
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Self‑repairing codes for distributed storage : a
projective geometric construction

Oggier, Frederique; Datta, Anwitaman

2011

Oggier, F., & Datta, A. (2011). Self‑repairing codes for distributed storage : a projective
geometric construction. IEEE Information Theory Workshop.

https://hdl.handle.net/10356/94073

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Downloaded on 23 Aug 2022 05:38:48 SGT



Self-Repairing Codes for Distributed Storage
— A Projective Geometric Construction

Frédérique Oggier
Division of Mathematical Sciences

School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Email: frederique@ntu.edu.sg

Anwitaman Datta
Division of Computer Science

School of Computer Engineering
Nanyang Technological University, Singapore

Email: anwitaman@ntu.edu.sg

Abstract—Self-Repairing Codes (SRC) are codes designed to
suit the need of coding for distributed networked storage: they
not only allow stored data to be recovered even in the presence
of node failures, they also provide a repair mechanism where as
little as two live nodes can be contacted to regenerate the data
of a failed node. In this paper, we propose a new instance of
self-repairing codes, based on constructions of spreads coming
from projective geometry. We study some of their properties
to demonstrate the suitability of these codes for distributed
networked storage.

Index Terms—self-repair, projective geometry, coding, dis-
tributed storage

I. INTRODUCTION

Storing digital data is a basic necessity of modern societies.
The volume of data to be stored is tremendous, and is rapidly
increasing. The kinds of data vary widely - from corporate
and financial data repositories, archive of electronic commu-
nications to personal pictures, videos and work documents
stored and shared in Web 2.0 and cloud based services, and
much more. Distribution of such huge amount of data over
multiple networked storage devices is thus the only practical
and scalable solution.

All across the wide gamut of networked distributed storage
systems design space, eventual failure of any and all indi-
vidual storage devices is a given. Consequently, storing data
redundantly is essential for fault tolerance. Furthermore, over
a period of time, due to failures or departure of storage devices
from the system, the redundancy will gradually decrease -
risking the loss of the stored data, unless the redundancy
is recreated. The possible ways for recreating redundancy
depends on, to start with, the kind of redundancy being used.

Data redundancy can be achieved using replication - how-
ever that entails a very large storage overhead. Erasure coding
based strategies in contrast can provide very good amount of
redundancy for a very low storage overhead. However, when
an encoded data block is lost and needs to be recreated, for
traditional erasure codes, one would first need data equivalent
in amount to recreate the whole object in one place (either
by storing a full copy of the data, or else by downloading
adequate encoded blocks), even in order to recreate a single
encoded block. Such drawback of traditional erasure codes has
in recent years given rise to a new flavor of coding research:

designing erasure codes which need much less information to
carry out the recreation of a lost encoded block.

A. Related Work

More precisely, consider a network of n storage nodes, each
with storage capacity α, where an object o of size B has to be
stored. A source encodes the object o, splits it into n blocks,
each of size at most α, and stores such blocks at n storage
nodes. When a data collector wants to retrieve the object, he
should be able to do so by contacting a subset of live nodes.
We define k as the minimum number of nodes that need to
be contacted to retrieve the object, where the data collector
may download upto kα amount of data, and possibly process
(decode) the downloaded data. For maximal distance separable
(MDS) erasure codes, any arbitrary subset of k nodes allow
data retrievability. New nodes joining the network are assumed
to perform the repair by contacting d live nodes, from each of
which they download β amount of data.

There are arguably two extreme points possible in the
design-space of codes for distributed networked storage:

(i) Minimize the absolute amount of data transfer dβ needed
to recreate the lost data from one node. Network-coding
inspired analysis determines the storage-bandwidth (per repair)
trade-offs, and codes achieving this trade-off have been called
regenerating codes (RGC) [2], [5]. Explicit RGCs are already
known for certain points on the trade-off curve. Regenerating
codes, like MDS erasure codes, allow data retrievability from
any arbitrary set of k nodes.

