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REVIEW Open Access

Self-reported race/ethnicity in the age of genomic
research: its potential impact on understanding
health disparities
Tesfaye B Mersha1* and Tilahun Abebe2

Abstract

This review explores the limitations of self-reported race, ethnicity, and genetic ancestry in biomedical research.

Various terminologies are used to classify human differences in genomic research including race, ethnicity, and

ancestry. Although race and ethnicity are related, race refers to a person’s physical appearance, such as skin color

and eye color. Ethnicity, on the other hand, refers to communality in cultural heritage, language, social practice,

traditions, and geopolitical factors. Genetic ancestry inferred using ancestry informative markers (AIMs) is based on

genetic/genomic data. Phenotype-based race/ethnicity information and data computed using AIMs often disagree.

For example, self-reporting African Americans can have drastically different levels of African or European ancestry.

Genetic analysis of individual ancestry shows that some self-identified African Americans have up to 99% of

European ancestry, whereas some self-identified European Americans have substantial admixture from African

ancestry. Similarly, African ancestry in the Latino population varies between 3% in Mexican Americans to 16% in

Puerto Ricans. The implication of this is that, in African American or Latino populations, self-reported ancestry may

not be as accurate as direct assessment of individual genomic information in predicting treatment outcomes. To

better understand human genetic variation in the context of health disparities, we suggest using “ancestry”

(or biogeographical ancestry) to describe actual genetic variation, “race” to describe health disparity in societies

characterized by racial categories, and “ethnicity” to describe traditions, lifestyle, diet, and values. We also suggest

using ancestry informative markers for precise characterization of individuals’ biological ancestry. Understanding the

sources of human genetic variation and the causes of health disparities could lead to interventions that would

improve the health of all individuals.

Keywords: Genome, Race, Ethnicity, Ancestry, Ancestry informative markers, Ancestry haplotype, Admixture,

Health disparity

Genetic variation in the human genome
The human genome is composed of over three billion

bases of DNA and contains between 25,000 and 30,000

protein-coding genes [1]. On average, any two randomly

selected humans have 99.9% identical DNA [2]. Yet,

these 0.1% differences spreading over the entire genome

contribute to genetic heterogeneity that uniquely distin-

guishes each person. Because the majority of the human

genome contains non-coding DNA, the bulk of this

genetic diversity is not visible at the phenotype level.

Variable regions on the genome are broadly classified into

single nucleotide polymorphisms (SNPs) and structural

variations (SVs). SNPs are changes in single DNA bases

whereas SVs involve large genomic changes including

indels and genomic rearrangements (translocation, trans-

version). The International HapMap Project was the first

multi-institutional effort to catalog variations and develop

a haplotype map (HapMap) of the human genome. The

HapMap project had identified over 5 million SNPs in the

human genome including their distribution among people

in different parts of the world [3]. While successful, the

HapMap project had two major limitations: 1) it encom-

passed only SNPs, and 2) it only contained the most com-

mon genetic variants (those with frequencies >5%). Many
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genetic disorders are caused by rare SNPs (with fre-

quencies <5%) and by SVs. The 1000 Genomes Project

was formed in 2008 to sequence and generate a catalog of

human genetic variation and haplotypes from the ge-

nomes of at least 1,000 people around the world (hence

the name the 1000 Genome Project). The current phase 3

analysis of the project contains 2,535 individuals from 26

populations and identified a total of over 81 million vari-

ants, ranging from SNPs, indels, and other small variants to

insertions of mobile elements and large structural variants

spanning 100 s of kilobases (http://www.1000genomes.org/).

This haplotype resource at finer scales will facilitate the

understanding of genetic variation at genomic and geo-

graphic levels [4].

Because of their sheer number, SNPs are the major

sources of genetic and phenotypic diversity, accounting

for 95% of all known sequence variations [5]. Different

versions of the DNA bases present at a SNP locus are re-

ferred to as alleles. Alleles with a frequency greater than

5% are called common variants, those with a frequency

of 1%–5% are low frequent variants and those less than

1% are rare variants. Because rare variants might have

arisen after populations diverged or occurred in recent

human history, they are more likely to be population-

specific and, therefore, they may not be shared with

different populations. Thus, the overrepresentation of

rare causal variants in certain population could explain

the observed differences in disease prevalence, including

asthma [6].

There are two potential reasons why some variants

are relatively common in one population but absent (or

nearly so) in another: a) a recent emergence of a variant

that has not yet had time to spread to other populations

and b) natural selection in a specific local environment.

An example of the first scenario is a SNP that causes her-

editary hemochromatosis, which is common in Europe

but very rare elsewhere. Lactase persistence is an excellent

example of the influence of natural selection on allelic

frequency. Lactase persistence into adulthood is prevalent

in Somali camel herders from Ethiopia where milk con-

sumption continues beyond childhood [7]. Positive selec-

tion in a geographic-specific manner has also been seen in

genes that affect skin pigmentation [8] and resistance to

malaria [9].

Human ancestry
Anatomically, modern humans first appeared in Africa

some 150,000 to 200,000 years ago [10]. About 60,000 years

ago, humans left Africa in waves of migrations and,

through a sequential chain of colonies, spread to occupy

most of today’s land masses. During this journey, they en-

countered different environments and climates and came

in contact with novel pathogens and animals. They formed

local communities, separated by geographic, linguistic,

cultural, and social barriers. Mutation, genetic drift, and

natural selection operated in parallel with demographic

and historical events to weave the patterns of human vari-

ation in extant populations. The result of this interplay

was the imprint of genetic ancestry and population struc-

ture carried in the genome of each individual and groups

that lead to the development of the remarkable racial and

ethnic diversity that we see today.

