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Abstract— Self-reconfigurable robots are built from mod-
ules which are autonomously able to change the way they
are connected, thus changing the overall shape of the robot.
This self-reconfiguration process is difficult to control, because
it involves the distributed coordination of large numbers of
identical modules connected in time-varying ways.

We present an approach where a desired shape is grown
based on a scalable representation of the desired configuration
which is automatically generated from a 3D CAD model. The
size of the configuration is adjusted continually to match the
number of modules in the system. This has the advantage that
if modules are removed or added, the system automatically
adjusts its scale and thus self-repair is obtained as a side
effect. This capability is achieved by distributed, local rules
for module movement that are independent of the goal
configuration.

We compare the scale independent approach to one where
the desired configuration is grown directly at a fixed scale. We
find that the features of the scale independent approach come
at the expense of an increased number of moves, messages,
and time steps taken to reconfigure.

I. I NTRODUCTION

Reconfigurable robots are built from modules and can
be reconfigured by changing the way the modules are
connected. If a robot is able autonomously to change
the way the modules are connected, the robot is a self-
reconfigurable robot. Self-reconfigurable robots are versa-
tile because they can adapt their shape to fit the task. They
are also robust because if a module fails it can be ejected
and replaced by a spare module. Potential applications for
such robots include search and rescue missions, planetary
exploration, building and maintaining structures in space,
and entertainment. Challenges exist both in the develop-
ment of the hardware for the modules, as well as their
control. This paper focuses on the challenge of controlling
reconfiguration in a robot with many identical modules.

In this paper we present an approach to self-
reconfiguration that isscale independent— in other words,
the size of the goal configuration automatically adjusts to
the number of available modules in real-time. This ap-
proach relies on a two-step process of self-reconfiguration,
first presented in [1]. First, a 3D CAD model representing
the desired configuration is transformed into a scalable
geometric representation based on overlapping bricks of
different sizes. The representation is supplemented with
a scaffold structure which removes local minima, hollow,

or solid sub-configurations from the configuration. The
second step is the self-reconfiguration step which can
be viewed as a directed growth process. A user starts
the process by choosing an arbitrary initial seed module
and assigning it a position in the desired configuration.
The seed attracts spare modules by creating a recruitment
gradient in the system. Wandering modules climb the
gradient to fill positions, and then become seeds themselves
and attract more neighbors as needed. Several key features
of this approach were highlighted in [1], such as the
automatic generation of representation, representation size
proportional to the complexity of shape and not the number
of modules, and configuration-independent local rules for
module movement and connectivity maintainance [2].

In this paper we demonstrate that this approach can also
be used to self-reconfigure into a desired configuration,
even if the number of modules is not known a priori.
Furthermore, modules can be added or removed at run-
time, and the configuration automatically readjusts its size.
Figure 1 shows an example of this approach. This scale
independent reconfiguration is achieved by modifying the
local rules used by the modules to grow: A seed module
increases the scale of the representation until the seed’s
position is contained. It then attracts spare modules by
creating a recruitment gradient tagged with the scale. Spare
modules climb the gradient tagged with the smallest scale
and thus fill the corresponding positions first. In this way
the configuration is built layer by layer and continually
adjusts to the availability of spare modules. This, as a
side effect, makes it possible for the system to self-repair,
because if modules are removed or lost the system auto-
matically adjusts its size to match the remaining number
of modules. The cost of this novel capability is a reduction
in performance, in terms of number of moves, time steps,
and messages, compared to one where the configuration is
grown directly at a fixed scale.