(ii) Minimize the number of nodes to be contacted for
repairing one node failure. Recently proposed self-repairing
codes [4] achieve this optimal, by allowing one repair while
contacting only two nodes, i.e. d = 2.1 More specifically,
self-repairing codes satisfy two cardinal properties, namely:
(a) repairs can be performed directly through other subsets
of nodes, without having to download data equivalent to that
needed to reconstruct first the original object, ensuring that
(b) a block is repaired from a fixed number of blocks, the
number depending only on how many blocks are missing and
independent of which specific blocks are missing. Note that

1Replication (or repetition code) would achieve d = 1, however it leads to
very high storage overhead for equivalent fault-tolerance [6].



minimization of the number of contacted nodes for a repair is
achieved when the fixed number in clause (b) is in fact two.

Homomorphic self-repairing codes (HSRC) were proposed
in [4], which, besides satisfying the cardinal properties elab-
orated above, were shown to (i) have (n − 1)/2 distinct
pairs with which the data for a single missing node could
be regenerated, and consequently, (ii) self-repair for up to
(n − 1)/2 node failures could be carried out simultaneously
using two nodes for each self-repair, from the pool of the
remaining (n+ 1)/2 live nodes.

B. Contributions

This paper proposes a new family of self-repairing codes
(PSRC) derived from a projective geometric construction.
Apart satisfying the basic properties of self-repairing codes,
PSRC has several other salient features, summarized next:

(i) Both the encoding and self-repair processes for PSRC
involve only XOR operations, unlike HSRC encoding which
involved the relatively more expensive task of evaluating a
polynomial.

(ii) Similar to regenerating codes [2], in PSRC, each en-
coded block (i.e., data stored by a node) comprise of several
(α) pieces. Regeneration of the whole encoded block thus can
likewise be done by regenerating the individual constituent
pieces. This is in contrast to HSRC, where the encoded blocks
were ‘atomic’, and hence repair of the whole encoded block
had to be carried out atomically. This gives PSRC some of
the advantages of regenerating codes, while also naturally
retaining the advantages of self-repairing codes, and provides
several additional desirable properties, as elaborated next.

(iii) For self-repair of a specific node, if one live node
is chosen arbitrarily, then there are several other nodes with
which the first chosen node can be paired to regenerate the
lost encoded block. This is in contrast to HSRC, where there
is a unique pairing for one lost node, once one live node is
chosen.

(iv) While the resulting code is strictly speaking not system-
atic in terms of what is stored at each node, if the constituent
pieces stored over the nodes are considered, then systematic
reconstruction of the object is possible, though this will need
communication with αk instead of k specific nodes.

II. BACKGROUND FROM PROJECTIVE GEOMETRY

The proposed construction as described in next section relies
on the notion of spread coming from projective geometry. We
thus start by providing the required background.

Consider the finite field Fq, where q is a power of a prime
p, and a vector space of dimension m over Fq, namely, a
projective space denoted PG(m − 1, q). Note that we will
adopt a row vector convention for the rest of the paper.

Definition 1: Let P be a projective space. A t-spread of P
is a set S of t-dimensional subspaces of P which partitions
P , i.e., every point of P is contained in exactly one t-space
of S.

If P=PG(m−1, q) is a finite projective space, then a t-spread
can only exist if the number of points of a t-space divides the

number of points of the whole space, i.e., if qt+1−1
q−1 | qm−1

q−1

and hence (qt+1 − 1)|(qm − 1), which holds if and only if
(t+ 1)| m. André [1] showed that this necessary condition is
also sufficient.

Theorem 1: [3] In PG(m − 1, q), a t-spread exists if and
only if t+ 1| m.

A systematic construction of spreads can be obtained
through field extensions as follows. Suppose that t + 1| m.
Consider the finite fields F0 = Fq, F1 = Fqt+1 and F2 = Fqm .
Then F0 ⊆ F1 ⊆ F2. The field F2 is an m-dimensional vector
space V over F0. The subspaces of V form the projective space
P=PG(m, q). The field F1 is a (t + 1)-dimensional subspace
of V and hence a t-dimensional (projective) subspace of P .
The same holds for all cosets aF1, (a ∈ F2). These cosets
partition the multiplicative group of F2. Hence they form a
t-spread of P .

Example 1: Take as base field F0 = F2, i.e., the alphabet
is {0, 1}. In order to obtain planes, we consider 1-spread, i.e.,
t = 1 and hence F1 = F4. Finally, assume m = 4, that is
F2 = F16:

F2 = F16

F1 = F4

F0 = F2

m
2

2

Denote by F∗
q the multiplicative group of Fq. Recall that F∗

q

is a cyclic group. Let ω and ν be the respective generators of
F ∗
2 and F ∗

1 . We have that ν is an element of order 3 contained
in F2, so ν = ω5. Thus F ∗

1 can be written F ∗
1 = {1, ω5, ω10}.

