steady-state gradual gas

exhaustion; we have confirmed this in at least one run of each

galaxy model run for five times longer than the ‘standard’ runs.

As described below, the spatial and mass resolutions in each of the

simulations depend on the galaxy model.

We consider four galaxy models, motivated by z ∼ 2 high SFR

galaxies (non-major mergers), local low-luminosity Luminous In-

frared Galaxies (LIRGs), MW-like spirals and Small Magellanic

Cloud (SMC)-like dwarf galaxies. The basic properties of these

models are summarized in Table 1.

Sbc. This simulation is designed to model an intermediate-

mass, relatively gas-rich star-forming disc in the local universe

(e.g. a low-luminosity LIRG with Lbol ∼ 1010−11 L⊙ and Ṁ ∼
1−10 M⊙ yr−1). The galaxy has a total baryonic mass 1.05 ×
1010 M⊙, with a bulge having a mass Mb = 109 M⊙ and a Hern-

quist (1990) scalelength a = 350 pc; a stellar disc with a mass Md =
4 × 109 M⊙ and an exponential scalelength of rd = 1.3 kpc; and an

extended gaseous disc with Mg = 5.5 × 109 M⊙ and an exponen-

tial scalelength of rg = 2.6 kpc. The stellar disc has a sech2 vertical

C© 2011 The Authors, MNRAS 417, 950–973
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956 P. F. Hopkins, E. Quataert and N. Murray

profile with a scaleheight of 130 pc; it is initialized with a radial dis-

persion profile so that the local Toomre Q = 1 at all positions. The

gas disc is similarly initialized in vertical hydrostatic equilibrium

with Q = 1. The initial vertical support of the gas disc is via ther-

mal pressure. The dark-matter halo has a virial mass Mhalo = 1.5 ×
1011 M⊙, concentration c = 11 and a spin parameter λ = 0.033,

chosen to match the typical concentrations and spins seen in cosmo-

logical simulations (Bullock et al. 2001; Vitvitska et al. 2002); this

gives a total stellar-to-dark-matter mass ratio similar to that inferred

for systems of this mass (e.g. by Moster et al. 2010). The disc is,

however, baryon-dominated within the central ∼5−10 kpc, and as

such may develop spiral and bar instabilities.

For this galaxy model, our standard resolution has SPH smooth-

ing lengths of ∼5–10 pc in the central few kpc of the disc. Our

high-resolution simulations have ∼2–5 pc smoothing lengths and

particle masses of ∼1000 M⊙, while the ultra-high-resolution sim-

ulations have particle masses of 100 M⊙ and 1 pc resolution in the

bulk of the disc.10

High-z. This model is designed to approximate a massive, high-

redshift and strongly unstable disc forming stars at a very high

rate ∼100–400 M⊙ yr−1, typical of massive discs observed at z ∼
2–4 (Erb et al. 2006; Genzel et al. 2008; Tacconi et al. 2010). The

galaxy has a baryonic mass 1.7 × 1011 M⊙, with Mb = 7 × 1010 M⊙
(a = 1.2 kpc), stellar disc Md = 3 × 1010 M⊙ (rd = 1.6 kpc), gas

disc Mg = 7 × 1010 M⊙ (rg = 3.2 kpc), initialized with stellar

scaleheight 320 pc and Q = 1 in gas and stars. This gives a typical

gas fraction of ∼0.5 throughout the stellar and star-forming disc

(with a larger H I gas reservoir at large radii). The halo has Mhalo =
1.44 × 1012 M⊙ with c = 3.5 and a virial radius appropriate for

that mass at z = 2. The system is baryon-dominated out to ∼10 kpc.

The spatial and mass resolution in these simulations are somewhat

larger than in the Sbc simulation because of the larger total mass and

spatial size of the disc; however, the Toomre mass and length-scale

are also much larger, so this model is in a relative sense actually

better resolved than the Sbc model.

MW. This system is initialized to represent a local, relatively gas-

poor, MW-like disc. The galaxy has a baryonic mass of 7.13 ×
1010 M⊙, a bulge with Mb = 1.5 × 1010 M⊙, a stellar disc with

Md = 4.73 × 1010 M⊙ (rd = 3.0 kpc) and a gas disc with Mg =
0.9 × 1010 M⊙ (rg = 6.0 kpc). The disc gas fraction is f g = 0.05–

0.10 throughout the disc out to ∼8 kpc. The disc is initialized with

a stellar scaleheight 300 pc and Q = 1. The halo has Mhalo = 1.5 ×
1012 M⊙, concentration c = 12 and Rvir appropriate for z = 0.

Observations suggest that the MW hosts a pseudo-bulge or a bar

instead of a classical bulge, so we initialize the bulge with a spherical

exponential profile (rd = 1.0 kpc), rather than a Hernquist (1990)

profile, but since the bulge mass is small this makes little difference

to our conclusions. At our ultra-high (high) resolution, the force and

mass resolution in the gas are ≈2 pc (5 pc) and 200 M⊙ (2000 M⊙).

Dwarf/SMC. This model is initialized to be similar to the inferred

properties of the SMC (before entering the MW halo, at least; see

Besla et al. 2010, and references therein), a typical low-mass, gas-

rich dwarf. The galaxy has a baryonic mass 8.9 × 108 M⊙, with a

bulge having Mb = 107 M⊙ (a = 0.25 kpc), a stellar disc with Md =

10 The particular choice of gravitational softening is chosen as a compro-

mise between matching the minimum SPH softening lengths, minimizing

discreteness effects (see e.g. Power et al. 2003), and giving a similar maxi-

mum resolvable density in each simulation (∼105 cm−3) that is much larger

than the mean GMC density but still below densities where processes of

individual star formation and detailed thermal physics become dominant.

1.3 × 108 M⊙ (rd = 0.7 kpc) and gas disc with Mg = 7.5 × 108 M⊙
(rg = 2.1 kpc). The disc is initialized with stellar scaleheight 140 pc

and Q = 1. The halo has Mhalo = 2 × 1010 M⊙, c = 15 and Rvir

appropriate for z = 0. The system is dark-matter dominated at all

radii outside of the central few hundred pc. For this model, our

high-resolution simulations have a spatial resolution and particle

mass of <1 pc and ∼100 M⊙, respectively.

3 G LOBA L G ALAXY PRO PERTI ES

The key simulations described in this paper are summarized in

Tables 1 and 2. Table 1 summarizes the properties of each galaxy

model. Table 2 summarizes the resolution of each simulation, the

parameters of the star formation model and the key feedback pa-

rameters ηp and ηv (equations 5 and 7).

Fig. 1 shows face-on and edge-on images of the gas surface

density distribution for simulations of each galaxy model with our

fiducial parameter choices ηp = ηv = 1. Each image is shown

in the quasi-steady feedback-regulated phase that sets in after a

few dynamical times. The overall qualitative evolution is similar

in all of the simulations with feedback. The gas cools efficiently

to low temperatures and collapses by gravitational instability at the

Jeans/Toomre scale. This leads to the formation of dense clumps

that are the sites of star formation and, in our model, feedback.

The resolved density contrast between the centres of star-forming

clumps and the interclump medium is typically ∼1000 but can be

as high as ∼106. The ISM sustains this clumpy structure as long as

we evolve our simulations, as gas is blown out of individual clumps

(by feedback) into the more diffuse ISM before being incorporated

into new dense clouds. We defer a rigorous analysis of the lifetimes

and evolution of individual clumps for future work (in preparation)

analysing the properties of GMCs, where we can make rigorous

comparisons with observations. But typically, we find average life-

times of individual clouds �10 Myr or a few free-fall times (weakly

increasing with mass scale from the SMC through HiZ models), giv-

ing an integrated fraction ∼1–5 per cent of clump mass turned into

stars.

This fragmentation is the natural extension of Jeans-mass GMCs

in the MW and other nearby galaxies. Indeed, if we wish to ex-

plicitly resolve these scales, most of the gas mass should be in

dense sub-clumps at something like the Jeans scale. The primary

role of feedback is to regulate against runaway collapse and star

formation in those clouds. Fig. 2 illustrates how these morpholo-

gies depend on the strength of feedback. We consider the HiZ case,

which is most strongly unstable, at two different extremes (holding

all details of the model fixed, except feedback strength). First, with

feedback much stronger than is realistic, ηp = 100. In this case,

essentially all sub-structure in the galaxy is ‘wiped out’, and the

star formation is smoothly distributed over a ∼10 kpc disc (despite

<10 pc resolution). This would be analogous to a MW model with

no GMCs, where all star formation occurred in regions with local

densities ∼1 cm−3. Secondly, we consider a case with no feedback.

In this extreme, the opposite occurs: the GMC complexes seen in

Fig. 2 dissipate their internal velocity dispersions and experience

runaway collapse and star formation. This collapse proceeds until

the GMCs reach the simulation resolution limit and leads to all of

the gas being at extremely high densities, n ∼ 106 cm−3 (as we show

explicitly below); a corollary is that the gas is converted into stars

on essentially one (large-scale) dynamical time.

Fig. 3 shows the phase diagram for the gas in each of our fiducial

simulations: we plot both the thermal sound speeds and turbulent

velocities as a function of gas density (averaged over the smallest

C© 2011 The Authors, MNRAS 417, 950–973
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Self-regulated star formation in galaxies 957

Table 2. Simulations plotted in this paper.

Simulation Npart SF law ηp ηv

HiZ 8 0 nofb 2e6 – – –

HiZ 8 2 nofb 2e7 – – –

HiZ 10 4 2e6 – 1.0 1.0

HiZ 8 10 2e6 – 2.0 2.0

HiZ 8 11 2e6 – 4.0 2.0

HiZ 9 1 2e6 – 10.0 1.0

HiZ 6 0 hr 1e7 – 1.0 1.0

HiZ 7 0 hr 6e7 – 1.0 1.0

HiZ 6 3 hr 1e7 ρ̇ ∝ ρ1.0 1.0 1.0

HiZ 6 4 hr 1e7 ρ̇ ∝ ρ2.0 1.0 1.0

HiZ 7 1 hr 6e7 ǫ = 0.35 per cent 1.0 1.0

HiZ 7 2 hr 6e7 ǫ = 6.0 per cent 1.0 1.0

HiZ 7 3 hr 6e7 nc = 2500 1.0 1.0

HiZ 7 4 hr 6e7 nc = 25 1.0 1.0

HiZ 10 4 hr 2e7 – 1.0 1.0

HiZ 10 5 hr 2e7 – 1.0 2.0

HiZ 10 6 hr 2e7 – 1.0 4.0

HiZ 10 7 hr 2e7 – 2.0 1.0

HiZ 10 8 hr 2e7 – 4.0 1.0

HiZ 10 9 hr 2e7 – 10.0 1.0

HiZ 10 14 hr 2e7 – 0.33 1.0

HiZ 10 11 hr 2e7 – 1.0 –a

HiZ 8 14 hr 2e7 – 4.0 2.0

HiZ 8 17 hr 2e7 – 5.0 4.0

HiZ 10 4 uhr 2e8 – 1.0 1.0

MW 8 3 nofb 3e6 – – –

MW 9 1 2e6 – 1.0 1.0

MW 10 7 hr 1e7 – 1.0 1.0

MW 10 8 hr 1e7 ǫ = 0.35 per cent 1.0 1.0

MW 10 9 hr 1e7 ǫ = 6.0 per cent 1.0 1.0

MW 10 10 hr 1e7 ρ̇ ∝ ρ1.1 1.0 1.0

MW 10 11 hr 1e7 ρ̇ ∝ ρ2.0 1.0 1.0

MW 10 12 hr 1e7 nc = 10 1.0 1.0

MW 10 13 hr 1e7 nc = 1000 1.0 1.0

MW 9 1 hr 2e7 – 1.0 1.0

MW 9 2 hr 2e7 – 1.0 –a

MW 9 3 hr 2e7 – 1.0 2.0

MW 9 4 hr 2e7 – 0.33 1.0

MW 9 5 hr 2e7 – 10.0 1.0

MW 8 4 hr 3e7 – 10.0 4.0

MW 8 5 hr 3e7 – 10.0 1.0

MW 10 2 hr 3e7 – 10.0 2.0

MW 10 4 hr 3e7 – 1.0 1.0

MW 9 1 uhr 2e8 – 1.0 1.0

MW 8 uhr 3e8 – 10.0 2.0

SMC 10 3 nofb 2e7 – – –

SMC 10 1 hr 2e7 – 4.0 2.0

SMC 10 2 hr 2e7 – 10.0 2.0

SMC 10 4 hr 2e7 – 1.0 1.0

SMC 10 uhr 1e9 – 10.0 2.0

Sbc 10 3 nofb 2e7 – – –

Sbc 10 1 hr 2e7 – 4.0 2.0

Sbc 10 2 hr 2e7 – 10.0 2.0

Sbc 10 4 hr 2e7 – 1.0 1.0

Sbc 10 uhr 2e8 – 10.0 2.0

Parameters of our key simulations (only simulations appearing in figures are

listed; others are noted in the text):