Race and ethnicity are widely used interchangeably in

population research and incorporate cultural, linguistic,

biological, and geopolitical factors [11]. Although its use

is primarily social, the term “race” is commonly defined

in the scientific literature to refer to biological dif-

ferences (such as skin color) between groups assumed

to have different biogeographical ancestries or genetic

makeup [11]. It is a “construct of human variability

based on perceived differences in biology, physical ap-

pearance, and behavior” [12]. To the contrary, ethnicity

is a complex multidimensional construct that reflects

biological factors, geographical origins, historical in-

fluences, as well as shared customs, beliefs, and tradi-

tions among populations that may or may not have a

common genetic origin [13]. For example, the Caucasian

race contains such ethnicities as German, Irish, Spanish,

and French each with their own culture, language, and

tradition. Self-reported race/ethnicity is frequently used

in epidemiological studies to assess an individual’s back-

ground origin. Often times, participants in the US are

asked to specify a single race/ethnic group based on six

categories: White, Black, Black Hispanic, White Hispanic,

Asian, or other. Most questionnaires do not offer an op-

portunity for participants to choose multiple responses on

their ancestral heritage. Most often, one family member

declares for the rest, thus preventing detailed analysis of

individuals with multiple (and differing) origins. A child of

mixed parents (one black and one white) is socially classi-

fied as black, even though genetically, the child could just

as easily be considered white (genotype 50/50). This

classification was based on historical mandate of the

“one-drop rule,” which stated that any individual with

African ancestry would be considered a member of

the Black race [14]. African and European ancestry in

self-identified African Americans can vary wildly with pro-

portions of European ancestry spanning the full range of

variation, which can have significant impact on how we

identify disease loci using genetics approach [13]. Parra

[15] presents data showing that the percentage of

European contribution to several African American com-

munities within the continental US varies tenfold, from

3.5% in the isolated Gullah-speaking Sea Islanders from

South Carolina to 35% in Seattle (Figure 1). Another

example with broad ranges variation in admixture is the

“Hispanic” or “Latino” population. The use of a single

Hispanic or Latino ethnic category is insufficient for
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characterizing genetic background associated with Hispanics

or Latinos because Hispanics have variable proportions of

European, Native American, and African ancestry [16], as

well as disease prevalence including asthma [17]. Mexican

Americans, on average, have a higher proportion of Native

American ancestry (ranging from 35% to 64%) but a lower

proportion of African ancestry (ranging from 3% to 5%)

than Puerto Ricans (Native American ancestry ranges bet-

ween 12% and 15% and African ancestry ranges between

18% and 25%) [18-20] (Figure 2). Such higher proportion

of African ancestry in Puerto Ricans could be the reason

why the prevalence of asthma is the highest among Puerto

Ricans (19.9%) and the lowest among Mexican Americans

(6.5%). This phenomenon is referred to as the “Hispanic

Paradox” [21].

Although on average, populations that are geogra-

phically close to one another show stronger correlation

and higher genetic similarity than geographically sepa-

rated populations and substantial differences in allele

frequencies are also observed within geographic regions

[23]. Several studies including ours showed that genetic

diversity in humans is higher between individuals of the

same race (~85%) than between races (~15%) [4,24]. A

good example is the wide variation observed in two African

populations. The prevalence of HLA-B*5701 variant in the

Masai group in Kenya is 13.6%; the frequency of the same

allele was zero among the Yoruba in Nigeria and 5.8%

among European ancestry. Another seminal study is the

complete sequence of two US scientists of European origin,

namely, James Watson and Craig Venter, and an Asian

Figure 1 Map showing estimates of the percentage of European contribution to several African American communities throughout

the US. The percentage of European contribution to several African American samples within the continental US varies tenfold, from 3.5% in the

isolated Gullah-speaking Sea Islanders from South Carolina to 35% in Seattle. Reproduced from Parra [15].

Figure 2 Ancestry proportions of Mexicans vs. Puerto Ricans. Although Mexicans and Puerto Ricans are both considered Latino or Hispanics,

Mexicans, on average, have a higher proportion of Native American ancestry (35%–64%) but a lower proportion of African ancestry (3%–5%).

Puerto Ricans have lower proportion of Native American ancestry (12%–15%) and higher proportion of African ancestry (18%–25%). Reproduced

from Risch et al. [22].
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scientist, Seong-Jin Kim. The two Europeans share fewer

SNPs (461,000) than they each share with Seong-Jin Kim

(569,000 and 481,000, respectively) [25-27]. On the basis of

the subjects’ physical appearance, one would consider

Venter’s DNA, and not Kim’s, a better approximation of

Watson’s DNA. These results reflect a well-known feature

of human diversity, that is, different genetic polymor-

phisms are distributed over the world in a discordant man-

ner [28,29]. These observations reveal characterization of

races simply as “White” or “Caucasian”, “Asian”, “African”,

or “Latino” which are poor predictors of human biological

diversity or similarity. Thus, although race/ethnicity cate-

gories are helpful to study socio-cultural and traditional

values within groups and can help cluster individuals com-

ing from geographically distant regions, they do not reveal

the extent of admixture in an individual with admixed an-

cestry (Table 1). This is because an admixed individual can

have multiple ancestries through intermixing (e.g., ‘Latino’)

[30]. Group identity (for example, Hispanic American vs.