As F ∗
2 can be written

F ∗
2 = {ωi}15i=1 = {ωi, ω5+i, ω10+i}5i=1 =

5⊔
i=1

ωiF∗
4,

we have a partition (denoted by
⊔

) of F16 into cosets of the
form ωiF∗

4, i = 1, . . . , 5. These five cosets define five disjoint
planes. More precisely, F16 can be decomposed into direct
sums of F2:

F16 = F4 ⊕ νF4 = F2 ⊕ νF2 ⊕ ωF2ωνF2,

so that each element of F16 can be written as a 4-tuple. For
example, the coset ωF∗

4 contains the elements ω, ων, ων2.
As ν2 = ν + 1, ων2 is the sum of the two other points.
Thus writing ω = (0, 0, 1, 0) and ων = (0, 0, 0, 1), we
finally get that the plane defined by the coset ωF∗

4 is
{(0010), (0001), (0011)}.

III. CODE CONSTRUCTION

Recall that our goal is to encode an object of size B to
be stored over n nodes, each of storage capacity α, such that
each failure can be repaired by contacting any d live nodes
(d ≥ 2) and downloading β amount of data from each of
them. We denote by PSRC(n, k) the self-repairing code with
parameters n and k obtained from a spread construction.



N1 to N7 N8 to N14 N15 to N21

(100000),(110111) (011000),(001110) (001010),(110100)
(010000),(101011) (001100),(000111) (000101),(011010)
(001000),(100101) (000110),(110011) (110010),(001101)
(000100),(100010) (000011),(101001) (011001),(110110)
(000010),(010001) (110001),(100100) (111100),(011011)
(000001),(111000) (101000),(010010) (011110),(111101)
(110000),(011100) (010100),(001001) (001111),(101110)

TABLE I
BASIS VECTORS FOR THE SCENARIO WHERE WE HAVE B = 6, α = 2,

n = 1 + 22 + (22)2 = 21 NODES N1, . . . , N21 .

We will assume for simplicity that we work over the
base field F2, though spreads can be constructed over larger
alphabets.

A. Setting the Parameters and Encoding

1) We first set m = B, so that we are working with elements
in F2 = FqB , that is B-dimensional vectors over F2.

2) Consider a t-spread S formed of t-dimensional subspaces
of P such that t+ 1|B. In particular, take F1 = Fqt+1 . Since
every subspace is a (t+1)-dimensional vector space over F2, it
is described by a F2-basis containing (t+1) vectors. We thus
set t+1 = α, and assign to each node an F2-basis containing
α vectors. The number of nodes that will store the object is
consequently (at most)

n =
2B − 1

2α − 1
.

Since we must take α|B, that is B = bα, we can further write

n =
2bα − 1

2α − 1
= 1 + 2α + (2α)2 + . . .+ (2α)b−1. (1)

For a data collector to be able to retrieve the object from some
k nodes, we need b ≤ k. In the following, we will discuss
specifically the case when b = k, which corresponds to the
minimum storage at each node.

3) Let us denote by vi the collection of all nα vectors,
ordered such that v1, . . . , vα correspond to the first node,
vα+1, . . . , v2α to the second node, etc. The ith node will then
store {BvT(i−1)α+1, . . . , BvTiα} for a total storage of α.

Example 2: Consider the partition described in Example 1,
where we recall that ν4 = ν + 1, |F∗

16| = 15, ν15 = 1 ω2 =
ω + 1, |F∗

4| = 3, ω3 = 1, ω = ν5 = ν2 + ν.
The final partition of the space is thus:

F∗
4 = {(1000), (0110), (1110)}

νF∗
4 = {(0100), (0011), (0111)}

ν2F∗
4 = {(0010), (1101), (1111)}

ν3F∗
4 = {(0001), (1010), (1011)}

ν4F∗
4 = {(1100), (0101), (1001)}

This corresponds to the code parameters B = 4, α =
2, n = 1+22 = 5 from (1). Let us denote by Ni, i = 1, . . . , 5
the 5 storing nodes, with storage capacity α = 2, and by
o = (o1, o2, o3, o4) the object to be stored. For example, we