(1) Name/ID. First characters correspond to the class of galaxy model (‘SMC’,

‘MW’, ‘Sbc’ or ‘HiZ’, as in Table 1).

(2) Total particle number.

(3) Star formation law. ‘–’ corresponds to the default law: ρ̇∗ = ǫ ρ/tff (ρ) for

ρ > ρ0, with ǫ = 1.5 per cent and n0 = 100 cm−3; varied quantities are noted

(see Fig. 6).

(4) Momentum-loading normalization ηp (see equation 5).

(5) Initial velocity normalization ηv (see equation 7).
aAcceleration is continuous rather than discrete ‘kicks.’

available scale, the SPH smoothing length). For low-density gas

with n ≪ 1 cm−3, the sound speed and turbulent velocity are often

comparable, but for denser gas the turbulent velocity is always much

larger than the thermal sound speed.

The characteristic densities of clumps/GMCs are evident in the

peak of the gas distributions near n ∼ 100 cm−3 in Fig. 3; the typical

turbulent mach numbers for this gas are ∼30–100. Because of the

high Mach numbers, turbulent motions rather than thermal motions

are the dominant impediment to gravitational collapse. Specifically,

the characteristic mass of large GMCs is set by the turbulent Jeans

mass for the bulk of the matter, and corresponds to: ∼105 M⊙ in the

SMC case, ∼106 M⊙ in the MW and Sbc cases, and ∼108 M⊙ in the

HiZ case. These estimates agree reasonably well with the observed

properties of massive cloud complexes in the respective systems.

By contrast, if the gas were thermally supported, the characteristic

mass of collapsed gas would be much smaller. For the dense gas,

however, thermal support is only important on scales below the

sonic length (�0.1 pc), which is well below our resolution limit.

The minimum pressure to prevent unresolved collapse below the

resolution limit (equation 1) is well below the resolved turbulent

pressure for the median densities in Fig. 3. This effective pressure

does, however, produce the small ‘upturn’ in the turbulent δv at

the very highest densities n ≫ 104 cm−3. For our purposes, the key

point is that we resolve the median GMC length, density and mass

scales well, even in our lowest-resolution models.

3.1 Morphologies

There are a variety of morphologies present in the simulated galaxies

depending on how self-gravitating the disc is. The high-redshift

disc analogues (HiZ) are the most strongly self-gravitating and

so fragment into very massive clumps (MToomre ∼ 108–109 M⊙),

which dominate the star formation. This morphology resembles the

clumpy systems observed at z ∼ 2–3 (Tacconi et al. 2006; Genzel

et al. 2008; Law et al. 2009). This is even more clear when we focus

on the region which contains half the star formation (middle panel) –

this is dominated by a few giant complexes. Viewed edge-on, the

HiZ model appears qualitatively similar to the ‘clump chain/cluster’

systems observed at high redshift.

The Sbc model fragments in a manner similar to that of the

HiZ model. However, the disc is thinner, and the Jeans mass and

length-scales are significantly smaller, so star formation is more

distributed in many clouds [the number of massive clouds predicted

at Q ∼ 1 is ∼(R/h)2 and is thus larger for thinner discs]. At slightly

later times than that shown in Fig. 1, the system develops a strong

stellar bar, and the gas – while still very clumpy – flows into the cen-

tre along the m = 2 mode. Flocculent spiral structure also develops

in some of the Sbc runs at large radii.

The MW model in Fig. 1 shows clear grand design spiral struc-

ture. It is also weakly barred in the centre, though the bar feature is

much more prominent in the stars. Note that this model has a lower

gas fraction and is significantly more stable than the Sbc and HiZ

models – the latter because it is dark matter or bulge dominated

at all radii. As a result, the characteristic clump mass is smaller

(MToomre ∼ 106 M⊙) and the Jeans length is much smaller relative

to the effective radius (for a Q ∼ 1 disc, λJeans ∼ f 2
gas Re, so ∼100

times smaller here). As a result, the individual ‘clumps’ are much

less prominent in the image, despite the fact that most of the mass in

the star-forming disc does lie in thousands of resolved ‘clouds’ with

masses ∼104–106 M⊙. The small gas fraction also causes the disc

to be significantly thinner in the edge-on image: Q ∼ 1 implies h ∼
f gR for weakly self-gravitating discs (e.g. Thompson, Quataert &

C© 2011 The Authors, MNRAS 417, 950–973
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958 P. F. Hopkins, E. Quataert and N. Murray

Figure 1. Images of the gas distribution for our fiducial simulations (ηp = ηv = 1) in the feedback-regulated quasi-steady state. Brightness shows the gas

surface density while colour shows the specific SFR (increasing from blue to red); both are on a logarithmic scale spanning a dynamic range of ∼106. Top:

large scales (wide-field image) out to twice the half-gas mass radius. Middle: intermediate scales (zoom-in of the image at top) out to the half-SFR radius.

Bottom: edge-on; scale is the same as the middle image. One example is shown for each of the initial conditions we model (HiZ_10_4_hr, Sbc_10_4_hr,

MW_10_4_hr and SMC_10_4_hr in Table 2). The simulations develop complex substructure and exhibit a diverse range of gas morphologies. Most stars are

formed in dense but resolved giant ‘molecular’ cloud complexes, which are the sites of the feedback modelled here.

Figure 2. As Fig. 1 (middle left), but for an otherwise identical HiZ sim-

ulation with extremely strong feedback (left) with ηp = 100 (this is not a

realistic choice but purely shown for illustrative purposes), and one with no

feedback (right). With arbitrarily strong feedback, all collapse of gas into

GMC complexes is suppressed. With no feedback, the cloud complexes in

Fig. 1 undergo runaway collapse to the resolution limit (the single white

pixels at right); the mass piles up at densities �104 times larger than in our

‘standard’ models.

Murray 2005). In future work (in preparation), we will investigate

the detailed structural properties of the ISM and simulated GMC

analogues to compare them to observations of the MW and Local

Group galaxies.

The SMC-like model behaves quite differently from the MW

model, although both are dark-matter dominated. The SMC model

is completely stable to global instabilities and thus forms stars in

a more uniformly distributed fashion. The ISM on these scales is

turbulent and patchy, with an irregular or (on large scales) feature-

less structure, typical of observed dwarf galaxies. Despite the low

SFR of ∼0.1 M⊙ yr−1, the turbulent velocities generated by stellar

feedback are sufficient to make the system quite ‘puffy’ and thick

(given the weaker potential depth). Fig. 1 shows that individual

star-forming regions are resolved with size scales of <10 pc.

Note that because the gas in this model is of quite low density, the

cooling times are long and energy input via SNe and stellar winds

will have a significant effect on the gas morphology. There are plain

indications here that the present model, including momentum from

radiation pressure alone, is not a complete description of the ISM.

For example, the temperature of the ‘diffuse’ ISM in all the galaxy

models tends to be much too low. We show this explicitly in Fig. 3,

where we plot the phase distribution of the gas. The volume-filling

gas distributed between dense clouds is almost entirely ‘warm’

(104 � T � 105 K), with negligible mass in the characteristic ‘hot

phase’ of the ISM at T � 106 K (there is some, generated by shocks,

in the stronger HiZ and Sbc cases, but even here it is less than a per

cent of the total gas mass). Some additional heating mechanisms,

such as SNe and ‘fast’ stellar winds, are probably critical to explain

the full temperature structure of the ISM. In future work we will

investigate this in detail, with explicit models for various heating

terms; for now, we simply note that the small mass fraction in the

‘hot’ phase, while potentially important for phenomena such as

galactic winds, is unlikely to change the structure of cold regions

as it contains little mass and, even in MW-like galaxies, contributes

only ∼10 per cent to the typical ISM pressure (Boulares & Cox

1990). We see in Fig. 3 that the turbulent velocities are much larger

in all dense gas than the thermal sound speeds (and tend to be

C© 2011 The Authors, MNRAS 417, 950–973
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Self-regulated star formation in galaxies 959

Figure 3. Phase diagram for the gas in the fiducial simulations in Fig. 1, at

times in the feedback-regulated quasi-steady state. Contours are iso-density

at ∼10−3, −2.5, −2, −1.5, −1, −0.5 of maximum (progressively darker dotted,

short-dash, dot–dash, dot-dot-dot–dash, long-dash, solid contours, respec-

tively). Blue contours show the thermal sound speeds cs ∝ T1/2; red contours

the local turbulent velocity dispersion σ (averaged within one gas smoothing

length hsml around each particle). Lines of constant Jeans mass ∝δv3 n−1/2

(black dotted) are shown for comparison. The median clump/cloud gas den-

sity is evident in the peak near ∼100 cm−3. For all the dense gas, the thermal

pressure is negligible compared to the turbulent pressure/velocities. As a re-

sult, the turbulent Jeans mass governs large-scale collapse and corresponds

to the mass of massive clumps/GMCs (from ∼105 M⊙ in the SMC model

through ∼108 M⊙ in the HiZ model); these are very well-resolved. The

thermal Jeans masses are much smaller, but are only relevant for the dy-

namics on scales below the sonic length (<0.1 pc) where individual groups

of stars form; this is unresolved, hence the necessity of an ‘effective’ small-

scale star formation law. The slight ‘upturn’ in σ (hsml) at n ≫ 104 cm−3

(most evident in the HiZ model) comes from the minimum pressure corre-

sponding to the Truelove et al. (1997) Jeans condition (equation 1). This

indicates where resolution limits prevent us from following further collapse

to higher densities.

near-virial), making the detailed thermal structure sub-dominant on

these scales.

3.2 Star formation histories

Fig. 4 shows the star formation history (SFH; galaxy-integrated SFR

as a function of time) of each of our galaxy models for the same

feedback parameters used in Fig. 1; we also compare to simulations

of the same galaxy models that include cooling and star formation,

but not stellar feedback.