African American) and genetic heritage are much more

complex than self-identity. Although skin colors are often

associated with race, individuals with light skin or dark

skin could have an appreciable number of black or white

ancestry genes, respectively. This is because visual classifi-

cation of skin color is interpreted differently by patients,

health care workers, and family doctors [31,32]. For ex-

ample, studies in Cuba showed that the same individual

can be classified into different color categories: family doc-

tors tend to classify them as darker, while health care

workers tend to classify them as lighter [31,32]. In addition,

two people with the same level of pigmentation (melanin

index) and skin color in two different parts of Cuba could

be classified into different color categories. In Villa Clara

Province, a person would be identified as mestizo, while in

Santiago de Cuba, where more of the population is darker-

skinned, a person with the same pigmentation could be

classified as white [33]. Using autosomal ancestry markers,

72% of Cuban genes have European descent, 20% African,

and 8% Native American [33,34]. Similarly, in Brazil, the

correlation between biogeographic ancestry and categories

of skin colors are region-dependent, relatively stronger

correlations in Salvador (r = 0.585, P < 0.001) than those

in Fortaleza (r = 0.236, P < 0.001) [35]. Thus, skin color

cannot reflect the actual genetic ancestry of individuals. Dr.

Beatriz Marcheco had described this eloquently as “The

classic mirror reflects skin color; but the DNA mirror re-

flects our common ancestors” [33].

Empirically speaking, ancestry is estimated using an-

cestry informative markers (AIMs), which are a set of

genetic variations for a particular DNA sequence that

appear in different frequencies in populations from dif-

ferent regions of the world. The use of AIMs compares

an individual’s polymorphisms at these markers with

previously analyzed genomic reference sets from people

whose ancestral history is fairly well known. AIMs are

used to estimate the geographical origins of an indi-

vidual’s ancestors, typically expressed as proportions of

one’s ancestry that comes from different continental re-

gions [36].

Availability of genetic markers that are ancestry-

informative and newly developed statistical methods may

overcome concerns regarding race/ethnicity categorization

[37]. There is evidence that measures of genetic ancestry

can improve clinical care for people of mixed race. For

example, physicians assessing lung disease can make

more accurate diagnoses when they use a reference stan-

dard from the patients’ actual genetic ancestry than

self-reported race or ethnicity [38]. A large proportion of

Native American ancestry is associated with a greater risk

of childhood acute lymphoblastic leukemia. Children with

more than 10% Native American ancestry need an addi-

tional round of chemotherapy to respond to the treatment

[39]. Differences in ancestry proportion in admixed popu-

lation could introduce variation among individuals of the

same race and potentially alter genetic association and the

therapeutic efficacy of commonly used asthma therapies,

such as β2-adrenergic receptor agonists (β-agonists)

[40,41]. So far, pharmacogenetic studies of admixed ethnic

groups have been limited to small candidate gene asso-

ciation studies. Large consortium-based whole genome

sequencing studies are required to provide a reference

“genome map” for population without precise matching

reference panel including admixed populations for future

genetic/genomic and pharmacogenetic studies.

Table 1 Comparison between estimates of genetic ancestry and self-reported race in African and European American

populations from 1000 genomes project datasets

Self-reported race

Ancestral population genetic ancestry

CEU (%) AA (%)

Mean ± SD Min–max Mean ± SD Min–max

European ancestry (CEU) (n = 87) 0.976 ± 0.022 0.887–0.994 0.024 ± 0.022 0.006–0.113

African ancestry (YRI) (n = 88) 0.013 ± 0.009 0.006–0.073 0.987 ± 0.009 0.927–0.994

African American (AA) (n = 61) 0.108 ± 0.152 0.006–0.990 0.892 ± 0.152 0.010–0.980

CEU European ancestry, YRI African ancestry from Nigeria, AA African American.
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Genetic markers used to infer ancestry: autosomal
SNPs, Y-SNPs, mitochondrial SNPs, and X-SNPs
Although autosomal SNPs are commonly used as gene-

tic markers to infer ancestry or race/ethnicity member-

ship, haploid such as mitochondria, Y-DNA, and X-lined

markers are also important to provide separate stories of

ancestry of individuals from paternal and maternal sides

[42,43]. Therefore, genetic structure created due to auto-

somal markers could be different from those of lineage

markers (often influenced by political, social, and migra-

tion history of individuals/populations).

a) Autosomal DNA (testing both sexes) markers:

autosomal DNA tests utilize DNA from the 22 pairs

of autosomal chromosomes. Autosomal DNA is

inherited from both parents. Autosomal testing

provides percentages of ethnicity using autosomal

DNA SNP test (i.e., ancestry informative markers),

and it is the most commonly used test to infer

ancestry across diploid genome.

b) Y-DNA or Y-SNPs (paternal line testing) markers:

a haploid Y-DNA is the paternally inherited

non-recombining portion of the Y chromosome, and

it tests only for males. The Y-DNA testing tests the

Y chromosome which is passed intact from father to

son with no DNA from the mother. Y-DNA testing

can then be used to trace direct paternal line.

Y-DNA remains the same in each generation,

allowing us to compare surname from different

regions to see if we are from the same family. Y-line

testing does not indicate anything about the

contributions of the other ancestors in a family tree.