B = kα α n = 1 + 2α + . . . (2α)k−1

4 2 5
6 2 21
6 3 9
8 2 85
8 4 17

TABLE II
SET OF SOME SMALL AVAILABLE PARAMETERS FOR PSRC(n, k).

can use the basis vectors as follows:

node basis vectors data stored
N1 v1 = (1000), v2 = (0110) {o1, o2 + o3}
N2 v3 = (0100), v4 = (0011) {o2, o3 + o4}
N3 v5 = (0010), v6 = (1101) {o3, o1 + o2 + o4}
N4 v7 = (0001), v8 = (1010) {o4, o1 + o3}
N5 v9 = (1100), v10 = (0101) {o1 + o2, o2 + o4}

Furthermore, the first available parameters are summarized
in Table III-A.

B. Repair

We now need to make sure that the above coding strategy
allows for object retrieval and repair. Let us discuss the repair
of data stored in one storage node. It was shown in [4] for
HSRC that it is possible to repair data for one node by
contacting d = 2 nodes, and there are (n− 1)/2 such choices
of 2 nodes that allow repair. This holds also for PSRC.

Lemma 1: Suppose we have n nodes, each storing α pieces
of data encoding an object using PSRC(n, k). Then if one
node Nl fails, it is possible to repair it by contacting d = 2
nodes. More precisely, for any choice of node Ni among the
remaining n− 1 live nodes, there exists at least one node Nj

such that Nl can be repaired by downloading the data stored
at nodes Ni and Nj .

Proof: The lth node Nl stores a subspace of the form
νlF∗

2α , l = 1, . . . , n. Let us assume this lth node fails, and a
new comer joins. It contacts any node, say Ni. Since Ni stores
νiF∗

2α , we need to show that there exists a node Nj such that

νiF∗
2α

⊔
νjF∗

2α

repairs Nl. Now

(νi + νl)F∗
2α ⊂ νiF∗

2α

⊔
νlF∗

2α

so we can take j such that νj = νi + νl. By combining the
data stored at node Ni and Nj , we thus get

νiF∗
2α

⊔
(νi + νl)F∗

2α

which contains νlF∗
2α .

Example 3: Let us continue with Example 2. If say N1

fails, the data pieces o1 (corresponding to the basis vector
(1000)) and o2+o2 (corresponding to the basis vector (0110))
are lost. A new node joining the network can contact nodes
N3 and N4, from which it gets respectively v5 = (0010),
v6 = (1101) and v7 = (0001), v8 = (1010). Now v8 + v5
gives (1000) while v8 + (v6 + v7) gives (0110).



Actually, in general, the redundancy for self-repair provided
by PSRC is even stronger than that of HSRC, as we now
illustrate.

Lemma 2: Suppose we have n = 21 nodes, each storing
α = 2 pieces of data, encoding an object of size B = 6 using
PSRC(21, 3), as summarized in Table 2. Then if one node
Nl fails, for any choice of node Ni among the remaining 20
live nodes, there exists three nodes Nj1 , Nj2 , Nj3 such that
Nl can be repaired by downloading the data stored at either
nodes Ni and Nj1 , or Ni and Nj2 , or even Ni and Nj3 .

Proof: Recall that ω is the generator of the cyclic group
F∗
4. We have that node Nl stores νlF∗

4, and Ni similarly stores
νiF∗

4. Now

νlF∗
4

⊔
νiF∗

4 =
{νi + νl, νiω + νlω, νi + νiω + νj + νjω

νi, νiω, νi + νiω,
νl, νlω, νl + νlω,

νi + νlω, νi + νiω + νl, νiω + νl + νlω
νiω + νl, νi + νiω + νlω, νi + νl + νlω} =

(νi + νl)F∗
4

⊔
νiF∗

4

⊔
νlF∗

4

⊔
(νi + νlω)F∗

4

⊔
(νl + νiω)F∗

4.

Take j1, j2, j3 such that

νj1 = νi + νl, νj2 = νi + νlω, νj3 = νl + νiω.

We have then

(Ni, Nj1) ⇒ νiF∗
4

⊔
(νi + νl)F∗

4 ⊃ νlF∗
4,

(Ni, Nj2) ⇒ νiF∗
4

⊔
(νi + νlω)F∗

4 ⊃ νlF∗
4,

(Ni, Nj3) ⇒ νiF∗
4

⊔
(νl + νiω)F∗

4 ⊃ νlF∗
4.

