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An exact steady-state solution of the stochastic equations governing the behavior of a gene regulated by a
self-generated proteomic atmosphere is presented. The solutions depend on an adiabaticity parameter measur-
ing the relative rate of DNA-protein unbinding and protein degradation. The steady-state solution reveals
deviations from the commonly used Ackers et al. approximation based on the equilibrium law of mass action,
allowing anticooperative behavior in the “nonadiabatic” limit of slow binding and unbinding rates. Noise from
binding and unbinding events dominates the shot noise of protein synthesis and degradation up to quite high
values of the adiabaticity parameter.
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INTRODUCTION

Production of functional biomolecules in the cell is gov-
erned by a complex and diverse genetic network involving
an intricate set of biochemical reactions. The mathematical
description of this network is intrinsically nonlinear because
the transcription of DNA is regulated by the binding reac-
tions with the very protein products of the decoding process
itself #1$. This description must also be stochastic because
the genes are single molecules of DNA and their regulatory
proteins are also present often in small numbers. The average
behavior of a nonlinear, stochastic system cannot be inferred
from macroscopic chemical rate laws alone #2–13$. In this
paper we examine the simplest model of an element of a
gene regulatory network and show that its master equation
admits an exact solution. In regimes where the binding and
unbinding process is not significantly faster than the synthe-
sis and degradation of the proteins, this solution is quantita-
tively different from the deterministic description #15–17$.

In deterministic models of gene expression the concentra-
tion of various transcription factors controls the rate of pro-
tein production for a particular gene #17–19$. The stochastic
analysis of gene switches treats the numbers of these various
proteins, n1 , . . . ,nN, in a given cell as random variables
#20–24$. If we ignore the mechanistic details of protein bio-
synthesis with their resulting time delays and mRNA fluctua-
tions #12,13$, we can model each gene as a two-state stochas-
tic system. A single gene can then be described by a two-
component master equation with one probability distribution
"!n1 , . . . " corresponding to situations where the DNA is free
!on state" and a second component #!n1 , . . . " describing the
distribution when the DNA has a repressing protein bound to
it !off state". The dynamics of these genetic expression prob-
abilities is described by coupled birth-death processes. Birth
corresponds to protein synthesis while death occurs via deg-
radation. The rates for protein production g" and g# are dif-
ferent for the free and bound states of the DNA. The rate for
protein degradation is k, varying linearly with n. If the bind-
ing state of the DNA did not change, the stationary probabili-
ties " and # would be described by Poisson distributions
with mean values at g" /k and g# /k. We show that the time
evolution from any initial state of this simple self-repressing

switch to the stationary configuration can be written explic-
itly in terms of hypergeometric functions as in the theory of
the threshold switch #3$.

STOCHASTIC FORMULATION

In the present model a single gene produces the same
protein that represses its own activity. While not often found
as an isolated entity, the self-regulating gene is a very com-
mon element of biological networks; for example, 40% of E.
Coli transcription factors negatively regulate their own tran-
scription #14$. The master equations for this case are explic-
itly

d"n

dt
= g"#"n−1 − "n$ + k#!n + 1""n+1 − n"n$ − hn"n + f#n,

!1"

d#n

dt
= g###n−1 − #n$ + k#!n + 1"#n+1 − n#n$ + hn"n

− f#n for n $ 2, !2"

where "n and #n are the individual probabilities that the
DNA is unbound and bound, respectively, while immersed in
n proteins. h is the bimolecular rate describing the process of
repressor binding to the DNA, and f is the unimolecular rate
describing release of the repressor protein from the repressor
site. More generally, h can be a more complicated function
of n if, for example, proteins bind as oligomers #2$. In this
case, we consider a mechanism of monomer binding. The
binding and unbinding process does not alter the total num-
ber of proteins. Since a bound protein is still included in n,
there is a need to modify the master equation for the states
near n=0. The gene cannot be in a bound state in which there
are no proteins in the system !#0=0". Thus we will use a set
of equations in which a degradation reaction will transform
the state where the only existing protein is bound !#1" into
the unbound state "0:

d"0

dt
= − g""0 + k#"1 + #1$ , !3"
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d#1

dt
= − g##1 + k#2#2 − #1$ + h"1 − f#1, !4"

d"1

dt
= g"#"0 − "1$ + k#2"2 − "1$ − h"1 + f#1. !5"