In the models without feedback, the SFR increases to a peak value

on a single global dynamical time; the SFR remains at this value until

the gas in the disc is exhausted. The peak SFRs in the simulations

without feedback are a factor of �10 larger than those observed in

the systems that motivate these galaxy models – the observed values

are ∼(50–300, 3–20, 2–4, 0.1–0.5) M⊙ yr−1 for high-z non-merging

SMGs (Forster Schreiber et al. 2009), low-z non-merging LIRGs

(Sanders & Mirabel 1996), the MW and similar-mass spirals at z =
0, and isolated SMC-mass systems at z = 0 (Noeske et al. 2007;

Salim et al. 2007). In Section 5, we explicitly show that these models

also lie well off of the observed KS relation between SFR and gas

surface density. Physically, this is because in all of our simulations

the gas can cool to an arbitrarily low temperature on a time-scale

shorter compared to the local dynamical time. In the absence of

feedback, the gas is then violently unstable to runaway clumping

and rapid star formation. The net result is that Ṁ∗ ∼ Mgas/tdyn,

i.e. most of the gas is converted into stars on a single dynamical

time, the time-scale for the initially thermally supported gas disc

to collapse. This behaviour is physically correct in the absence of

stellar feedback, and should be recovered in any simulation that

does not include such feedback.

A number of authors have suggested that instabilities due to

self-gravity alone might generate the turbulence needed to slow

down star formation in galaxies (e.g. Ballesteros-Paredes et al. 2007;

Tasker & Tan 2009; Krumholz & Burkert 2010). Fig. 4 is not con-

sistent with this hypothesis. Absent stellar feedback, the majority of

the gas accumulates into dense clumps in which star formation pro-

ceeds unimpeded. Independent simulations at similar resolution but

with different physics included have reached the same conclusion

(e.g. Bournaud et al. 2010). We thus find that stellar feedback is crit-

ical to regulating star formation in galaxies. A more subtle question

is, when strong feedback is present, does it ‘drive’ the turbulence, or

is it still primarily driven by gravity? We will investigate this more

quantitatively in future work. It generally appears, however, that the

role of feedback is to offset the dissipation of turbulence and relative

motions (particularly in dense regions), so in this sense it ‘provides’

momentum; but the level it must provide, and the turbulent cascade

and regulation of those motions, is primarily dictated by gravity.

In contrast to the models without feedback, our simulations with

stellar feedback rapidly reach a maximum SFR and then remain at

this quasi-steady state for many dynamical times. In some of our

simulations, there is a slow increase in the SFR on a time-scale

longer than the disc’s dynamical time; this is a consequence of

both slowly growing secular instabilities (e.g. halo bars) and spatial

redistribution of gas by the stellar feedback (e.g. gas being driven

in fountains from small to large radii). Eventually, however, since

these are isolated systems without continuous gas accretion, the

SFR must decline by gas exhaustion, but this decline is much more

gradual than in the absence of feedback. Test runs, run for ∼5 times

longer, confirm that there is no new behaviour after the first few

dynamical times; the SFRs gradually decline as gas is exhausted.

In Section 5 we show that our simulations with stellar feedback are

reasonably consistent with the observed KS relation. This is true

for a range of feedback parameters. Below we discuss the physical

origin of this low star formation efficiency.

3.3 Structural properties

Fig. 5 shows a number of the properties of the ISM in our HiZ model

as a function of time and radius: the vertical velocity dispersion (σ z:

thermal and turbulent), the Toomre Q parameter11 of the gas, the

mass-weighted density distribution function, the total momentum

supplied to the gas, the ‘kick’ velocity particles initially receive

and the (momentum-weighted) optical depth of gas clumps where

the kicks are applied (i.e. the optical depth for the regions where

11 We define Q here as σ κ/π G 	gas, where σ is the full gas velocity disper-

sion, κ is measured from the azimuthally averaged mass profile and 	gas is

the gas surface density.
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960 P. F. Hopkins, E. Quataert and N. Murray

Figure 4. Total SFR for each of our galaxy models in Table 1 as a function of time, both with feedback (ηp = ηv = 1) and without. The time-scales are

different in each model and correspond to the characteristic dynamical time-scales in each system (longer in the more stable, dark-matter-dominated systems;

see Table 1). Absent feedback (red dot–dashed line) the gas collapses on a dynamical time, leading to an SFR well in excess of that observed in similar systems;

the SFR then declines as the gas is exhausted. With stellar feedback, the SFR reaches an approximate equilibrium in which feedback maintains marginal

stability to gravitational collapse (Q ∼ 1).

most of the feedback occurs). These results provide a more quan-

titative view of the quasi-steady feedback-regulated state reached

in our simulations. We show the results for the HiZ model because

the strong gravitational instability, high gas fraction and very high

SFR make it the model most sensitive to variations in our feed-

back prescription and give the largest differences between models

with and without feedback. However, we find identical qualitative

conclusions (discussed below), modulo the absolute value of the

various quantities, for each of our other galaxy models. We focus

on three different simulations in Fig. 5. The first is one of our ultra-

high-resolution runs (HiZ_10_4_uhr) with ηp = ηv = 1 and 2 × 108

particles, in which a typical Jeans-mass clump in the disc is resolved

with as many as ∼105 particles. We compare this to a lower reso-

lution simulation with the same feedback parameters (HiZ_10_4)

and to a lower resolution simulation which has ηp = 10 (HiZ_9_1)

to compensate for the poorer resolution of the densest star-forming

regions.

Perhaps the most important result in Fig. 5 is that the ISM proper-

ties do not depend sensitively on either resolution or the momentum

feedback parameter ηp (the SFH does depend mildly on ηp as we

show in Section 4.2). The key reason for this is that the disc always

self-regulates to maintain

Q ≃
δv �

πG	g

∼ 1, (10)

where δv is the turbulent velocity dispersion induced by the stellar

feedback. Fig. 5 shows explicitly that all of the simulations maintain

Q ∼ 1 in the feedback-regulated phase (top-middle panel). The

differences between models are small and all within the range of

random variations and noise. Fig. 5 also shows the (mass-weighted)

vertical velocity dispersion σz =
√

c2
s + δv2

z of the gas as a function

of time (top-left panel). Initially σ z decreases rapidly as the thermal

support is radiated away. As star formation commences, however,

stellar feedback quickly drives the turbulent velocity to δvz ∼ 30–

50 km s−1. Given this turbulent velocity, the vertical scaleheight of

the disc is a few hundred pc, with only a modest dependence on

radius; at all radii this thickness is much larger than the resolution

limit.

The early-time and late-time values of σ z in Fig. 5 are compara-

ble because in both limits Q ∼ 1. The models are initialized with

thermal support and Q = 1 but this is quickly replaced by turbu-

lent support that self-consistently maintains Q ∼ 1 at later times.

The velocity dispersions in Fig. 5 are also in reasonable agreement

with the observed values in high-redshift discs (Förster Schreiber

et al. 2006). The other galaxy models also self-regulate at Q ≈ 1.

However, given their lower masses, gas fractions and SFRs, this

translates to lower absolute velocity dispersions: δv ≈ 10 km s−1 in

the MW and Sbc models, and ≈6 km s−1 in the SMC model (modulo

rescaling by this absolute value; however, the dependence of σ z on

time, resolution and ηp is nearly identical to that shown in Fig. 5).

The top-right panel in Fig. 5 shows the mass-weighted gas density

distribution averaged over the entire galaxy once the star formation

reaches an approximate steady-state (since most of the gas mass

is near ∼3 kpc, the density distribution in an annulus at this ra-

dius is quite similar); the distribution is close to lognormal (LN) in

all of the simulations with a median density of ∼100 cm−3 and a

broad dispersion of ∼1.5 dex. The highest resolved densities reach

>106 cm−3 in the ultra-high-resolution simulation, but it is impor-

tant to note that gas does not simply ‘pile up’ gas at these high

densities, which it does if we do not include feedback. We show

this explicitly in Fig. 5 by including the density PDF for a simulation

with identical initial conditions, but no feedback (see also the den-

sity distributions in the simulations without momentum-feedback

in Teyssier et al. 2010) – in this case almost all the gas ends up at

C© 2011 The Authors, MNRAS 417, 950–973
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Self-regulated star formation in galaxies 961

Figure 5. Properties of the ISM and feedback in several of our HiZ simulations: intermediate (HiZ_10_4) and ultra-high-resolution (HiZ_10_4_uhr)

simulations with ηp = 1 and ηv = 1, and an intermediate-resolution (HiZ_9_1) simulation with ηp = 10 (see Table 2). Top left: vertical gas velocity dispersion,

σz =
√

c2
s + δv2 (averaged over the entire disc, weighted by gas mass). The initial disc is thermally supported, but this thermal energy is rapidly radiated away;

at later times a comparable σ z is produced by feedback-driven turbulence. Top centre: gas Toomre Q parameter in narrow radial annuli as a function of radius

(averaged over times >60 Myr, when the system is quasi-steady state). Top right: gas density distribution (gas mass per interval in log n) is LN with ∼1 − 1.5 dex

dispersion; low- and high-resolution simulations converge to the same median density, but at low resolution the full width is not resolved. With no feedback

(dotted), the gas piles up at the highest resolvable densities. Bottom left: sum of all momentum (|�p|) injected via feedback (solid; equation 5) compared with

input optical-UV stellar photon momentum =
∫

L∗ c−1 dt (dotted). Note that the momentum injected is nearly the same for all three simulations, including

ηp = 1 and ηp = 10. The dot–dashed line shows that the input momentum is well-reproduced using the optical depths from the bottom-right panel and only

the very young stars (<106 yr old). This demonstrates that star-forming clusters disrupt rapidly. Bottom centre: mean ‘kick’ velocity given to gas particles at

their launching from young stellar clusters (and 1σ dispersion); values approach ∼150–200 km s−1, as expected given the massive 108 M⊙ clumps forming in

these simulations. The kick velocity is much larger than the actual dispersion in the disc because the particles shock and share their momentum immediately.

Bottom right: resolved IR optical depths of gas clumps used in the feedback model (equation 5). In the simulations with ηp = 1, τ ∼ 30–50, corresponding to

	 ∼ 10 g cm−2, comparable to the observed surface densities of star clusters on ∼pc scales. The simulation with ηp = 10 has the same total input momentum

(bottom-left panel) but as a result the gas clumps only collapse to τ ∼ 10. A comparison of our MW-like models gives identical qualitative conclusions, but

with systematically shifted absolute values: σ z ∼ 10 km s−1, Q ≈ 1, 〈n〉 ∼ 1 cm−3, ‘kick’ v ∼ 30−50 km s−1 and 〈τ 〉 ∼ 10−30 at ηp = 1.

the maximum density allowed by our resolution (∼106 cm−3), with

a small tail at low densities. With feedback included, however, most

of the mass is in GMC-like structures, but within those structures

feedback ensures that most of the mass is in a more diffuse phase,

rather than in the densest star-forming cores. The same conclusions

pertain to our other galaxy models, but with lower median densi-

ties as expected; the volume-averaged 〈n〉 ∼ 1 cm−3 in the MW

and Sbc models, with much of the mass in the star-forming disc

in GMCs with a mean 〈n〉 ∼ 10−30 cm−3 (and a resolved tail up

to ∼106 cm−3). We caution that the distribution of low-density gas

(n ≪ 1 cm−3) can be strongly altered by other sources of energetic

feedback, such as SNe, stellar winds and photo-ionization; the most

dense gas, however, is where radiation pressure is likely to be most

important.