This proof actually gives an algorithm to find the different
pairs that repair a given failed node.

Example 4: Consider the code described in Table 2, and
suppose that the node N1 fails, and a new comer contacts
node N4 which stores ν3F∗

4. We have

νl + νi = 1 + ν3 = ν21ν11 ⇒ N12

νlω + νi = ω + ν3 = ν21ν9 ⇒ N10

νl + νiω = 1 + ν3ω = ν4 ⇒ N5.

Thus the node N1 can be repaired by contacting the following
three pairs all involving N4: (N4, N12), (N4, N10), (N4, N5).

C. Object Retrieval

If a data collector connects to any choice of k nodes, then
he can access upto kα blocks, while trying to reconstruct an
object of size B. Thus, k ≥ B/α. Note that in the examples
considered in this paper, k = B/α.

Lemma 3: If k = 2, then the object can be retrieved from
any choice of k = 2 nodes, in which case, we may see
PSRC(n, k) as a MDS code.

Proof: If k = 2, then each node stores α = B/2 linearly
independent vectors. Pick any two nodes say N (containing
v1, . . . , vα) and N ′ (similarly storing u1, . . . , uα). Suppose

that there exists a vector v in N which is linearly dependent
of some vectors in N ′:

v =
α∑

i=1

aivi +
α∑

j=1

bjuj .

Since v ∈ N and
∑n

i=1 αaivi ∈ N , it must be that∑α
j=1 bjuj ∈ N , a contradiction since N and N ′ are non-

intersecting by the definition of spread.
Note that any MDS code with k = 2 also trivially repairs a
lost node by contacting d = 2 nodes.

To recover the object, the data collector just solves the
system of linear equations in o.

In general, when k ≥ 3, SRC codes are not maximum
distance separable (MDS). A static resilience analysis provides
an estimate of how much deterioration the system may suffer
due to the lack of the maximum distance separability.

Static resilience of a distributed storage system is defined as
the probability that an object, once stored in the system, will
continue to stay available without any further maintenance,
even when a certain fraction of individual member nodes of
the distributed system become unavailable. Let pnode be the
probability that any specific node is available. Then, under
the assumptions that node availability is i.i.d, and no two
fragments of the same object are placed on any same node, we
can consider that the availability of any fragment is also i.i.d
with probability pnode. The probability pobj of recovering the
object is then

pobj =
n∑

x=k

ρxC
n
x p

x
node(1− pnode)

n−x,

where ρx is the conditional probability that the stored object
can be retrieved by contacting an arbitrary x out of the n
storage nodes.

For (n, k) MDS erasure codes, ρx is a deterministic and
binary value equal to one for x ≥ k, and zero for smaller x. For
self-repairing codes, the value is probabilistic. In Fig. 1(a) we
show for our toy example PSRC(21, 3) the probability that
the object cannot be retrieved, i.e., 1 − ρx, where the values
of ρx for x ≥ k were determined by exhaustive search.2

In particular, one can list 17 unique groups of 5 nodes,
whose 10 basis vectors generate a matrix with rank less than
6, out of the

(
21
5

)
= 20349 unique groups of 5. This means

that if we choose any 5 arbitrary nodes, the object still cannot
be retrieved with a probability of 0.00083. Similarly, if we
chose any arbitrary 3 nodes, the probability of unretrievability
is 0.150375. In contrast, for MDS codes, the object will be
retrievable from the data available at any arbitrary three nodes.
Of-course, this rather marginal sacrifice provides PSRC an
incredible amount of self-repairing capability. For any one
node lost, as shown earlier in Lemma 2, one can choose any
of the twenty remaining live nodes, and pair it with three other
nodes, and regenerate the lost data.

In Fig. 1(b) we compare the static resilience pobj for
PSRC(21, 3) with respect to what could be achieved using

2ρx is zero for x < k for PSRC also.