In other words, you could be 3/4th Native

American, with only the direct paternal line being

European, and this test would tell you nothing at all

about those other three Native lines. When testing

the Y-chromosome, there are two types of tests,

short tandem repeat (STR) and SNP markers. STR

tests are best for recent ancestry while SNP tests tell

about more ancient ancestry.

c) Mitochondrial DNA (maternal line testing) markers:

mitochondrial DNA or mtDNA haploid is the

maternally inherited mitochondrial genome

(mtDNA) [44]. All children inherit mtDNA from

their mother, with no admixture from the father.

Like Y-line DNA, mtDNA is passed intact from one

generation to the next but through maternal line.

Mitochondrial DNA does not follow any surname.

In fact, the surname changes in every generation

when women marry. Polymorphisms of mtDNA

have been used to understand human population

distribution around the world. Before modern

human traveled across the world, mitochondrial

haplogroups were largely restricted to the

geographic regions of their origin [45]. For this

reason, they are often superimposed on maps of the

globe as representative of the human populations

derived from those regions of the planet. The

mitochondrial genome is a critical target for

inherited disparity due to ethnic-based diversity,

which is greatest within Africa. Because of the

clear associations of mitochondrial haplogroups and

ethnic categories with geography, one might naively

expect a simple correlation between the two

classifications. While, for instance, there is broad

correspondence between the L haplogroups and

African ethnicity assignments, African ethnicity

assignments are present to varying degrees in

virtually every haplogroup analyzed and almost every

haplogroup contains members of each of the four

ethnicities. This is not particularly surprising due to

the fact that mitochondrial DNA represents only a

very small segment of the complex mosaic of a

human’s genetic ancestry, and it suggests that the

ability to infer coarse ethnic identity from

mitochondrial sequence would be very limited. In

fact, studies found that mitochondrial DNA can be

used to infer the probable assignment of coarse

ethnicity with almost 90% accuracy [46]. This level

of accuracy in predicting investigator-assigned

ethnicity could be very useful in forensic

investigations [47].

d) X chromosome (X-DNA testing) markers: an

X chromosome DNA test looks at markers on

X chromosome(s). Males have one X chromosome

that they inherit exclusively from their mother, and

females have two X chromosomes that they inherit

from both parents, one from their father and one

from their mother. This creates a unique inheritance

pattern that may provide many insights into one’s

maternal heritage. STR markers on the

X chromosome have been used in population

genetic studies and forensics.

There are two main benefits in using haploid (Y-DNA

and mitDNA) markers over diploid (autosomal) markers:

1) they lack recombination. This allows for more easily

recoverable phylogenies than is possible for the auto-

somal markers, allowing for the easier identification of

geographically restricted clades, which could be indica-

tive of past historical migration. The second benefit in

using the sex-specific systems is their 2) much small

effective population size related to autosomal markers

due to their haploid mode of inheritance through one

sex only. Genetic diversity of present-day American pop-

ulations is very complex due to the demographic events

that resulted in extremely admixed populations [48].

Through the analysis of lineage markers such as mtDNA
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andY-DNA, it is possible to isolate the original Native

American lineages without the confounding effects of

admixture due to the absence of recombination. The Native

American share was conserved through the maternal line.

Since only the egg, not the sperm, contains cytoplasm, we

can use this to distinguish the original mother. Studies have

shown that the “Eve” for Cuban population is about 38.8%

African, 34.5% Native Americans, and 26.7% Europeans.

Conversely, by using the Y chromosome, studies have

shown that 82% of Cubans are descendants of European

fathers, 17% of African fathers, and 1% of indigenous

fathers [33,34].

Multi-locus ancestral haplotype as
ancestry-informative regions (AIRs)
Although variation in humans reflect genetic differences

at single allele as well as haplotype level, most local

ancestry estimators use allele frequency data (locus-by-

locus) between parental contributions along the chromo-

some, ignoring molecular information that is available in

haplotype block structure. Individual mutations carry

only weak signals about population ancestry. By adding

information across the whole genome at haplotype level,

we can reconstruct these admixture events more accur-

ately. It has been described that less than 50% of admixture

is hard to detect from single locus (or non-recombining

genome) data. The power of detecting ancestry switch

points between European and African ancestry per person

becomes feasible as more and more loci are identified [49].

This approach is referred to as haplotype sharing [50] and

involves sharing several markers to identify regions of

interest [51] rather than relying on differences in allele

frequencies at individual markers. However, previous me-

thods do not take into account multiple loci as provided by

haplotype structure in ancestral populations. Potential

advantages of multipoint ancestral haplotypes include:

(1) their use of more information in the data when a sus-

ceptibility variant in the region is untyped or partially typed

and (2) the fact that likelihoods at nearby variants are

based on the same data, so they are formally comparable

for the purposes of localization. As a result, multipoint

ancestral haplotype methods have the potential to vastly

improve and provide high-resolution localization of vari-

ants over single-point methods [52]. By considering the ge-

nealogy of ancestral haplotype rather than pairs of variants,

this approach may allow the joint estimation of other inter-

esting parameters in the admixture model, such as admix-

ture time, divergence time, population size, and mutation

rate as described by Wang [53].