The bottom panels in Fig. 5 quantify the magnitude of the stellar

feedback: we show the integrated momentum supplied to the gas as

a function of time, the typical initial velocity of the kicks as they are

imparted to particles at the star-cluster scale and the momentum-

weighted optical depth of the gas clumps where the feedback is

applied.

The values of the ‘initial’ kick velocities given to the particles

are large for the HiZ model, but not surprising given the very large

star cluster masses (∼108 M⊙) associated with the giant clumps

in gas-rich high-redshift systems (see Murray et al. 2010; Genzel

C© 2011 The Authors, MNRAS 417, 950–973
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962 P. F. Hopkins, E. Quataert and N. Murray

et al. 2011); by contrast, the initial kicks in the MW-like system are

much lower, tens of km s−1. Note also that the initial kick velocities

are much larger than the velocity dispersion in the galaxy (in both

cases): this occurs because the particles immediately interact with

the surrounding ISM and share their momentum. In Section 4.2 we

show that for this reason, the choice of the initial kick velocity – or

even whether to continuously accelerate rather than ‘kick’ particles

– is largely irrelevant.12 Instead, the important parameter is the total

momentum supplied to the gas.

With the large SFR and reasonably large kick velocities of the

HiZ model, we might expect a sizeable super-wind to be generated

by this feedback mechanism alone. However, in fact, the amount

of mass in a proper super-wind (defined as e.g. the mass flux at

>Vc escaping to at least ∼20 kpc) is relatively small relative to the

SFR, about ∼10 per cent. This is because, as described above, the

momentum is coupled in extremely dense regions and so rapidly

shared among the gas particles. This can maintain a large velocity

dispersion in the disc, but will not efficiently launch gas well out of

the disc. Occasionally some material has an un-obstructed sightline

out of the disc and escapes, but even then, the launch velocities are

typically below the circular velocity, so the material is lofted up

above the disc and then returns rapidly. It is likely that rather than

winds being launched directly out of the galaxy from individual star

clusters, some continuous acceleration mechanism is needed to act

on gas once this local mechanism pushes it above the disc, in order

to accelerate it out of the galaxy halo. This could be either pressure

acceleration from hot, SNe-heated gas, or continuous radiation ac-

celeration from the light which escapes the dense, optically thick

regions we model here. In future work, we will investigate the prop-

erties of the galactic super-winds in more detail, and examine how

these mechanisms interact with the feedback mechanism described

here.

Fig. 5 shows that the total momentum supplied to the gas is signif-

icantly larger than
∫

(L/c) dt = Erad/c because of the non-zero optical

depths (where Erad is the total radiated energy). In fact, the numer-

ical results are consistent with the total momentum supplied being

given by ≃ηp〈τ IR〉Erad, young/c, where Erad, young is the integrated lu-

minosity from young stars with ages <106 yr. This is because the

feedback begins to disperse the densest regions on a ∼106 yr time-

scale. Fig. 5 also shows the median and dispersion in the clump

optical depths for the regions where the feedback is applied: τ IR ∼
50 in the highest resolution simulation. This corresponds to gas

surface densities ∼10 g cm−2, similar to the observed surface den-

sities of massive star clusters. The average τ over the entire disc

is, of course, significantly smaller, τ IR ∼ 0.1–1. For this reason,

for the MW, Sbc and SMC models, although the disc-averaged τ IR

is significantly smaller than the HiZ model, their ‘effective’ τ IR is

not too much smaller. Despite the global gas mass being lower, the

mass that actually forms stars and star clusters tends to be com-

pact cores at high three-dimensional (n � 104 cm−3) and surface

densities (	 ≫ 1000 M⊙ pc−2).

Fig. 5 shows that the total momentum input does not depend that

strongly on resolution or on ηp at a given resolution. In fact, the

optical depths decrease with increasing ηp, maintaining approxi-

mately the same total momentum input. Physically, this is because

for more/less efficient feedback the gas collapses to lower/higher

densities (on average). The fact is that the total momentum sup-

plied by feedback depends only weakly on resolution and ηp is a

12 For the same reason, the total fraction of gas particles initially ‘kicked’,

which in these models is about ∼10 per cent, is unimportant.

consequence of the disc self-regulating to maintain Q ∼ 1. This

constraint picks out a δv as a function of 	g and � (equation 10) –

the momentum input then adjusts to produce the required δv. Again,

the same is true in all galaxy models.

The column density distribution within individual star-forming

clumps can strongly influence the efficacy of radiation pressure

feedback. For example, if there is a very broad distribution with

a large number of optically thin sightlines, then even though the

average column density of a clump in the IR may be large, a size-

able fraction of photons would leak out of optically thin sightlines

and the effective optical depth for the purposes of feedback would

be reduced (ηp < 1, in our parametrization). To quantify this, we

considered a number of massive clumps in our HiZ simulation

and determined the optical depth along ∼1000 sightlines evenly

spaced in solid angle from the clump centre outwards (following

the methodology in Hopkins et al. 2005). The characteristic disper-

sion in optical depth for a given clump is small, ∼0.2 dex, similar

to what has been found in smaller-scale simulations of individual

clouds (Ostriker, Stone & Gammie 2001) and measured observa-

tionally (Wong et al. 2008; Goodman, Pineda & Schnee 2009).13

Note that this dispersion for an individual star-forming clump is

much smaller than for the galaxy as a whole. A key consequence

of the relatively narrow column density distribution within clumps

is that only a negligible fraction of the sightlines are optically thin

enough for the photons to rapidly leak out; it thus appears reason-

able to use the mean clump column density when quantifying the

feedback produced by the IR radiation (as we assume in our fiducial

models; see Section 2.2.2).

It is also straightforward to calculate the total momentum depo-

sition or infer it from the momentum coupled and typical velocities,

Ėw ≈ (1/2)ṗwvw . For the values in Fig. 5, this is about 0.2–0.4 per

cent of the stellar luminosity. Interestingly, recent observations of

massive stars (Freyer, Hensler & Yorke 2006) and star-forming

regions (Lopez et al. 2011) have suggested similar ∼1 per cent

efficiencies for transfer of luminous energy into bulk motions and

(post-shock) thermal energy.

In future work (in preparation), we will compare the structural

properties of the ISM and dense gas in these simulations and local

observed galaxies in detail. However, in low-density gas, typical of

much of the mass in the SMC model and the intermediate/diffuse

phases in the Sbc and MW models, it is likely that other processes

(shock heating by SNe and stellar winds, photo-ionization, magnetic

fields) can play a significant role in shaping the gas dispersions and

density distribution. We therefore defer a more detailed compari-

son with these observations until the models include some of these

effects. However, preliminary experiments show that while the sys-

tematic values discussed above can shift, the qualitative conclusions

remain intact as other feedback mechanisms are introduced.

4 D E P E N D E N C E O N M O D E L PA R A M E T E R S

In this section we show that the results summarized in Section 3 do

not depend sensitively on the assumed local star formation law (Sec-

tion 4.1) or the precise feedback parameters adopted (Section 4.2).

We focus on the SFH when presenting these results. We again focus

on the HiZ model since it is the most self-gravitating and therefore

13 In detail, we find there is a narrow core in the distribution and a broader-

than-LN wing; the distribution is better fit by an exponential at high columns,

with P(log NH) ∝ exp[−|log NH /N0|/0.22]. This is broadly consistent with

randomly distributed ‘patchy’ obscuration within clouds.
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Self-regulated star formation in galaxies 963

Figure 6. SFR as a function of time for the HiZ model for variations in the small-scale (high-density) star formation law; all runs use our fiducial feedback

parameters (ηp = ηv = 1). These results demonstrate that the global SFR depends only weakly on the small-scale star formation law. In each panel, the black

solid line shows the standard star formation model: ρ̇∗ = ǫ ρ/tff above a threshold density n0 = 100 cm−3, with ǫ = 0.015 and tff =
√

3π/32 G ρ ∝ ρ−0.5.

Left: variations in the star formation efficiency ǫ. Middle: variations in the density PL of the star formation model: ρ̇∗ ∝ ρn with n = 1, 1.5, 2, normalized so

that ρ̇∗ is the same as the default model at n0. Right: variations in the threshold density for star formation n0.

its SFH tends to be the most sensitive to variations in the simulation

parameters. However, we carried out the same experiments for the

MW-like simulation and found comparable results, which are also

shown below. In the Appendix we show that our results also do

not depend strongly on how we numerically implement the stellar

feedback.

4.1 Dependence on the local SF law

Figs 6–7 show how the SFH in feedback-regulated simulations de-

pends on the local star formation prescription used at high densities.

For our fiducial ηp = ηv = 1 model, Figs 6–7 vary the star forma-

tion efficiency in dense gas ǫ, the power-law (PL) slope of the

star formation law and the threshold density for star formation n0

(equation 2).

The key result in Figs 6–7 is that there is very little dependence of

the SFH on the high-density star formation law. Specifically, Fig. 6

(left-hand panel) shows results for our canonical value of ǫ = 1.5

per cent, a larger value of 6 per cent and a smaller value of ǫ =
0.35 per cent (we have also examined several intermediate values).

This range of ǫ corresponds to a factor of 20 different star formation

time-scale at a fixed density. We find, however, at most ∼30 per cent

differences in the SFR once the system has reached approximate

equilibrium. In the MW-like model (Fig. 7), the conclusion is iden-

tical. Secondly, we vary the PL index of the local SF law (middle

Figure 7. As Fig. 6, but for the MW model. Again the global SFR is

independent of the local, high-density SF law.

panel). In our canonical implementation, ρ̇∗ ∝ ρ/tdyn ∝ ρ1.5; we

compare this to simulations with ρ̇∗ ∝ ρ/t0 ∝ ρ1.0 and ρ̇∗ ∝ ρ2.0,

normalized such that ρ̇∗ is identical at the threshold density ρ0.

There are early-time differences in the star formation histories, but

given the magnitude of the change to the star formation prescription

the results are broadly similar. The biggest change appears when

ρ̇∗ ∝ ρ, i.e. when the gas consumption time-scale is constant, inde-

pendent of density; in this regime, the gas cannot necessarily be con-

sumed quickly on small scales, so the collapse from large to small

scales is no longer the dominant rate-limiting step in star formation

(a slightly larger exponent, e.g. ρ̇∗ ∝ ρ1.2, much more closely re-

sembles the canonical ∝ρ1.5 case). We show this for the MW-like

model in Fig. 7, comparing ρ̇∗ ∝ ρ1.5, ρ̇∗ ∝ ρ2.0, ρ̇∗ ∝ ρ1.1. The

relative differences in the ρ̇∗ ∝ ρ2.0 are even smaller, and mak-

ing the exponent just slightly super-linear (∝ρ1.1) gives a nearly

identical SFR to ∝ρ1.5. Finally, we vary the SF density threshold

n0 (right-hand panel); from our canonical value of 100 cm−3, we

also consider n0 = 25 cm−3 and n0 = 2500 cm−3 (with other inter-

mediate values sampled as well). At early times, before the initial

conditions have been replaced by a self-consistent equilibrium, the

SFR is higher with a lower threshold (unsurprisingly). However,

once enough time has elapsed for gas to collapse to high densities

and initiate significant feedback, the SFHs are again nearly identical

despite a factor of 16 change in the threshold for star formation. The

same result obtains in the MW model, for which (given the lower

mean density) we vary n0 = 10–1000. Moreover, for a MW-like

model with similar resolution, Saitoh et al. (2008) find the same

result in a more limited study varying the small-scale star formation

efficiency, but with a different simulation algorithm and different

feedback mechanism (SNe) implemented. We have also repeated

these experiments for different values of ηp (=1/3, 4, 10) and ηv

(=2 and continuous acceleration), and reach similar conclusions in

each case.