AN EXACT SOLUTION

The master equations are differential and difference equa-
tions for t and n, respectively. The two sets of master
equations need to be solved in the appropriate subspaces of
n. The general solution may then be determined using the
continuity condition at n=2. The solution of Eqs. !1" and !2"
can be described in terms of the generating functions "!z"
=%n=0

% "nzn and #!z"=%n=0
% #nzn, where z lies in the complex

unitary circle. The original probabilities for n$2 can be re-
covered as derivatives of these generating functions at z=0:

"!n" =
1
n!

dn

dzn"!t,z"

and

#!n" =
1
n!

dn

dzn#!t,z" .

The correct probabilities for the states in which n&2 are
calculated by using "2 and #2 derived from the generating
functions in the modified master equations !3"–!5". Various
moments of the distribution, including the average number of
proteins, can still be expressed in terms of derivatives of
these generating functions !! /!z""!z , t" and !! /!z"#!z , t"
evaluated at z=1. Before taking into account the boundary
behavior the generating functions satisfy the first-order par-
tial differential equations

!"!z,t"
!t

= !z − 1"&g""!z,t" − k
!"!z,t"

!z
' − hz

!"!z,t"
!z

+ f#!z,t" , !6"

!#!z,t"
!t

= !z − 1"&g##!z,t" − k
!#!z,t"

!z
' + hz

!"!z,t"
!z

− f#!z,t" . !7"

The stationary solution of this system of equations is eas-
ily obtained. From Eq. !6", we can find # as a function of "
and d"!z" /dz. Substituting this expression for # in Eq. !7", a
second-order differential equation is obtained:

d2"!z"
dz2 + p

d"!z"
dz

+ q"!z" = 0, !8"

where the coefficients p and q are

p =
g" + g# + f + h + k − z!g#!1 + h/k" + g""

!k + h"z − k
, !9"

q =
g"g#z − g"!g# + f + k"

k!k + h"z − k2 . !10"

Noting that p and q are rational functions of z with a
simple pole at z0=k / !k+h" and an irregular singularity at
z=%, we see that the structure of this equation corresponds to
the confluent hypergeometric equation.

The dependence on z in the numerator of q can be elimi-
nated by making the transformation

"!z" = A exp!zg#/k"M!a,b,'" , !11"

which leads to the confluent hypergeometric equation in a
canonical form. The normalization constant A guarantees
that the sum of the probabilities is 1. The solutions are linear
combinations of the Kummer functions M and U. The irregu-
lar function U does not satisfy the condition "n→0 when
n→% and therefore is discarded. The resulting generating
function " has the Kummer M!a ,b ,'" parameters

a = 1 +
f

k + h
(1 +

hg"

kg" − !k + h"g#
) , !12"

b = 1 +
f

k + h
+

hg"

!k + h"2 , !13"

and the argument of the function is

' = −
#g#!1 + h/k" − g"$#!k + h"z − k$

!k + h"2 . !14"

As described above, "n’s for n$2 can be calculated from
the derivatives at z=0. Explicitly these are #25$

"n =
A

n!%s=0

n (n

s
)!g#"n−sd'

dz
s !a"s

!b"s
M!a + s,b + s,'0" . !15"

#!z" can be calculated directly from Eq. !6", and the prob-
abilities #n for n$2 are again derivatives at z=0. It is worth
noticing that in the limit where there is no protein synthesis
at all in the off state !g#=0", there is only one nonzero term
in the series for "n !s=n". This leads to a simple expression
for

"n =
A

n!
d'

dz
n !a"n

!b"n
M!a + n,b + n,'0"

and

#n =
A!k + h"

fn!
d'

dz
n&( hg"

!k + h"2 + b − 1) !a"n

!b"n
M!a + n,b + n,'0"

− !b − 1"
!a − 1"n

!b − 1"n
M!a − 1 + n,b − 1 + n,'0"' .