In a founder population, patients with a genetic disease

are likely to share predisposing genes from a common

ancestor. Depending on the distance of the relationship,

patients are expected to share extended segments of DNA

around the disease gene, thus the extent of linkage

disequilibrium (LD) between the disease and the sur-

rounding marker (about 1 cM) is small enough to be

meaningful and large enough to be observed. Because of

the size of the shared segment, a genomic search with

DNA markers for such regions can efficiently locate the

map position of genes using identity by descent (IBD)

mapping [50]. IBD mapping is a haplotype sharing statistic

(HSS) approach, which uses (hidden) co-ancestry between

affected individuals from a founder population. Recently,

IBD mapping has been proposed as a useful approach to

map genes in a founder population [50]. IBD mapping

uses haplotype sharing at several markers rather than dif-

ferences in allele frequencies at individual markers to

identify regions of interest [51]. Devlin et al. [54] described

the possibility of mapping disease genes by analyzing ex-

cess haplotype sharing. Using this idea, one could inte-

grate information on LD structure of genotype data and

interrogating various SNP densities of the current SNP

chips, under various disease models and various levels of

informativeness among markers between the ancestral

populations to better optimize the power of LD admixture

mapping procedures and make them more efficient and

powerful to identify and localize liability genes for com-

plex diseases including asthma [36].

Limitations related to ancestry markers include the

reference sets, which are comprised of the genomes of

relatively few sampled individuals who are themselves

from a relatively few, geographically restricted regions.

Thus, to what extent is a panel derived by contrasting a

“Yoruban” sample with “Europeans” appropriate for use

in African-American samples? How much is the Yoruban

population represents Africa and hence African Americans

are debatable [37]. However, the same can be said to the

CEU population where recent high-density SNP studies

showed population gradient including linkage disequi-

librium discrepancies across the North–south and even

within Finland (East–west) [55]. Therefore, it is prudent to

recognize the limitations of ancestry informative markers

in genetic/genomic studies of admixed population.

Genetic ancestry and clinical predictive variables
Clinical asthma outcome variables such as pulmonary

function tests (PFTs) include forced vital capacity (FVC,

a measure of lung size), forced expiratory volume in 1 s

(FEV1, a standard measure of lung function), and FEV1/

FVC ratios. The variation in ancestry in relation to these

clinical predictive variables may help to explain diffe-

rences in disease phenotypes among ethnic subgroups.

Recent study showed that in Mexican Americans, European

ancestry was associated with more severe asthma, as mea-

sured by FEV1, a quantitative measure of lung function. A

decrease of 1.7% baseline FEV1 was observed per 10%

increase in European ancestry [56]. FEV1 is a measure of

airway caliber and a standard measure of lung function,
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and FEV1/FVC ratio is a commonly used outcome to

assess airway obstruction [57]. Age-, race-, and ethnic-

appropriate reference equations will be used for PFT

results [57-59]. A recent study by the NHBLI-SARP case-

only cohort indicated the predictive role of PFT in asthma

severity [60,61].

Several studies have associated genetic ancestry with nu-

merous clinical endpoints. African ancestry was inversely

related to FEV1 (p = 0.007), FVC (p = 0.0003), and FEV1/

FVC (p = 0.035) (Table 2, Figure 3) [38,62]. Higher vs.

lower proportion of African ancestry, categorized based on

median value, has also been shown to be associated with

greater decline in the lung function per pack-year of smo-

king (−5.7 vs. –4.6 ml FEV1 per pack-year) in contrast to

the −3.9 ml FEV1 per pack-year smoked observed among

European Americans [63]. Additionally, African Americans

with higher proportions of African ancestry have a greater

risk of losing lung function while smoking. Studies have

shown that each percentage increase in African ancestry

was associated with an 8.9-ml decrease in FEV1 (p = 0.001)

and an 11.8-ml decrease in FVC (p = 0.0001). Higher

African ancestry was associated with a greater likelihood

for an asthma-related physician visit (p = 0.004) and greater

frequency of urgent or ED visits among asthmatics treated

with an inhaled glucocorticoid (p = 0.01). In African

Americans with more severe asthma, the magnitude of

decreased lung function associated with African ancestry

was twice that observed in the general population (−8.9 ml

vs. −4 ml for FEV1 per percentage African ancestry [38]).

These investigators found that adding genetically measured

ancestry to the standard lung function prediction equa-

tions, rather than relying on self-identified race, reduced

misclassification and resulted in the reclassification of

asthma severity by 5%. It is important to note that although

ancestry is associated with asthma clinical phenotypes, SES

and related environmental exposure risk factors were not

considered in this study and it is not clear whether race is

a confounder for existing socio-environmental differences

(i.e., may not be directly causal) between races or inde-

pendent risk factors (serving as surrogate for genetic

differences) for asthma risk. Many factors other than an-

cestry are influencing the development of asthma. A more

careful assessment of the degree of ancestry and asthma

in larger cohorts while controlling for environmental

Table 2 Studies considering the relationship between degrees of ancestry proportion and asthma and asthma-related

outcomes

Study
population

Specific phenotype Study
subjects (n)

Ancestry
type

Markers (n) Main findings Reference

AA Lung function 2,169 Structure Variable Increasing Af ancestry associated
with lower FEV1 and lower FVC

Kumar et al. [38]

AA Asthma, exacerbation 392 Structure 59 Increasing Af ancestry associated
with increasingly severe asthma
exacerbation in males but not
females

Rumpel et al. [64]

AA Smoking/lung function interaction 1,281 Structure 1,332 Increasing Af ancestry associated
with lower FEV1 per pack-year of
smoking

Aldrich et al. [63]

LA Asthma severity 362 IBGA 44 Increasing NA ancestry associated
with less severe asthma

Salari et al. [56]

Puerto Ricans Lung function 416 LAMP 85,059 Increasing Af ancestry associated
with decreased FEV1 and FVC
pre- and post-bronchodilator

Brehm et al. [19]

Modified from Goetz et al. [62]. The structure is model-based clustering method; IBGA is a maximum likelihood-based clustering method, and LAMP is a local

ancestry in admixed population inference method.