II. RELATED WORK

The self-reconfiguration problem is: given a start config-
uration, possibly a random one, how to move the modules
in order to arrive at the desired final configuration. It
is computational intractable to find the optimal solution
(see [3] for a discussion). Therefore, self-reconfiguration
planning and control are open to heuristic-based methods.
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Fig. 1. Reconfiguration and self-repair.A1: Modules start in a random configuration.A2-A3: The modules self-reconfigure into the desired shape,
which is a porous cube.B1: Approximately half of the modules are removed from the system.B2-B3: The remaining modules automatically reconfigure
into a smaller approximation of the desired shape. Note that several modules are left over and remain connected to the structureC1-C3: new modules
are inserted into the system and again the system adjusts its scale to match the new number of modules. Medium gray modules are wandering modules,
black modules are seeds where growth potentially can continue, and light grey modules represent module from which further growth is not possible.

One type of approach is planning based, where a path
is determined for each module in the original configura-
tion. Chirikjian and others use this approach and propose
heuristic-based methods where the idea is to find a subop-
timal sequence of moves from initial to final configuration,
which is then optimized by using local searches [3], [4].
Rus et al. simplify the planning problem by using an
intermediate chain configuration, which is easy to configure
into and out of [5]. Several papers propose hierarchical
planners, where at the highest level some of the hardware
motion constraints are abstracted away to facilitate efficient
planning. Based on the high-level plans, the lower level
then produces the detailed sequence of actions [6], [7].
Another approach is to use meta-modules consisting of a
small number of modules [6]. By planning at the meta-
module level there are no or few motion constraints; on the
other hand, meta-modules make the granularity of the robot
larger. A related approach is to maintain a uniform scaffold-

ing structure, facilitating planning [8]. Butler implemented
the distributed Pacman algorithm on the Crystalline robot,
which has very few motion constraints making the planning
problem easier [9], [10]. The advantage of the planning
approach is that it can accommodate motion constraints and
minimize unnecessary moves; the disadvantage is that plans
are often comparable in size to the number of modules and
depend on knowing the initial configuration.

A different approach is to rely on common local rules
as far as possible and then add randomness to deal with
the problems that cannot be solved using local rules. This
was true in early work such as the work on Fracta [11]
and also later work [12], [13]. The problem tends to be
that even though the robot often ends up in the desired
configuration, it did not always converge. This problem
was also present in the work of Yim et al [14], however
local communication is used to increase the probability of
converging to the final shape. One solution to convergence,



proposed by Bojinov et al. [15], is not to focus on a specific
configuration. Instead, the idea is to build something with
the right functionality. Using this approach it is accept-
able if a few modules are stuck as long as the structure
maintains its functionality. Alternatively, Jones et al. insist
on a specific configuration, but achieve convergence by
enforcing a specific sequence of construction [16]. In
the work presented here, scaffolding is used to guarantee
convergence by making sure that the configurations do not
contain local minima, hollow, or solid sub-configurations.

Our system can be thought of as combining two ap-
proaches: the global configuration representation is a plan
for constructing a shape from simpler shapes (bricks),
while the local rules allow modules to recruit nearby
modules to form bricks. This approach is similar to ap-
proaches for self-assembly used in Amorphous Computing,
such as [17], [18]. There a global goal is specified as
a construction which is then compiled into biologically-
inspired local rules for agents, resulting in self-assembly
that is scale-independent, robust and space efficient. The
representation we use is inspired by the circle-network
proposed by Kondacs for 2D self-assembly, however the
agent model and local rules are completely different [19].
Instead we use local rules proposed by Støy [2] to control
module movement.

III. S IMULATED ROBOT MODEL

In our simulation, we use modules which are more
powerful than any existing hardware platforms but do
fall within the definition of a Proteo module put forward
by Yim et al. [14]. The modules are cubical and when
connected they form a lattice structure. They have six
hermaphrodite connectors and can connect to six other
modules in the directions: east, west, north, south, up,
and down. Modules directly connected to a module are
referred to as neighbours. A module can sense whether
there are modules in neighbouring lattice cells. In this
implementation we do not control the actuator of the
connection mechanism, but assume that neighbour modules
are connected and disconnected appropriately. A module
can only communicate with its neighbours. It is able to
rotate around neighbours and to slide along the surface
of a layer of modules. Finally, we assume that coordinate
systems can be transformed uniquely from one module to
another. This is necessary to propagate the gradients and
the coordinates used to guide the growth process.