Our interpretation is that the weak dependence of the global SFR

on the small-scale star formation model is a consequence of the

turbulence driven by stellar feedback, and the self-regulation to Q ∼
1 (see e.g. Thompson et al. 2005). Specifically, gravity causes gas

to collapse to high density, where some of it forms stars, while most

C© 2011 The Authors, MNRAS 417, 950–973
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964 P. F. Hopkins, E. Quataert and N. Murray

Figure 8. Cumulative gas mass fraction above a given density n for the (high-resolution) HiZ model for variations in the small-scale star formation law (Fig. 6)

and feedback efficiency (Fig. 9). Left: density distribution for different values of the star formation efficiency ǫ: for smaller (larger) ǫ, more (less) mass must

collapse to high densities for the star formation to self-regulate (the high-ρ cut-off is set by resolution limits). Middle: density distribution for different values of

the momentum deposition per unit star formation (ηp; equation 5). For larger ηp, gas is more efficiently removed from dense regions. Right: density distribution

for different values of the threshold density for star formation n0. Larger n0 requires that the gas should collapse to somewhat higher densities before the star

formation can self-regulate.

of the gas is driven back out to lower densities by feedback. The key

step that regulates the SFR is this cycle of collapse and expulsion,

which has a time-scale ∼ the global dynamical time of the galaxy

– this is also the decay time-scale for large-scale turbulence in the

galaxy. The details of feedback on small scales should also not be

important, so long as it is sufficient to self-regulate (compare our

result to Saitoh et al. 2008). So long as the star formation time-scale

at the threshold density is small compared to the global dynamical

time (i.e. ǫ not too small and ρ0 > the 〈ρ〉 of the galaxy) and the

threshold is well-resolved numerically (i.e. ρ0 is not too large), the

SFR is insensitive to the details of the small-scale star formation

law.

More generally, if the support needed to maintain stability against

runaway star formation is set by the luminosity/mass in young stars,

the SFR can self-regulate to Q ∼ 1. For example, if the SFR set

by the small-scale physics is too low to maintain Q ∼ 1 given

the large-scale conditions, gas simply collapses further to slightly

higher densities until the required feedback power is generated,

sufficient to halt further collapse. The high-density star formation

law thus determines some of the properties of the high-density gas,

but not the global SFR.

Fig. 8 supports this interpretation by showing the cumulative gas

density distribution (mass fraction >n) for different values of ǫ

(left-hand panel), n0 (right-hand panel) and the feedback parameter

ηp discussed in the next section (middle panel). Fig. 8 shows that

when the high-density star formation efficiency ǫ is smaller (larger),

the gas distribution adjusts so that there is more (less) mass at high

densities, so as to produce a similar total SFR (as in Fig. 6.) When

the threshold density n0 is varied, the mass at high densities shifts

accordingly. For example, increasing n0 causes the gas that would

have formed stars at the previous threshold to collapse to somewhat

higher densities before it begins to form stars.

Note that the mass at low densities is nearly unchanged – the

discs are not in global collapse (they are regulated by feedback),

but the gas locally collapses to the densities needed to maintain the

same SFR. For this reason, the Schmidt law predicted by each of

the models in Fig. 6 is nearly identical. They have the same range

in surface densities (set by the initial conditions and exhaustion via

star formation, which must be the same since they have the same

SFH), and so self-regulate at the same SFR.

Schaye et al. (2010), using much lower resolution cosmological

simulations, also find a galaxy wide SFR that is independent of

the details of the small-scale star formation law employed. How-

ever, in their case, because star formation laws are applied glob-

ally (on >kpc scales), it is the global gas mass that self-adjusts

(e.g. lowering the star formation efficiency leads to inflows larger

than the SFR building up the global gas mass until the SFR is

similar to the cosmological inflow rate), so the systems do not

necessarily obey the observed Schmidt–Kennicutt relation. In our

case, neither the SFR nor global gas mass varies; what does al-

ter is the gas fraction at the very highest densities available to the

simulations.

4.2 Dependence on the feedback efficiency

Fig. 9 (Fig. 10) shows how the SFH of our HiZ (MW) model depends

on the feedback parameters ηp and ηv (equations 5 and 7) and on

whether we implement the momentum-feedback continuously or

via kicks (left and middle panels). All of the variations are with

respect to our standard ηp = ηv = 1 model.

Fig. 9 (left-hand panel) shows that simulations with ηv = 1 and

ηv = 2 produce very similar SFHs. These two simulations both

have ηp = 1 and thus have the same momentum-injection rate.

Physically, the similarity in their SFHs arises because the particles

interact with ambient gas and share their momentum efficiently.

The end result is that clumps being destroyed by stellar feedback

have velocities comparable to the escape velocity from the clump,

relatively independent of the initial velocities we input. Fig. 9 also

shows a comparison of two different methods of implementing the

same momentum flux: particle ‘kicks’ and continuous acceleration

(see Section 2.2.2). It is reassuring that these two methods pro-

duce quite similar results – this again highlights that the critical

parameter is the rate at which momentum is deposited into the ISM,

not precisely how it is deposited. The MW-like model in Fig. 10

gives identical conclusions (the dependence is even weaker in

this case).

Fig. 9 (middle panel) also compares simulations with varied mo-

mentum injection per unit star formation ηp, from ηp = 0.3 to

10 (all at fixed ηv = 1). As expected, the quasi-steady SFR de-

creases as the efficiency of momentum-injection increases. How-

ever, the decrease in the SFR is rather mild, with a factor of ∼2

change in SFR over a factor of 10 in ηp. The same scaling holds

in the MW-like model in Fig. 10. Naively one might expect an in-

verse linear scaling Ṁ∗ ∝ η−1
p (Thompson et al. 2005). Specifically,

C© 2011 The Authors, MNRAS 417, 950–973
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Self-regulated star formation in galaxies 965

Figure 9. SFR as a function of time for the HiZ model for different feedback parameters and resolution. Left: variations in the initial kick velocities at fixed

momentum loading. We also show a simulation with stochastic particle ‘kicks’ replaced by continuous acceleration of all particles. In all of these simulations,

the gas shares its momentum with the rest of the surrounding clump and thus produces similar dynamics. Centre: variations in the momentum deposition per

unit star formation (ηp; equation 5). The SFR decreases by less than a factor of 2 over a factor of 10 in ηp. Right: variations in resolution. Increasing the particle

number from ∼106 to ∼107 (our ‘intermediate’ versus ‘high’ resolution) increases the SFR at early times by a moderate amount (∼20–40 per cent). But after

about one orbital time, the results are quite similar. Going to yet higher resolution gives nearly identical results.

Figure 10. As Fig. 9, but for our MW model. Dependence on ηv and

resolution is even smaller than the HiZ case; the dependence on ηp is similar.

the turbulent energy dissipation rate per unit area is

dE

dA dt
∼ 〈	〉 δv2 � ∼ G 〈	〉2δv, (11)

where 〈	〉 is the mean surface density of the disc and we have as-

sumed Q ∼ 1 and that turbulence dissipates on a crossing time

∼h/δv ∼ �−1. The total momentum-injection rate scales with

the SFR as Ṗ ∼ (1 + ηpτIR)L/c ∼ (1 + ηp	κIR)ǫ∗Ṁ∗c, where

ǫ∗ ≈ 4 × 10−4 = L/Ṁ∗ c2. If the momentum injection ultimately

drives turbulent motions with random velocity δv, the associated

energy injection rate is ∼Ṗ δv. Balancing this against the dissipa-

tion in equation (11), we find that the SFR per unit area 	SFR is

given by

	SFR ∼
G 〈	〉2

ǫ∗ c (1 + ηpτIR)
. (12)

For parameters relevant to Fig. 9, ηpτ IR > 1 and so equation (12) im-

plies that Ṁ∗ ∝ (τIRηp)−1. This does not, however, imply Ṁ∗ ∝ η−1
p .

One reason is that equation (12) neglects the possibility of signif-

icant cancellation in colliding/cancelling flows. More importantly,

however, for (say) larger ηp, the fraction of mass at high densities

decreases because feedback is more effective. This is shown explic-

itly in Fig. 8 (middle panel): as ηp increases, the density distribution

cuts off more sharply at high n. As a result, the optical depth τ IR in

the regions of massive star formation decreases. This demonstrates

that the momentum input ∝ηpτ IR, and thus the SFR, must scale

sub-linearly with ηp (as in Fig. 9). Assuming that feedback removes

gas from high to low density at a rate ∝ηp, we would expect the

fraction of mass at high densities – and the optical depth in those

regions – to decrease roughly as η−1
p . This is why both the mo-

mentum input ∝ηpτ IR and the SFR ∝ (ηpτ IR)−1 have only a weak

dependence on ηp. This property of our numerical simulations is

one of the most significant differences between our results and pre-

vious analytic treatments of star formation regulated by radiation

pressure (Thompson et al. 2005). It is important to stress that this

self-regulation to achieve the same SFR relatively independent of

the feedback parameter ηp is only a property of models in which the

momentum-injection rate is proportional to the gas surface density

(equation 5); that is, it is only a property of feedback by radiation

pressure, not momentum injection associated with SNe or stellar

winds.

4.3 Dependence on resolution

Figs 9–10 (right-hand panel) show how the star formation histories

of our fiducial ηp = ηv = 1 HiZ and MW models depend on particle

number, with Npart = 2 × 106, 2 × 107 and 2 × 108. The basic

evolution of the SFR is very similar in all cases. The SFR is ∼25–

40 per cent higher at early times in the Npart = 2 × 107 simulation

relative to Npart = 2 × 106, but there is a much smaller change going

to yet higher resolution. Moreover, after a few dynamical times,

all of the simulations have a comparable SFR. We find similar

convergence for different galaxy models and different feedback

parameters.

5 TH E G L O BA L S C H M I D T – K E N N I C U T T LAW

Fig. 11 compares the global KS law predicted by simulations with

and without our stellar feedback model. We measure 	SFR ≡
Ṁ∗(<Rsfr)/πR2

sfr as a function of 	gas ≡ Mgas(<Rsfr)/πR2
sfr, where

Rsfr at each time is defined as the half-SFR radius via Ṁ∗(<Rsfr) =
Ṁ∗/2. This radius is chosen to loosely correspond to the half-optical

or half-Hα radii used in various observational studies, but adopting

C© 2011 The Authors, MNRAS 417, 950–973
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966 P. F. Hopkins, E. Quataert and N. Murray

Figure 11. The global KS relation between SFR density and gas surface density in our simulations. Left: without feedback. Right: simulations with our

feedback model for a range of parameters (see Table 2). Each row is a different galaxy model (see Table 1). In each panel, a point corresponds to one time

snapshot in the simulation, evenly spaced in ∼106 yr intervals (starting after two dynamical times). The surface densities are as viewed face-on, averaged within

the circular radius that encloses 1/2 of the star formation. Solid lines show the fits to the data in Kennicutt (1998) and updated with high-redshift galaxies by

Genzel et al. (2010). Grey shaded region shows the 90 per cent completeness range at each gas surface density from the compilation of the systems observed

in those two works as well as the compilations in Bigiel et al. (2008) and Daddi et al. (2010). Without feedback, the gas experiences runaway collapse and is

consumed in less than a dynamical time, predicting SFR densities in excess of the observed KS relation by factors of ∼100–104. With feedback, the gas discs

quickly self-regulate and reach an approximate equilibrium comparable to that observed.

a different choice (e.g. the half-gas mass radius) primarily shifts the

models along the relation. The numerical results are shown every

Myr. The numerical results in Fig. 11 are compared with several

different observational inferences of the KS relation: the best-fitting

PL relations from low redshift in Kennicutt (1998) and high redshift

in Bouché et al. (2007) and Genzel et al. (2010), together with the

10–90 per cent interval of all points from the combined compila-

tions in those studies as well as Bigiel et al. (2008) and Daddi et al.