Af African, Am Amerindian, As Asian, E European, NA Native American, AA African American, LA Latino American, FEV1 forced expiratory volume in 1 s, FVC forced

vital capacity.

Figure 3 Relationship of African ancestry proportions with lung

function in African-American male subjects using ancestry

informative markers. An inverse relationship between the

percentage of global African ancestry and baseline FEV1 (Forced

Expiratory Volume, measured in liters) are shown. Reproduced from

Kumar et al. [38].
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exposure and other social determinants of health will fur-

ther our understanding.

Consortia- and self-reported race/ethnicity
information
To increase sample sizes and power, several research

groups are implementing meta-analysis to combine mul-

tiple consortia projects. The recently established Public

Population Project in Genomics (P3G) (http://www.p3g.

org/secretariat) promotes collaboration between resear-

chers in the field of population genomics to ensure public

access to population genomic data. These resources typi-

cally include biological samples (i.e., serum, plasma, and

DNA) linked to structured clinical databases (i.e., compre-

hensive electronic medical records (EMR) data) [65,66] in

a consortium setting. Considerable data is often collected

with each sample such as age, gender, place of residence,

state of health, specific diseases, lifestyle (such as how

much exercise, smoking, consume alcohol), and socio-

economic background. However, most EMRs collect only

limited historical information on the ancestry of the do-

nors. Most often, race/ethnicity ancestry data are missing

from the EMRs. In some cases, race/ethnicity is assigned

by other party such as study coordinator’s visual inspection

at time of enrollment and in others; study participants or

their guardians are asked to report a single race/ethnicity

that they feel best identifies them or their guardian. Hence,

there is “missing ancestry” in most EMR resources [13].

As the world populations increasingly do not fall into con-

ventional homogeneous ethnic categories (and becoming

highly admixed), the reliability of self-reported race/

ethnicity becomes more challenging in the current massive

worldwide efforts of integrating multiple consortia pro-

jects. In a recent study, Ritchie et al. [67] analyzed 9,483

samples in the Vanderbilt DNA Databank (BioVU) and

found missing ancestry information in 9.2% of the records.

They showed that most individuals with missing ancestry

cluster are in the European American group. However, for

individuals with mixed ancestry, such grouping only

predicts “major” ancestral clusters but do not reveal the

individual’s number of ancestries and/or admixture pro-

portion. In admixed individuals, where each chromosome

is likely to be a mosaic of blocks of DNA from ancestral

populations, ancestry varies across different loci or dif-

ferent genomic segments (Figure 4). Inferences of ad-

mixture proportions by combining information across

multiple loci or blocks provide valuable information in es-

timating and inferring ancestry. This is necessary since

grouping obtained using single locus ancestry will vary

between loci in an individual. For instance, we may ob-

serve the FY*0 (rs2814778) allele at a locus and conclude

African ancestry for an individual, but if we observe the

MID 575 (rs140864) insertion polymorphism, which is also

on the same chromosome as FY*0, then we would have to

conclude European ancestry for the same individual at that

locus. As a result, samples with missing ancestry could be

potentially a source of false positive and false negative

results. The availability of millions of genetic markers

at unprecedented levels from next-generation sequencing

technologies and multi-locus ancestry-based dataset ana-

lysis approach provide greater power than ever to assign

individuals with missing ancestries with great accuracy [36].

Thus, although a sample in a biobank with no information

on race/ethnicity were thought valueless (or remain as a

storage facility with limited practical application in disease

genetics), it is now possible to have a good idea of the an-

cestry of a given sample with missing ancestry information

and can be biologically categorized for specific studies. It

should be noted that EMRs data are uniquely suited for

studies that quantify the impact of ancestry in hetero-

geneous population and play a role in the development

of personalized medicine in which treatments will no

Figure 4 Schematic representation of genomic mosaicism as a

result of ancestral admixture. An admixed individual derived

from two founders in several generations of recombination. The

chromosomes of the two founders (shown in different colors) are

combined by several generations of random mating to produce

present day admixed individual. A DNA sequence of any admixed

individual is a mosaic of its founders’ DNA segments. A classic

example in humans is the African-American population. The two

ancestral populations, European and African ancestry, are represented

by dark blue and red chromosomes, respectively. Individuals in the

subsequent generation may or may not receive an intact chromosome

of their ancestor. As generations continue, mosaics develop for

chromosomes 1 and 2 as a result of recombination during meiosis.

Chromosomal block sizes are expected to decay with the number of

generations of admixture. Only those meiotic crossovers that occur at

loci where the paired homologous chromosomes have different

ancestries will cause ancestry blocks to decay in size and can be

detected using ancestry informative markers (AIMs).
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longer be one-size-fits-all, instead tailored to the molecu-

lar and genetic profiles of each patient based on genomic

predictors.