The simulator is programmed in Java3D. The simulation
uses discrete time steps. In each time step all the modules
are picked in a random sequence and are allowed: 1) to
process the messages they have received since last time
step, 2) to send messages to neighbours (but not wait for
reply), and 3) to move if possible.

IV. FROM CAD MODEL TO REPRESENTATION

It is difficult and time consuming to hand-code local
rules which result in a desired configuration being assem-
bled. Therefore, we need an automatic way of transforming

a human-understandable description of a desired configu-
ration into a representation we can use for control.

In our system, the desired configuration is specified
using a connected three-dimensional volume in the VRML
1997 or Wavefront .obj file format, which are industry
standards produced by most CAD programs. We transform
the model into a representation consisting of a set of
overlapping bricks of different sizes which approximates
the input shape. The choice to use bricks is fairly arbitrary
and other basic geometric shapes, such as spheres or
cones, could be used as well. The key features of the
representation are: (1) the size scales with the complexity
of the three-dimensional model (2) it is independent of the
initial configuration (3) it does not require recompilation
if the number of modules changes.

The representation is automatically generated as follows:
the user specifies a point inside a CAD model. The
algorithm then fits as large a brick as possible which
contains this point and does not intersect the CAD model.
This is done recursively for all points just outside this
brick, but inside the CAD model. This process continues
until the volume has been filled with overlapping bricks.
Figure 2 shows a simple example of a shape and its brick
representation. The fewer bricks needed, the more concise
the representation.

In order to control the resolution of the approximation, a
parameterr is supplied. The points and the corners of the
bricks are then constrained to be positioned at coordinates
equaling an integer timesr. Table I shows the number
of bricks needed to approximate a model of a Boeing
747 at different resolutions; higher resolutions increase the
size of the representation. The resolutionr is supplied a
priori, and cannot be changed at run-time. However, the
number of modules used to approximate the shape can
vary at run-time. The shape can be approximated using
any number of modules, however in general it takesMi3

modules to complete a shape, whereM is the minimum
number of modules required (i.e. the volume of the brick
representation in unit cubes) andi is an integer.

V. FROM REPRESENTATION TO

SELF-RECONFIGURATIONALGORITHM

Starting from a random configuration the robot needs
to reconfigure into the desired configuration as described
by the representation. The self-reconfiguration algorithm
consists of three components: a coordinate propagation
mechanism, a mechanism to create gradients in the sys-
tem, and a mechanism the modules use to move without
disconnecting from the structure. We will look at these in
turn.

A. Coordinate Propagation

All the modules are initially connected in a random
configuration, have a copy of the representation of the
desired configuration, and start in the wandering state. An
arbitrary module is chosen as the seed and given an arbi-
trary coordinate. The idea is to grow the configuration from
this seed module. The seed detects whether a module is
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Brick: lower-left→ upper-right
B: (0,0,0)→ (2,2,2)
A: (0,0,1)→ (3,1,2)

Fig. 2. This figure shows a simple shape approximated by two overlapping bricks, and the associated representation given to the modules. This
representation requires a minimumM = 9 modules, but can also be fully made withMi3 modules, wherei is an integer.

Resolution low medium high
Modules 32 4512 34493
Bricks 3 168 1152

TABLE I

THIS TABLE SHOWS THE NUMBER OF MODULES AND BRICKS NEEDED TO APPROXIMATE ACAD MODEL OF A BOING 747 AT THREE DIFFERENT

RESOLUTIONS.

needed in a neighbour position based on its coordinate and
the representation. If a neighboring module is present, then
it is given the appropriate coordinate (the seed’s coordinate
plus a unit vector in the direction of the neighbour) by the
seed. If not, then the seed attracts a wandering module to
the unfilled position, using a recruitment gradient. When
a module has reached an unfilled position and is given
its coordinate, it also may act as a seed. A module
stops acting as a seed and becomes finalized when all
neighbour modules, specified by the representation and the
seed’s coordinate, are in place. Notice that if a neighbour
disappears (e.g. is removed), then a module will start to
attract wandering modules again. Thus there is an inbuilt
local self-repair response.