C© 2011 The Authors, MNRAS 417, 950–973
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Self-regulated star formation in galaxies 967

(2010) (the shaded range).14 The models with and without feedback

have identical initial conditions in each case.

Without feedback our simulations predict a SFR surface density

well in excess of the KS law (see also Fig. 4). Absent feedback,

the gas cools and cannot avoid runaway collapse; most of the gas

is consumed into stars in a single dynamical time, leading to SFR

surface densities ∼10–104 times larger than observed.

In contrast, the simulations with feedback lie close to the ob-

served relation at essentially all times. This is true over the range

of feedback parameters and resolution we have studied; the runs in

Fig. 11 span a range in ηp = 0.5–10, ηv = 1–4, star formation law

variations as in Fig. 6 and resolution (Nparticles ∼ 105–108). Vary-

ing the simulation parameters for each galaxy model tends to shift

the systems along the KS relation, rather than dramatically off the

relation. For each galaxy model, there is a broad dynamic range in

	 covered; in particular, the high-z simulations lie on the observed

relation over multiple decades in density. The average slope of the

relation (if we consider all galaxies together) is quite similar to that

observed; however we see that there can be significant variation

in the slope within galaxies, also commonly observed (see Bigiel

et al. 2008).15 Altogether, the feedback-regulated simulations lie

on the observed KS relation over a dynamic range from ∼	gas ∼
107–1010 M⊙ kpc−2. The scatter about the Schmidt law predicted

is also similar to that observed, about 0.5 dex.

6 D ISCUSSION

We have presented a new numerical method for treating stellar

feedback in hydrodynamic simulations of galaxies. We have imple-

mented this method in the SPH code GADGET-3 but our approach is

general and can be utilized in both Lagrangian and Eulerian codes

(see Section 2). Our stellar feedback model is motivated by the

physics of feedback in dense environments: under these conditions,

gas cools rapidly and the primary dynamical influence of stellar

winds, SNe and the stellar radiation field is the momentum they

impart to the ISM. In addition to formulating the general method,

we have carried out a detailed study of the properties of this stellar

feedback model in isolated (non-cosmological) disc galaxy simu-

lations, from models motivated by massive z ∼ 2 galaxies forming

stars at ∼100–300 M⊙ yr−1 to models of SMC-like dwarf galaxies.

These disc galaxy calculations are not intended to be quantitatively

applicable to real systems; rather, they illustrate our method and

demonstrate the critical importance of including stellar feedback

by momentum injection. In a future paper, we will combine the

method developed in this paper with more standard treatments of

SN and stellar wind heating, to produce a more comprehensive

stellar feedback model.

High-resolution numerical simulations of isolated galaxies and

galaxy mergers, as well as cosmological ‘zoom-in’ simulations, can

readily resolve the formation of numerous dense gaseous clumps via

gravitational instability (provided the cooling to low temperatures

∼100 K is not artificially suppressed); we dub these clumps GMCs

although we do not include the physics of molecule formation in

14 Note that the shaded range falls below the best-fitting PLs at low surface

densities because the PL fits did not study the low surface density ‘cut-off’

due to a low molecular fraction.
15 For example, the MW-like simulation is significantly steeper at low den-

sities than the median relation, but quite similar to spatially resolved obser-

vations in M51 (Kennicutt et al. 2007). However, this is the regime where

we expect other physics (e.g. the addition of SNe feedback and possibly the

effects of detailed molecular chemistry) may become important.

our simulations. In observations of nearby galaxies, most of the star

formation occurs in GMCs – this is also true in our simulations –

and thus it is important to have at least an approximate model for

GMC disruption by stellar feedback.

To model stellar feedback, we implement an on-the-fly clump

finding algorithm to identify high-density star-forming clumps (i.e.

GMCs). We then deposit momentum into the surrounding gas at

a rate proportional to the radiation produced by young stars in

the clump; this force is directed radially away from the centre of

the GMC. More precisely, the force we apply scales as ∼τ IRL/c

(equation 5) where τ IR is the optical depth of the clump to IR

photons and the stellar luminosity L is calculated as a function of

time given the stellar ages using STARBURST99 models. Although our

model is quantitatively motivated by radiation pressure on dust, the

momentum flux from SNe and massive stellar winds can also be

significant. We will study the relative importance of these different

feedback mechanisms in detail in a future paper.

The model we have developed is distinct from the stellar feedback

models used in most of the galaxy formation literature. First, we

input momentum, rather than thermal energy, into the ISM around

young stars. The motivation for this choice is that momentum, not

energy, is the relevant conserved quantity in dense, rapidly cooling

gas. Moreover, the feedback we implement scales with the local

surface density of the GMCs, as expected for the radiation pressure

produced by stellar photons as they are degraded by dust from

the UV to the far-IR (equation 5). As summarized below and in

Section 3, we find that this surface density dependence is critical to

the evolution of our galaxy models.

In our study of stellar feedback in isolated galaxies, we do not

‘turn-off’ hydrodynamic forces, cooling, star formation and/or other

physics in the gas to which the feedback is applied. By contrast,

many stellar feedback implementations in the galaxy formation

literature either turn-off hydrodynamic forces in winds for some

free-streaming length (typically such that winds escape the galaxy)

or turn-off cooling and star formation in SN-heated gas for some

period of time. In such models, the induced velocities on galactic

scales are essentially determined by hand (through adjusting the

relevant parameters) as is the presence/absence of a global galac-

tic wind driven by stellar feedback. In our model, the single key

parameter is the momentum supplied to high-density gas around

star clusters – the resulting galaxy-wide turbulence, the properties

of galactic winds, etc. are all predictions of our model. The model

remains ‘sub-grid’, but on the scale of individual molecular clouds

rather than the galaxy as a whole.

We are able to directly model the stellar feedback without artifi-

cially modifying the underlying equations for several reasons. The

high resolution in our simulations allows us to partially resolve the

multi-phase ISM structure: since star formation is spatially inho-

mogeneous, the stellar feedback is as well, which self-consistently

maintains a turbulent and multi-phase ISM structure (Fig. 1). Per-

haps more importantly, the feedback is momentum-driven and the

forces are directed away from the centres of local gas overdensities

(GMCs), the sites of massive star formation. As a result, the feed-

back is effective even in dense regions of the ISM, in which the

cooling time is much shorter than the dynamical time. In standard

treatments of feedback by SNe, the feedback is inefficient in dense

regions because the thermal energy supplied by SNe is rapidly ra-

diated away (Thacker & Couchman 2000; Governato et al. 2007;

Ceverino & Klypin 2009; Bournaud et al. 2010; Teyssier et al. 2010;

Brook et al. 2011). Thus, many simulations that nominally include

stellar feedback do not in fact have feedback that is quantitatively

of the correct order of magnitude.

C© 2011 The Authors, MNRAS 417, 950–973
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As a first assessment of the implications of our new stellar feed-

back model, we have used it to study star formation in a wide

range of (non-cosmological) disc galaxy models, representing sys-

tems ranging from SMC-like dwarfs, to the MW and local LIRGs,

through to massive high-redshift gas-rich discs. The discs are ini-

tially pressure-supported, but cool rapidly to <100 K and collapse

into a wide spectrum of GMCs. Absent stellar feedback, we find that

GMCs undergo a runaway gravitational collapse to high density;

star formation proceeds on approximately a single galaxy averaged

dynamical time (Fig. 4), a result that is dramatically inconsistent

with observations (Fig. 11). However, with feedback included, the

GMCs dissociate once a modest fraction of their mass has turned

into stars and the galaxy develops a turbulent, multi-phase, ISM

as long as gas remains. Quantitatively, the turbulence in the ISM

maintains marginal stability to self-gravity, i.e. Q ∼ 1 (Fig. 5).

Moreover, the galaxies self-regulate and approach a quasi-steady

state SFR that is consistent with the observed KS relation over a

dynamic range of several orders of magnitude in surface density

(Fig. 11).

Our numerical results are reasonably consistent with the observed

global KS relation nearly independent of the high-density star for-

mation law used in the simulation (Figs 6 and 11). This is in contrast

to many results in the literature, where free parameters in the high-

density star formation law are adjusted to approximately reproduce

the KS relation (Springel & Hernquist 2003a; Governato et al. 2004;

Dubois & Teyssier 2008; Agertz, Teyssier & Moore 2009). A weak

dependence of the SFR on the high-density star formation law is

important for developing a predictive galaxy formation model. It is

otherwise difficult to disentangle results that are due to the physics

of star formation and/or feedback from those that are due to partic-

ular numerical choices/parameters.

Our star formation model is that gas turns into stars in dense

regions above some threshold density ρ0 at a rate ρ̇∗ ∝ ρn. Vary-

ing the normalization of this relation (the high-density star for-

mation efficiency) by a factor of ∼20, varying ρ0 by a factor of

∼100, and varying the PL index n in the range 1–2 change the

quasi-steady-state SFR by �50 per cent (Fig. 6) (this of course

requires that the threshold density be well-resolved). Physically,

this weak dependence arises because the condition for quasi-steady

state star formation is that the momentum-injection rate by stellar

feedback is sufficient to maintain the ISM at Q ∼ 1. Reaching Q ∼
1 requires a particular turbulent velocity δv, and thus a particular

momentum-injection rate, for a given set of global galaxy properties

(equation 10). Variations in the high-density star formation law are

compensated for by slightly more or less gas collapsing to high den-

sities (and differences in how dense the gas becomes before GMCs

are dissociated), so as to produce the same momentum-injection

rate and hence the same global SFR (Fig. 8).

The key parameter that determines the efficacy of the stellar feed-

back in our model is the normalization of the momentum-injection

rate, ηp (equation 5), where ṗ ∼ (1 + ηpτIR)L/c; physically, ηp �

1 corresponds to photons leaking out of regions with lower-than-

average surface densities while ηp � 1 corresponds to the effects of

additional momentum sources (e.g. SNe and stellar winds) and/or

insufficient resolution of the highest optical depth (τ IR) regions. Nu-

merically, we find less than a factor of 2 change in SFR over a factor

of ∼10 in ηp (Fig. 9). Physically, this is again because maintaining

Q ∼ 1 requires a particular momentum-injection rate and thus a

particular SFR. Variations in ηp are compensated for by the surface

densities and thus optical depths τ IR reached in dense star-forming

clumps, maintaining approximately the same momentum-injection

rate independent of ηp (Figs 4 and 8).

Although we have emphasized the importance of momentum in-

put throughout this paper, this is clearly only part of the impact

of massive star formation on the ISM of galaxies. Which feed-

back process is the most important depends on the galaxy mass,

gas fraction, etc., and on the specific science question of interest.