Limitations of self-reported race/ethnicity and
genetic ancestry in disease genetics studies
Recent advance in high-resolution genome-wide geno-

typing allow the inference of genetic or “biogeographical”

ancestry using empirical description of individuals and

populations [46]. In determining and quantifying genetic

background, this technology can augment or supersede

the use of proxy methods, such as self-identified race/

ethnicity, physical appearance, language-spoken, or geo-

graphical origin, to stratify research participants and

maximize their relative genetic homogeneity. As described

above, the major problem in performing association stu-

dies of admixed populations that are assessed solely by

self-reported race/ethnicity as a proxy for genetic ancestry

is the possibility of spurious association with false-positive

or false-negative results. Self-reported and investigator-

assigned ethnicity typically relies on the subjective inter-

pretation of a complex combination of both genetic and

non-genetic information including behavior, cultural, and

societal norms, skin color, and other influences. It is rarely

the case that a study participant will report their ethnicity

without errors. Self-reported ethnicity errors may occur

for various reasons; some people may not be fully aware

of their true ethnicity or only know recent ancestry (or

their geographic origin) while others may identify with

one ethnic group despite their admixed background. The

imposition of racial categories on human populations has

been one of the most enduring historical forces that shape

our life trajectory [68]. To illustrate, in a recent study, 9 of

the 1,247 self-reported African Americans were found to

have 100% European ancestry [69]. Similarly, some self-

identified European Americans have substantial admixture

from African ancestry [70]. Both examples illustrate that

researchers should be aware of the limitation of self-

identified race and ethnic categories as proxies for genetic

ancestry [71,72]. Similarly, although ancestry could play a

central role in disease etiology, association studies, and

variable drug response, it provides less information in

identifying societal construct such as health and income

disparities. Furthermore, although disease susceptibility

loci can differ in frequency across populations, using gene-

tics as the only basis of explaining for health disparities

could reinforce racial stereotypes [73]. Moving forward,

the potential of both genetics and race/ethnicity to shed

light on health disparities must be considered.

Studies showed that extrapolation of genomics data

from genetically homogeneous to genetically structured

populations could generate large numbers of false positive

and false negative results [13]. Population stratification (or

structure) is the existence of groups of individuals within

a population that have some degree of reproductive isola-

tion from the rest of the population and for which allele

frequencies are likely to be different from the population

as a whole. Several approaches have been used to adjust

population structure in case–control studies. The most

commonly used clustering algorithms is structure [74].

Using ancestry informative markers, a) local ancestry

tracked from each individual can be compared with the

genome-wide average ancestry, and b) individuals whose

ancestry is not typical of the population under study can

then be excluded [2]. To investigate the genetic relation-

ships among ancestral groups, one could also compare

patterns of population divergence using Wright’s FST
measure [75]. From the FST analysis, one could reliably

identify subpopulations within major geographic regions

(i.e., Europe, Africa, Asia, and the Native Americans) that

exhibit lower or higher pairwise FST (and, therefore, lower

or higher genetic similarities). For populations of com-

plicated admixture or unknown origins, a large number of

loci with high resolution need to be genotyped, followed

by principal component analysis (PCA) to individual-level

genetic data. PCA can detect the presence of population

mixture and admixture in a sample and thus can be used

to determine the axis of variation in different dimensions

based on biogeographical ancestry. Adjustment made

using PCA approach increases investigator confidence

that genetic association findings are not spurious due to

stratification. Finally, characterization of culture, socioeco-

nomic status, and environment should be made in disease

genetic study, otherwise any or all “racial/ethnic” diffe-

rences in disease risk factors can erroneously be attributed

to presumed population genetic differences. Methods

such as mixed model regression could help investigate the

genetic and non-genetic risk factors. The failure to

account ancestral background can thus prevent proper

characterization of the genetic structure of a given study

population, leading to inaccurate prediction of outcome as

well as incorrect inferences about the evolutionary factors

driving patterns of diversity [76].

Race/ethnicity in biomedical research
There are two major questions to answer before ap-

plying race/ethnicity category in biomedical research.

First, is race/ethnicity a valid and reliable approach to

ascertain individual ancestry? If so, should race be

considered by those who study diseases and patient re-

sponses to treatment? Second, how do we define (or is it

at all possible) race/ethnicity in the context of bio-

medical research? In general, people self-report their

population origin correctly in terms of major popula-

tion descriptors (such as Caucasian, African-American,

Hispanics, Asian, etc.). However, these descriptions are

not good indicators of the genetic composition of indi-

viduals, since genetic makeup of individuals are highly
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heterogeneous, and can be captured only with large di-

mensional genomic data. Genetic ancestry estimation at

the individual level is bringing us closer to more per-

sonalized or individualized genetic-based medicine [77].

Genomic researchers in medicine should focus on how

genetic association results can be used to understand

disease process in a way that can inform the clinical care

of racial disparities rather than focusing merely on

explaining health differences [78].

Advances in genomic research provide novel insights

into individual variation in disease susceptibility and ad-

verse reactions to drugs. However, because of unequal ap-

plications of genomics and associated technologies among

human populations, the information collected so far does

not entirely address disparities at multiple levels. Almost

all genetic studies, including many of the identified vari-

ants (e.g., asthma) and pharmacogenetic studies have been

primarily performed in cohorts of European descent [79].