The normalization constant A is determined by
%n=0

% "n+%n=0
% #n=1. These sums can be expressed in terms of

"!1" and #!1" and appropriate corrections to account for the
states with n&2:

"!1" + #!1" − "!0" −
d

dz
"!0" − #!0"

−
d

dz
#!0" + "1 + #1 + "0 = 1. !16"
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COMPARISON TO THE DETERMINISTIC MODEL

With these analytical solutions in hand, we are now in
position to compare this exactly solved model with the com-
monly used deterministic mass-action approximation intro-
duced by Ackers et al. #15$. To simplify the discussion we

introduce the following parameters: (= f /k, Xeq= f /h, and
Xad= !g"+g#" / !2k". The parameter ( measures how rapidly
the DNA state can equilibrate in its proteomic cloud in com-
parison to the characteristic time for protein degradation,
which measures how fast the cloud itself fluctuates. Xeq is the

FIG. 1. !Color" The probabili-
ties of the gene expression as a
function of the number of pro-
teins, n, for the on state, the off
state, and the total. There are two
peaks for small (, but they con-
verge to a single peak in the adia-
batic regime of large (. Xeq=100
and Xad=40.

FIG. 2. !Color" Total probabil-
ity of the DNA being found in the
off state as a function of the aver-
age number of proteins, n̄. In
the adiabatic limit !large (" we
approach the behavior given by
the equilibrium mass action law as
in the treatment of Shea and
Ackers, where P#= n̄ / !n̄+Xeq".
Xeq=100. In our model we find
P#=n" / !n̄"+Xeq" exactly. The av-
erage number of proteins present
when DNA is in the on state n̄" is
different from n̄, which includes
the average number of proteins
when the gene is off !inset".
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equilibrium constant of the binding and unbinding process.
Xad is a measure of the protein concentration, indicating the
number of proteins when the system is half-inhibited.

The probability distributions for the protein number given
the gene state !the total distribution "n+#n, "n for the on
state and #n for the off state" are shown in Fig. 1. The values
of the switch characteristics used for the figure are
Xeq=100 and Xad=40 and g#=0. These are typical values of
the equilibrium switching threshold and mean protein copy
number found in a small cell like E. Coli. For small values of
( the total probability distribution exhibits a two-peak struc-
ture, at g# /k and g" /k, corresponding to repressed protein

production, when the DNA has protein bound at small n, and
to the higher production from the free DNA at large n. In this
limit, the on state behaves almost like an independent birth
and death process since the binding and unbinding process
becomes the slowest process in the system. Increasing the
value of ( shifts both peaks to intermediate values, until
there is only one peak at large (. In the large-( limit, the
protein binding and unbinding process becomes extremely
fast. This “adiabatic” regime should be equivalent to the
Ackers et al. model in which the gene itself is taken to have
an equilibrated average probability of being on or off. Most
of the characterized genes are known to have high values of
the adiabaticity parameter !e.g., when calculated from the
transcription initiation rate obtained from #26$". Some sys-
tems exist, however, where ( is of order 1 !e.g., Cro protein
in the )-phage, parameters obtained from #27$". Also, the
nonadiabatic regime may be important in vivo. For example,
several in vivo mechanisms suggest that some proteins may
be slow binders.

A more detailed understanding of the deviations from the
Ackers et al. approximation can be made by noting that in
the Ackers et al. model the probability of inhibition !P#" is
given by the equilibrium law of mass action as a function of
the concentration of repressors. This concentration can be
calculated using the first moments of the distribution
!d /dz""!z" and !d /dz"#!z" at z=1, again with the corrections
from the terms with n&2. Figure 2 shows how the
exact solution for the master equation finally converges
to the equilibrium approximation used by Ackers et al.
#P#= n̄ / !n̄+Xeq"$ in the limit of large (.