Heating by photoionization and SNe, and their effect on molecule

formation, are critical physics to include in the formation of the first

stars as well in studies of lower-density gas characteristic of dwarf

galaxies and the outer parts of more massive discs. In the diffuse

ISM and the haloes of massive galaxies, additional pressure support

from cosmic rays and/or magnetic fields may also be important. The

model presented in this paper is most directly applicable to dense

gas in the central kpc of massive, enriched and evolved systems,

in which cooling times are short and molecular fractions are of the

order of unity. Even in these regions, the model here underpredicts

the temperatures of the ‘hot’ diffuse ISM (T � 106 K); this gas is

likely to be heated by shocks from SNe explosions and fast stellar

winds, with v ∼ 1000 km s−1. Although at a given instant, this phase

represents only ∼1 per cent of the gas mass, it can have important

effects on the generation of galactic super-winds. In a subsequent

paper we will study the combined effect of stellar radiation, stellar

winds and SNe, with the goal of developing a more widely applica-

ble stellar feedback model for use in galaxy formation. To extend

the study here from idealized discs to discs forming over cosmolog-

ical time-scales, it will also be important to incorporate the realistic

cosmological effects of gaseous haloes and cold-flow accretion as

well as galaxy mergers.
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A P P E N D I X A : A D D I T I O NA L N U M E R I C A L
TESTS

In this Appendix, we discuss a number of additional numerical tests

performed to ensure that our conclusions are not sensitive to the

precise implementation of the feedback algorithm.

Fig. A1 shows examples in which we modified the friends-of-

friends search used to identify the nearby density peak that is the

origin for our feedback (see Section 2.2.1). Specifically, we varied

the parameter Nsml between 1 and 5 (our standard model adopts

Nsml = 3) – this defines the number of smoothing lengths in which

to search for a more dense gas particle in each iteration. Within

this range we do not see significant differences in most of the

identified density peaks; nor is there a significant effect on the SFH

(Fig. A1). We have also modified the resolution-dependent pressure

floor used to avoid artificial collapse, through the parameter NJeans

which represents the minimum number of smoothing lengths which

resolve the Jeans length (equation 1). Because all of our feedback-

regulated runs have large feedback-induced random velocities, this

pressure floor makes no significant difference in these cases (see

Fig. A1). It does, however, determine the smallest scale of resolved

structure in simulations without feedback (see e.g. Robertson &

Kravtsov 2008).

To reduce the code run-time and ensure that feedback is relatively

local to massive stars, we only apply the feedback to gas particles

within N∗ = 3 smoothing lengths of any star particle (Section 2.2.2).

We have experimented with this value in the range 2–20 (the latter

value including almost all of the gas). Because the optical depths

and momentum deposition are dominated by the gas closest to the

stars, this choice has very small effects on the ISM properties and

SFH (Fig. A1).

One aspect of our method that can have a more significant influ-

ence on the results is the direction in which particles are accelerated

when the feedback is applied. In the standard model, we accelerate

C© 2011 The Authors, MNRAS 417, 950–973
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970 P. F. Hopkins, E. Quataert and N. Murray

Figure A1. Example star formation histories for the HiZ galaxy model for

variations in the details of our numerical method. Top: otherwise identical

simulations with different choices of Nsml (linking length for clump finder),

N∗ (number of lengths to smooth/cut the radiation field) and NJeans (numer-

ical pressure support to prevent artificial fragmentation). Bottom: otherwise

identical simulations with variations in the direction in which the feedback

is applied. Applying the force radially outwards from the nearest gas density

peak, stellar centre of mass or centre of light give nearly identical results.

The ‘isotropic’ models choose the direction of each kick randomly. When

individual kicks are relatively rare and large (ηv � 1), this is somewhat

less efficient than radial kicks but still stirs turbulence and slows down

star formation. By contrast, in the limit of continuous acceleration, random

isotropic forces cancel, impart little net momentum, and the SFR is only a

factor of ∼2 smaller than that found in the absence of feedback (Fig. 4).

particles away from the gas density peak identified in the friends-of-

friends search (Section 2.2.2). We have experimented with changing

the origin for this force to be the centre of mass of the stars or gas

or the centre of luminosity of the star-forming clump. We have also

considered models in which the force vector is oriented along the

local density gradient (appropriate in principle for arbitrary geome-

tries, in the regime where τ IR falls below unity along that gradient).

We find that these models give nearly indistinguishable results, as

is shown in Fig. A1. This is essentially because most of the stars

are concentrated near the clump centre (by any of these metrics) for

most of the time when feedback is important. On small scales in

galaxies (or interior to GMCs), however, the dynamical time can be

much shorter than the lifetime of massive stars, and so it is possible

that large separations could arise between massive stars and the gas

from which they formed. In this case, it would be better to determine

the direction of the force using the local peak in stellar luminosity.

We have also considered experiments in which we completely ig-

nore the clump density information and kick particles with isotropic,

random directions (rather than away from clump centres). In our

standard model (ηv = 1), kicks are somewhat rare but have large

initial velocities, so the coherent momentum imparted with each

kick is still large (even if it is randomly directed). In this case, the

feedback is somewhat less effective than in our standard model and

so the SFR is somewhat larger (Fig. A1). If the individual kicks

particles receive are much smaller (but more frequent), the coherent

momentum imparted will be reduced if each is independently ran-

domly oriented. As a result, in the limit in which we continuously

accelerate particles in random directions (rather than imparting dis-

crete kicks), we find that the feedback has little effect. The SFH is

similar to models with no feedback (Fig. A1). This highlights the

importance of properly applying the feedback radially away from

the centre of mass/luminosity of massive star clusters.

There are other aspects of our simulations that are uncertain,

independent of the stellar feedback model. For example, our cooling

function at low temperatures is not exact, since we do not explicitly

follow chemical networks. We have therefore considered various

arbitrary changes to the cooling function: setting �(T) below 104 K

to a constant median value, or simply forcing all gas at high densities

to a minimum temperature ∼100 K. These introduce <20 per cent

changes in, e.g., the SFH, since in all cases the cooling time is short

relative to the dynamical time. On the other hand, removing fine

structure cooling entirely (effectively producing a cooling floor at

104 K) dramatically changes the behaviour in the MW, Sbc and SMC

cases, since this temperature floor is sufficient to artificially prevent

collapse to high densities. However, it makes little difference in the

HiZ case because the requirement for Q > 1 is cs � 30–50 km s−1.

APPENDI X B: THE EFFECTS O F PHOTO N
‘ L E A K AG E ’

A subtle complication in modelling the effects of radiation pressure

arises if the ISM is truly inhomogeneous on all scales, including

those well below what we model. A patch of ISM that appears

smooth in the simulations, with some average optical depth τ 0, may

more accurately (at infinite resolution) exhibit a distribution of local

columns, including some optically thin lines of sight that could, in

principle, allow photons to ‘leak out’ at a rate much higher than

the nominal exp(−τ 0) expectation. This would potentially lower

the effective ‘boost’ to the radiation pressure from τ 0 L/c to some

τ eff L/c. It is straightforward to show that leakage will not signifi-

cantly change the total energy absorbed and therefore the IR lumi-

nosity density – once τ 0 is large, it is generically true for essentially

any realistic distribution of optical depths that most of the incident

optical/UV radiation is initially absorbed (whether the escape frac-

tion is a few tens of per cent or vanishingly small makes only a tens

of per cent change to LIR). The concern is rather that IR photons

will tend to escape along optically thin sightlines before they scat-

ter sufficiently numerous times to impart the full ∼τ 0 momentum

boost. Krumholz & Matzner (2009), for example, argue that the

latter effect means that the effective τ eff can never be larger than a

few, even when τ 0 ≫ 1. But they do so by assuming an order-unity

fraction of un-obscured sightlines, independent of τ 0. We therefore

consider this effect in more detail in this Appendix.

As discussed in the text, the case of a perfectly homogenous

density distribution with a source at the centre is trivial. The opacity

along all sightlines is τ 0, so the photon scatters an average of N =
τ 2

0 times as it performs a random walk to diffuse out of the sphere.

For a random walk, the net momentum flux directed radially away

from the central source is just τ eff L/c where τeff =
√

N , which in

this case gives τ eff = τ 0.
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But now consider a case with an inhomogenous density distri-

bution. Unfortunately in general, calculating the precise τ eff for

any inhomogenous density distribution is complex and cannot be

solved analytically – it requires a full radiative transfer solution for

each specific density distribution. However, we can make consider-

able progress and obtain reasonably general scaling laws with some

simplifying assumptions. Consider a ‘cloud’ of ISM with a well-

defined mean τ 0 (which we can measure easily in the simulations)

enclosing a source at its centre; for convenience (with no loss of

generality) define the cloud radius to be ℓ0 = 1. Now define the

‘true’ distribution of optical depths across all sightlines within the

cloud to be dP(τ |τ 0). Finally, assume that the cloud is self-similar

with structure on all scales. In this limit, the distribution of local

densities or dτ /dℓ (where ℓ is the distance along a line of sight) is

just dP(dτ /dℓ) = dP(τ /ℓ0|τ 0/ℓ0) = dP(τ |τ 0). We can perform the

following relatively simple calculation: take a population of photons

starting at the centre, with initial random directions. For each, draw

a random dτ /dℓ (equivalently, line-of-sight-averaged density), and

determine in standard Monte Carlo fashion the distance the pho-

ton travels before being absorbed (for a uniform random variable

p between zero and unity, �ℓ = −ln (1 − p)/[dτ /dℓ]). At each

‘scattering’, determine a new random direction for the photon to be

re-emitted, and record the locally coupled momentum as the nega-

tive of the change in the photon momentum. This is iterated until

all photons escape the sphere; using a large Monte Carlo sample

of ‘photons’, then, we can determine quantities such as the average

number of scatterings 〈N〉 and the average momentum imparted (or

effective boost τ eff).
16

Of course, we still need to specify some distribution dP(τ |τ 0).

Fortunately, we can make a reasonable estimate: in ultra-high-

resolution simulations, we can calculate, for example, the form

of dP(τ |τ 0) for each molecular cloud in the simulation, using a

large number (∼1000) of lines of sight and integrating the simu-

lation column along each sightline. In Section 2.2.2, we discuss

this process and note that the resulting column density distribution

on a per-cloud basis can be well-approximated by a near-universal

function

dP (τ |τ0) ≈
1

2 σ
exp

(

−
| ln (τ/τ0)|

σ

)

dτ

τ
(B1)

with σ (the standard deviation) ranging from 0.25 to 1.0 (0.1 to

0.4 dex) with a median σ = 0.5 (0.22 dex). This is very similar

to the distribution of columns estimated in much higher resolution

simulations of individual GMCs and sub-cloud clumps (often with

very different physics included; see e.g. Ostriker et al. 2001), and

to observational estimates of the column density distribution across

observed GMCs (Wong et al. 2008; Goodman et al. 2009).

Note that this distribution is exponential in log (τ ) – really, the

key behaviour is that the number of sightlines at small or large τ

falls off as a PL in (τ /τ 0), rather than an exponential or LN. This is

important, as we will see below.

Given some σ , then, it is straightforward to perform the Monte

Carlo calculation of τ eff described above. Fig. B1 shows the coupled

momentum τ eff as a function of the average τ 0, for a few values

of σ . At very low τ 0, the coupled boost drops off rapidly because

a large fraction of sightlines are optically thin – but in this case,

the ‘boost’ is negligible in either case (with or without leakage). At

low to moderate τ 0, the effective τ eff rises with τ in a linear fashion

16 Specifically, we are interested in the net momentum imparted radially

away from the centre. As expected, all other components of the coupled

momentum average to zero.