The above system creates a shape at a given scale, as
described in [1]. In order to automatically adjust the scale,
the local behavior is modified as follows. A seed module
scales the representation of the desired shape to contain
its own coordinates. Based on this scaled representation
and its coordinate, the seed detects whether a neighboring
module is needed and attracts a wandering module to the
unfilled position with a priorityinversely proportional to
the scaleof its representation. As described in the next
section, lower scales inhibit higher scales from attracting
wandering modules, and thus all lower scale positions get
filled first. After all modules in the lowest scale get filled,

then the next higher scale becomes attractive to modules. A
finalized module or seed may also return to the wandering
state if there is an unfilled position which belongs to a
lower scale than the module’s own position. This allows
a system to adjust its scale when modules are removed.
Figure 4 shows a simplified version of a module’s behavior.

B. Creating a Recruitment Gradient Using Local Commu-
nication

In this section we will describe how seed modules attract
wandering modules by creating a gradient in the system.
A seed module acts as a source and sends out an integer,
which represents the concentration of an artificial chemical,
to all neighbours. A non-source module calculates the
concentration of the artificial chemical at its position by
taking the maximum received value and subtracting one.
This concentration is then propagated to all neighbours
and so on. When the concentration reaches zero it is
not further propagated. A module can locate the source
by climbing the gradient of concentration. There may be
many seeds recruiting simultaneously, in which case the
module sees a combined gradient such that moving towards
higher concentrations results in movement towards the
closest source. The gradient always follows the structure
and therefore local minima in the configuration do not
exist. For instance, modules will not be trapped at one
end of a C-shaped configuration, as shown in Figure 3,
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Fig. 3. This figure shows how a gradient is propaged in a simple 2D
c-shaped configuration. The boxes represent modules, the numbers the
concentration, and the grey box the source module which created the
gradient. To the right it can be seen that the gradient follows the structure
which means that modules climbing the gradient will not encounter local
minima.

because the concentration is not propagated across the
gap. Furthermore, the porous scaffold structure ensures that
the configuration internally does not contain local minima.
Since messages take one time step to travel between
neighbours, it can take many time steps for gradients to be
propagated in the system. After the unfilled position gets
filled, the seed stops sending out the gradient message.
Again, it may take many time steps for the gradient to
disappear

If wandering modules have to rely on the basic integer
based gradient to locate the source, they would have to
move around randomly for a while to detect the direction
of the gradient. Instead we introduce a vector gradi-
ent which makes direction information available locally,
thereby eliminating unnecessary moves. The basic gradient
implementation is extended with a vector indicating the
local direction of the gradient. This vector is updated by
taking the vector from the neighbour with the highest
concentration, adding a unit vector in the direction of this
neighbour and renormalising the result.

In order to achieve scale independent reconfiguration,
seeds tag gradients with the scale to which the unfilled
position belongs. A gradient inhibits other gradients if its
scale tag is lowest. In this way, only the lowest scale
gradient is propagated in the structure and its corresponding
positions are filled first. Only after all unfilled positions at
this scale have been filled, does the gradient disappear.
This automatically allows the next higher scale gradient to
be propagated in the system. Thus the scale adjustment is
achieved purely through distributed and local behavior of
the modules. The disadvantage is that a delay is introduced
when the system transitions from one scale to the next,
because gradients take time to disappear.