To directly probe the effect of fluctuations, Fig. 3 shows
the probability distributions compared to those that would
arise from Poisson statistics: !a" independent of DNA state,
!b" when the DNA is free !"n", and !c" when the DNA is
protein bound !#n". The Fano factor F=*2 /+ is plotted as a
function of ( and Xad, where + and * are the mean and
standard deviations of the probability distributions. This fac-
tor would be 1 if the processes were purely Poisson pro-
cesses. Notice that for very small (, the Fano factor does
limit to 1 when the DNA is in the on state. As discussed
above, this is expected since, in this limit, the on state be-
haves almost like an independent birth and death process.
The overall fluctuations are, however, quite large for inter-
mediate (’s and therefore their contributions cannot be ig-
nored in the overall mechanism. Indeed the Fano factor re-
mains large even at ( values large enough for the probability
of inhibition to agree with the equilibrium behavior. This
shows DNA binding noise cannot be neglected.

In the large-( regime !tending to the adiabatic limit", the
Fano factor for the three distributions tends to values slightly
smaller than 1. This indicates an almost Poisson behavior as
one would expect for near-macroscopic kinetics.

DISCUSSION

The exact solution presented here for the self-regulated
gene in a stationary regime establishes the basis for more
complex problems yet to be solved. It provides an important
analytical tool to understand the underlying mechanism gov-

FIG. 3. !Color" Fano factor F=*2 /+. Along the curve F=1, all
distributions are Poisson like. The total distribution is independent
of DNA state while the on state has the DNA free and the off state
has protein bound to DNA. In the limit of large ( the adiabatic
regime is reached, with an almost Poisson behavior. This regime
should be equivalent to the Ackers et al. model. For intermediate
(’s the overall fluctuations are large and therefore strongly deviate
from Poisson behavior. In the on state, the distribution tends to
Poisson behavior for ( very small, since the system behaves almost
like a birth-death process. Xeq=50, g#=0.
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erning these genetic networks. Already for this simple sys-
tem, we notice that fluctuations become important for a large
region of the parameter space. Figure 3 makes it clear that
fluctuations cannot be ignored unless protein binding and
unbinding are much faster than any other relevant time scale
in the problem. Noise from binding and unbinding events
dominates the shot noise of protein synthesis and degrada-
tion up to quite high values of the adiabaticity parameter.
Figures 1 and 2 also demonstrate the effects of fluctuations.
For small (, binding is slow and therefore the stationary
solution for the gene probabilities shown in Fig. 1 has two
well-defined peaks. One peak corresponds to the repressed
protein production !DNA with protein bound" and the other
to the higher protein production !free DNA". As protein
binding and unbinding become faster, these two peaks con-
verge towards each other. Figure 2 shows how in this non-
equilibrium system the probability of DNA being found in
the protein-bound state deviates from the equilibrium mass
action result. The self-repressing gene can become strongly
anticooperative owing to nonadiabatic effects normally ne-
glected in theories of gene regulation.

Some features of the genetic switch such as mRNA fluc-
tuation and the time delays resulting from transcription and
translation are not explicitly captured by this model. Al-
though they might be essential in some cases, they may not

always dominate the process of regulation. In prokaryotes,
where there is no nucleus, transcription and translation occur
within the same compartment, and mRNA is almost imme-
diately translated #1$. Also many cases are being discovered
where the regulation is performed by the RNA itself #28$. In
cases like these, the approximation of having the synthesis of
the transcription factors as one stochastic process seems
plausible. This formulation of the problem of genetic regula-
tion and its analytical solution will help the study of the
specific cases where mRNA fluctuations and time delays
play a determinant role.

While an otherwise isolated noninteracting self-regulating
gene is a biological rarity, it would be straightforward to
construct in the laboratory. The exact solution presented here
would then make such an experiment a beautiful simplified
system for understanding the importance of fluctuations that
govern gene networks.
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