Figure B1. Modified coupling of photon momentum in a self-similar,

‘leaky’ medium with a broad density distribution. The true ‘boost’ to the

coupling τ eff defined such that Ṗ = τeff L/c is plotted as a function of the

mean τ 0, for a source at the centre of a medium with a random distribution

of densities that obeys a PL (equation B1) or LN (equation B3) PDF with

logarithmic dispersion σ . Dotted line shows τ eff = τ 0, the expectation for

a completely homogenous medium. For σ < 1 in the LN model, or <0.5

in the PL model, τ eff ∝ τ 0 (with relatively small normalization corrections

comparable to small variations in our ηp parameter). At larger dispersion,

the scaling becomes sub-linear, with τ eff ∝ τ
1/2σ

0 (PL) or τ eff ∝ τ
ln τ0/4σ 2

0

(LN). The dispersion in ultra-high-resolution simulations (and observations)

corresponds to σ ≈ 0.5.

Figure B2. Effects of IR photon ‘leakage’ as calculated in Fig. B1 on the

SFH of simulated galaxies (here the HiZ model). We compare our standard

model (τ eff = τ 0) to models using the calculated τ eff (τ 0) from Fig. B1, for

an assumed universal σ and functional form of the density distribution as in

that figure. We also compare a model with the PL/exponential distribution

(equation B1) and σ calculated on-the-fly as the dispersion in ln (ρ) within

the identified clump radii Rclump. Larger dispersion in columns leads to more

leakage and higher SFRs, but the effect is weak and, in the regime of interest

here, similar to a choice of ηp slightly somewhat less than unity.

as we would naively expect. At high-τ 0, however, the behaviour

depends on σ , with a critical change in behaviour around σ = 1/2.

This can be understood from the form of dP(τ |τ 0).

For the distribution in equation (B1), the fraction of optically thin

sightlines (τ < 1) scales simply as

fthin =
1

2 σ
τ

−1/σ

0 . (B2)
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So, the average number of scatterings needed before a photon will

‘find’ an optically thin sightline – and therefore have a high proba-

bility of escaping the cloud – is, crudely, N thin ∼ 1/f thin ∝ τ
1/σ

0 . On

the other hand, the number of scatterings needed before the photon

would diffuse out of the cloud assuming it did not find an optically

thin sightline is just Ndiffuse ∼ τ 2
0. What matters for the behaviour at

high-τ 0 is just this PL falloff (exactly how we model the ‘core’ and

high-τ part of the PDF make almost no difference to the values of

τ eff plotted in Fig. B1 at high-τ 0).

If σ < 1/2, then N thin grows more rapidly than Ndiffuse; in other

words, the number of optically thin sightlines falls off sufficiently

rapidly at large τ 0 than the typical photon will undergo its expected

number of ∼τ 2
0 scatterings to diffuse out before it ‘leaks’ out of

an optically thin sightline, so that the coupled momentum τeff ∝√
N ∝ τ0. There is a linear normalization correction to τ eff , which

we can estimate analytically by considering the average distance

travelled between scatterings, i.e. 〈�ℓ〉 ∝ 〈τ−1〉 – this accounts for

the fact that, on average, slightly more thin or thick sightlines allow

for fewer or more scatterings before escape: we obtain the result

that, for τ 0 ≫ 1, τ eff → (1 − σ 2) τ 0.

If σ > 1/2, however, then Ndiffuse grows more rapidly than N thin;

so the average photon will ‘leak out’ after just N thin scatterings,

before it can couple the full τ0 ∼
√

Ndiffuse ‘boost.’ The actual

coupled momentum should instead scale as τeff ∼
√

Nthin, which

gives τ eff ∝ τ
1/2σ

0 . Again, we can analytically estimate the pre-factor

for τ 0 ≫ 1, and obtain τeff →
√

σ/2 Ŵ[1/σ ] τ
1/2σ

0 . The important

point is that in this regime, the scaling is sub-linear in τ 0. There

is still an approximately linear regime at moderate τ 0, but for very

high τ 0, the ‘boost’ becomes more limited.

We stress that this behaviour arises because the assumed dP(τ |τ 0)

behaves as a PL at low τ /τ 0 – in other words, this allows for essen-

tially the maximal ‘long tail’ of low-τ sightlines towards a central

source with high average optical depth. Since dP(dτ /dℓ|τ 0/ℓ0) re-

flects the local three-dimensional density distribution, it might for

example be more natural to assume it should have an LN form:

dP (τ |τ0) ≈
1

σ
√

2π

exp

(

−
ln (τ/τ0)2

2 σ 2

)

dτ

τ
. (B3)

The results of assuming this distribution are shown in Fig. B2. Given

this distribution, the high-τ 0 limit essentially always gives a linear

scaling τ eff ∝ τ 0. The reason is obvious given the arguments above

– for an LN, the fraction of low-τ sightlines will decline much faster

than a PL, so independent of σ , the probability of finding optically

thin sightlines at τ ≪ τ 0 will fall much faster than τ−2
0 . For σ � 1,

then, τ eff → τ 0 when τ 0 ≫ 1. At very large σ or more moderate

τ 0, of course, τ ∼ 1 may still fall within the ‘core’ of the LN. For

equation (B3), the fraction of optically thin sightlines when τ 0 ≫
1 is fthin = (σ/

√
2π) ln−1 (τ0) τ

−(ln τ0)/(2σ 2)
0 , or f thin ∝ τ

−(ln τ0)/(2σ 2)
0 .

The requirement that this fraction drop faster than τ−2
0 (to give τ eff ∼

τ 0) therefore becomes τ 0 � exp (4 σ 2). For the reasonable values of

σ up to the order of unity, this is easily satisfied for high-τ 0. But if σ

were very large (say ∼2), this rapidly becomes extremely large, and

so we return to the N thin < Ndiffuse limit, and obtain the sub-linear

scaling τeff → (2π)1/4 [ln (τ0)/σ ]1/2 τ
(ln τ0)/4σ 2

0 . Even in this regime,

however, it is worth noting that at very high τ 0, the PL model of

equation (B1) still has a larger optically thin fraction – for a fixed

σ , that model gives a maximal effect of leakage.

We can test the effects of this in our simulations by replacing

the standard boost of τ 0 with one of the appropriate τ eff calculated

above with some fixed σ (using the curves in Fig. B1 to define an

interpolation table). Obviously, for either distribution, a value of

σ < 0.5 will make no difference to any of our conclusions because

τ eff ∝ τ 0: the normalization correction is completely equivalent to

variations in ηp, discussed in the text (and in the regime of very low

τ , the boost scaling is not important). Moreover, for an LN distri-

bution, any σ < 1 will yield identical results. We therefore consider

experiments with the exponential/PL distribution and assumed σ =
0.5, 1.0 and LN distribution with assumed σ = 1.0, 2.0. For the PL

distribution with σ = 0.5 or LN with σ = 1.0, τ eff begins to deviate

from τ 0 at τ 0 ≫ 1, but the differences are sufficiently small that we

do not see a large effect (they are roughly comparable to choices of

ηp = 2/3 and =1/2, respectively, and so change the expected SFRs

only at the 20–30 per cent level). For the very large choices of σ ,

however, we do expect and see some deviations. The equilibrium

SFR is systematically larger by a factor of ∼2, similar to a small

ηp ∼ 1/4 (since the median τ IR ∼30–50 becomes τ eff ∼ 10 here, this

is expected). Visual inspection in these cases also confirms there are

some small sub-regions in the galaxy nucleus where the gas con-

sumption is near-runaway (these do not contain much of the mass,

but they have the highest densities, τ IR ∼ 100). Finally, we have also

considered runs in which the PL model is adopted, but with σ taken

from the local gas properties. Specifically, we take all of the gas

inside the identified clump radius Rclump, and (knowing the density

of each particle) compute the dispersion in ln (ρ) which we use as

σ . We also add in quadrature a minimum σ = 0.25 (0.1 dex) which

is about the minimum dispersion we see in ultra-high-resolution

simulations (in order to again be conservative and allow for sig-

nificant leakage). The results of this run are quite similar to our

default τ eff = τ 0 model and/or the σ = 0.5 model, which we expect

since, as noted in the text, the typical σ we measure in simulation

clumps is about 0.5. It is worth noting though, that the typical σ

increases as we consider older and older stars, as a consequence of

feedback in earlier stages driving out gas and ‘punching holes’ in

the gas distribution. Of course, the mean optical depth is also going

down here, and we saw in the text that stars with the youngest ages

�1 Myr dominate the radiative momentum input. So accounting for

leakage accelerates the rate at which old stars luminosity can escape

without coupling in the IR, but does not change our conclusions.

We should also emphasize that other sub-grid effects could in

fact raise τ eff at fixed τ 0. This includes some non-trivial geometric

cases where photons can be more efficiently trapped. Also, recall

that we define τ 0 in the model as the globally averaged τ out to a

given radius ∝Menc R−2, rather than the line-of-sight-integrated τ . If

the gas within R is distributed with any average density profile that

rises towards the stars, the appropriate τ eff should be larger than that

in Fig. B1 [for a pure PL profile ρ ∝ r−α , this gives a factor ∝1/(1 −
α) which is actually divergent for α > 1]. In fact, if we calculate the

true median line-of-sight-integrated τ in our ultra-high-resolution

simulations and compare it to the adopted τ 0, the typical correction

would amount to a ‘boost’ of ηp ≈ 2. Moreover, if we under-resolve

collapse such that the gas ‘should’ collapse a factor ∼ψ further in

radius than our resolution limit allows, then τ eff ∼ ψ2 τ 0 would be

appropriate. It is difficult, therefore, to identify a ‘more accurate’

model than our τ eff ∝ τ 0 that is robust at the factor of ∼2 level.

We therefore conclude that photon leakage is unlikely to quali-

tatively change our conclusions, given observationally and theoret-

ically realistic distributions of column densities towards optically

thick sources. However, it might be important in the most dense

systems observed: starburst nuclei and AGN. The average IR op-

tical depths in these regions can reach values >100. The absolute

value of the correction to τ eff here could therefore be quite large –

a factor of ∼10 rather than ∼2, if σ is sufficiently large. Moreover,

the sub-linear behaviour of τ eff could be very important, because

these regions both have high-τ 0 and have dynamical times that are

C© 2011 The Authors, MNRAS 417, 950–973
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short relative to the stellar evolution time-scale. In this joint limit,

the luminosity required to support the system is τ eff L/M ∝ (M/R2)

or L/M ∝ τ 0/τ eff . When we are in the linear regime (τ eff ∝ τ 0), either

because of low σ or low τ 0 � 10, this implies that the system can

self-regulate on both small and large scales once a fraction (a few

per cent) of the mass becomes stars. However, if τ eff is significantly

sub-linear, then the L/M needed to stabilize is a rising function of τ –

in other words, the system is vulnerable to runaway collapse (Fall,

Krumholz & Matzner 2010). Such collapse could be quite interest-

ing in these regions, however, since it would proceed with regions

above a critical τ 0 running away to turn entirely into stars, while

neighbouring regions that had smaller τ 0 do not collapse – and once

the global L/M reached a given threshold, the low-density regions

would be self-regulated. One might imagine a regime of global self-

regulation on these scales, but without local self-regulation, perhaps

making these regimes particularly interesting for the formation of

globular clusters, dwarf galaxy nuclei and/or super star clusters.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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