1 2 3 4 5 6
x

0.2

0.4

0.6

0.8

1.0

1 - Ρx

(a) 1− ρx (determined using exhaustive enumeration)

0.0 0.2 0.4 0.6 0.8 1.0
pnode0.0

0.2

0.4

0.6

0.8

1.0

pobj

ECH21,3L

PSRCH21,3L

(b) Static resilience (determined numerically)

Fig. 1. Results for PSRC(21, 3)

a MDS EC(21, 3). The values were determined numerically,
using the ρx values evaluated as mentioned above. We note
that in practice a MDS erasure code may or not exist for any
arbitrary (n, k) parameters. More importantly, we notice that
the degradation of static resilience of PSRC(21, 3) to achieve
the self-repairing property is marginal with respect to that of
a MDS erasure code, if such a code were to/does exist.

IV. FURTHER DISCUSSIONS

We point out a few more properties of the proposed codes.
Systematic Like Code: It is usually appreciated from an

implementation perspective to use a systematic code, since
it makes the object retrieval immediate. We notice that though
our code is not systematic, we can however contact B = αk
specific nodes (instead of k), namely those storing as pieces
each of the canonical basis vectors of F2B to reconstruct the
object in a systematic manner.

Bandwidth cost for regeneration: Unlike HSRC, the PSRC
encoded blocks are not atomic, and instead comprise of α
pieces. Thus, similar to regenerating codes, one could also
expect to regenerate an encoded block piece-by-piece, by
contacting more (larger d) number of nodes. For example,
when using PSRC(21, 3), if the data for node N1 needs
to be regenerated, one could do so by contacting two nodes
and downloading four pieces (units) of data, as we have
already seen. One could instead also contact d = 3 nodes,
and regenerate the two lost pieces by downloading only three
units of data. For instance, by downloading (010000) from N2,
(110000) from N7 and (000111) from N9.

As noted previously, for our examples, α = B/k, corre-
sponding to what is known as the Minimum Storage Regen-
eration (MSR) point for regenerating codes. At MSR point, a
node needs to contact d ≥ k nodes, and download B

k(d−k+1)

data from each, resulting in a total download of Bd
k(d−k+1)

data. Thus, for the same choices of α,B, k and with d = 3,
one would need to download 6 units of data, and for d = 4,
one would need to download 4 units of data, while d = 2
is not allowed. Thus, for the regeneration of one lost node,
PSRC can outperform regenerating codes both in terms of

absolute bandwidth needed, as well as the number of nodes
needed to carry out such regeneration, moreover, for upto
(n− 1)/2 failures, the regeneration overhead per node’s data
stays constant for PSRC. It of-course needs to be noted that,
in order to achieve these very interesting performance, we
sacrificed the MDS property. In practice, this sacrifice however
has marginal impact, as can be observed from the resulting
codes’ static resilience.

V. CONCLUDING REMARKS

In this work, we showed the existence of another instance of
self-repairing codes, which are codes tailor made to meet the
peculiarities of distributed networked storage. The proposed
code family in this paper is based on constructions of spreads
from projective geometry. We provided a preliminary study
of the properties of this new family, demonstrating that they
outperform existing code families both in several quantitative
as well as qualitative metrics. Further analysis to comprehend
and harness these codes in practical settings are currently
under investigation.

ACKNOWLEDGEMENT

F. Oggier’s research for this work has been supported by the
Singapore National Research Foundation grant NRF-CRP2-
2007-03. A. Datta’s research for this work has been supported
by AcRF Tier-1 grant number RG 29/09.

REFERENCES

[1] J. André,“Uber nicht-desarguessche Ebenen mit transitiver Translation-
sgruppe,” Math. Z., p. 156-186, 1954.

[2] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright and K. Ram-
chandran, ”Network Coding for Distributed Storage Systems” IEEE
Transactions on Information Theory, Vol. 56, Issue 9, Sept. 2010.

[3] J. Eisfeld and L. Storme, “Partial t-spreads and minimal t-covers in
finite projective spaces”, unpublished.

[4] F. Oggier and A. Datta, “Self-repairing Homomorphic Codes for Dis-
tributed Storage Systems”, INFOCOM 2011.

[5] K. V. Rashmi, N. B. Shah, P. Vijay Kumar, K. Ramchandran, “Explicit
Construction of Optimal Exact Regenerating Codes for Distributed
Storage”, Allerton 2009.

[6] H. Weatherspoon, J. Kubiatowicz, “Erasure Coding vs. Replication: A
Quantitative Comparison”, IPTPS 2002.