C. Staying Connected

Wandering modules climb the vector gradient to reach
unfilled positions. Unfortunately, the wandering modules
cannot move independently of each other, because they

shape = <<brick representation of shape>>;
myscale = 1;
state = WANDERING;
position = <<UNKNOWN>>;

while(true) {
switch( state ) {

case WANDERING:
if ( <<position message received>> ) {

position = <<message position>>;
myscale = <<scale that includes position>>;
state = SEED;

}
else {

<<follow recruitment gradient>>
}
break;

case SEED:
if ( myscale > <<recruitment gradient scale>> ) {

position = <<UNKNOWN>>;
state = WANDERING;
break;

}

foreach <<neighbour position>> {
if ( <<shape contains neighbor position>> &&

myscale <= <<recruitment gradient scale>> ) {
if ( <<neighbor position occupied>> ) {

<<send position message>>;
}
else {

<<create gradient with myscale>>;
break;

}
}

}

if ( <<no neighbours are needed at this scale>> )
myscale = <<scale that includes more neighbours if possible>>;

break;
}

}

Fig. 4. Simplified pseudocode for the behavior of a module.

depend on each other for connection to the robot. The
problem is to keep the system connected while allowing
wandering modules to move. In our solution finalized mod-
ules in the configuration emit aconnection gradientand
wandering modules only move or change to the wandering
state if they do not perturb the gradient. Detailed rules for
movement and proofs were presented in [2].

VI. EXPERIMENTS

In this section we present preliminary results comparing
two strategies for achieving the desired configuration. In
the first approach the desired configuration is grown di-
rectly at a scale which matches the number of modules.
This scenario simulates a situation where the number of
modules is known a priori. In the second approach the
configuration is grown at increasingly higher scales until all
modules have been used. We compare the two approaches
based on three criteria: time taken to reconfigure, number
of moves, and number of messages.

The task is to self-reconfigure from a random connected
configuration of 605 modules to a configuration in the
shape of a cube. The representation of the configuration
is built by the generator based on a CAD model. The
representation is then downloaded into the modules of the
simulation and the self-reconfiguration process is started.

In Table II, we can see that to grow the configuration
using the scale independent approach requires significantly
more resources than growing it directly. For this particular
shape, approximately three times as many moves and time
steps are used, and approximately five times as many mes-
sages. This is not surprising since a time delay is introduced
when the system makes a transition between scales. The



Scale independent Scale dependent
Moves 29270±5300 9761±1455

Time steps 817±87 302±46
Messages 2801907±395257 616922±73984

TABLE II

THE PERFORMANCE OF THE SCALE DEPENDENT AND SCALE INDEPENDENT APPROACHES(MEAN AND STD.DEV. OF 10 TRIALS SHOWN).

delay occurs because the gradient corresponding to the old
scale has to disappear before the gradient corresponding
to the new scale starts to be propagated. During this delay
wandering modules move unnecessarily, contributing to the
higher cost in moves. In the case of the cube, the shape with
scaffold may be created completely at 8 different scales
(with 1, 9, 75, 147, 405, and 605 modules respectively),
however smaller scales are completed relatively quickly
compared with the higher scales. In the future we plan
to further investigate empirically, and analytically, the cost
increase as a function of number of scales and type of
shapes.

VII. C ONCLUSION

We have explored an approach to the control of self-
reconfiguration which consists of two steps. In the first
step a generator takes as input a 3D CAD model of a de-
sired configuration and outputs a set of overlapping bricks
which represent this configuration. In the second step
this representation is combined with a local, distributed
control algorithm to produce the final self-reconfiguration
algorithm. This algorithm controls the self-reconfiguration
process through a growth process: seed modules create
recruitment gradients in the configuration that wandering
modules climb to locate the seed.

In this paper we demonstrate that this approach also can
be used to self-reconfigure into a desired configuration even
if the number of modules is unknown a priori. Furthermore,
modules can, at run-time, be added or removed from the
system and the configuration will automatically readjust
its size. We have in experiments demonstrated that the
price of this self-repair capability in terms of moves, time
steps, and communication messages is high. However, the
proposed system represents one of the first steps toward
scale independent self-reconfiguration.
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