In European ancestry, genome-wide association study

(GWAS) projects that genotype ~1 million tagSNPs in

several thousand cases and controls to test for association

with disease can capture most of the common variation

with minor allele frequencies >5%. However, very dense

marker sets must be typed to capture similar variation in

African ancestry population. Because of shorter linkage

disequilibrium, it has been estimated that a genome-wide

association study of an African population would require

approximately 1.5 million SNPs to achieve the same

resolution as a study of a European population using

0.6 million SNPs [80]. For minority population, few genetic

data have been systematically analyzed and the interplay

between genetic and various socio-environmental factors

remain to be investigated [81,82]. Recent exome study

revealed that exomes from individuals of predominantly

African ancestry were very different from European ances-

try exomes. This is in agreement with the reported genetic

diversity between African and European ancestry genomes

[83]. Hence, genomic data collection should be extended

to as many diverse populations as possible. To illustrate this

further, we assess the allele frequency variations at asthma-

associated GWAS variants deposited at the NHGRI GWAS

catalog (http://www.genome.gov/gwastudies/). Since most

GWAS studies are done in populations of European ances-

try, we examined the allele frequency patterns of 78 GWAS

SNPs associated with asthma and deposited at the GWAS

Catalog site. We used 1000 Genomes Project (http://

www.1000genomes.org) and AncestrySNPminer (https://re-

search.cchmc.org/mershalab/AncestrySNPminer/login.php)

to explore these variants among African American (ASW),

African (YRI), and European American (CEU) populations.

Although further studies are required to determine the ex-

tent to which this variation is responsible for differences in

asthma prevalence, the admixed AA population (ASW) ex-

hibited allele frequencies that appear intermediate in rela-

tion to the ancestral CEU and YRI populations (Figure 5).

Large consortium-based next-generation sequencing

studies such as the NIH/HLBI GO Exome Sequencing

Project, the Consortium on Asthma among African ances-

try Populations in the Americas (CAAPA), and the 1000

Genomes Project are currently using next-generation whole

exome and whole genome sequencing studies to provide

diverse genomic information from different admixed popu-

lations [84]. These large-scale sequencing projects have

revealed that admixed ethnic groups demonstrate a

Figure 5 Minor allele frequency (MAF) distribution. Asthma-related GWAS SNP’s across African American (ASW), European American (CEU),

and African (YRI) populations from the NHGRI GWAS catalog (http://www.genome.gov/gwastudies). The GWAS catalog is an online catalog of

SNP trait associations including asthma from published GWAS studies.
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remarkable degree of genetic diversity related to an ancient

African ancestry. Such genetic diversity has resulted in

shorter regions of shared chromosomal segments (i.e., link-

age disequilibrium) and a greater frequency of rare variants

in ethnic groups with an African ancestry compared with

European ancestral populations. In addition to increased

genome and exome sequencing efforts, it is also critical to

assess non-genetic factors such as poverty, education,

access to health care, cultural practices, and environmental

exposure such as traffic, smoke, and mold, which vary

substantially among populations and may interact with

genetic risk factors.

Which factors contribute more to health disparity:
race/ethnicity or ancestry?
Unlike self-reported race-based health disparity studies,

which represent a combination of both genetic and

environmental background [85], ancestry-based health

disparity studies provide a new way to unravel the

contribution of genetics to health disparities from non-

genetic factors (such as socio-environmental factors). If

a greater African ancestry is observed across the genome

in asthmatic patients relative to controls, but no signifi-

cant rise in local ancestry at a particular locus, this may

point to a stronger role for socio-environmental factors

(e.g., income, education, exposures to traffic, home, ciga-

rettes) independent of ancestry [81,86,87]. Associations

found between genetic ancestry and disease could be

explained by unmeasured environmental factors that are

associated with genetic ancestry and contribute to health

disparities, such as socioeconomic status (SES), neighbor-

hood environment, and psychosocial factors including

perceived stress or discrimination [88-90]. Therefore, to

avoid unwarranted inferences about the magnitude of gen-

etic influences on health disparities, it is critical to include

appropriate socio-environmental variables in the analysis

of ancestry and disease risk. A good example that illustrates

this phenomenon is the recent studies that showed educa-

tion and socioeconomic factors, but not genetic ancestry,

were associated with blood pressure and cancer among

African Americans in the US, respectively [91,92]. Further-

more, analysis showed that education was significantly

associated with blood pressure in African Americans, but

not in European American, suggesting that improved

access to education in African American communities

may help to reduce racial inequalities in health. An im-

portant next step is to explore the mechanisms by which

higher education is associated with reduced hypertension

and, in particular, why the association is stronger among

African Americans than among European Americans.

Further studies are also needed to determine whether

education is causally related to blood pressure or if it only

serves as a marker for other aspects of the social environ-

ment. The role of genetic ancestry is also evident from the

correlation of nicotine metabolism with admixed ancestry

in smokers. Maori smokers on average are slow nicotine

metabolizers (~35%) compared to Caucasians (Figure 6).

This is mainly because of the significantly higher frequency

of slow nicotine-metabolizing variants of the CYP2A6 gene

in Maori compared to that in Caucasians [93]. An admixed

individual from Caucasian and Maori showed an inter-

mediate nicotine-metabolism in relation to his or her an-

cestries. These findings are critical to develop appropriate

intervention policies to reduce disease burden due to gen-

etic and non-genetic factors [90].

Moving beyond race/ethnicity to guide
personalized medicine
As the world becomes multiethnic, and intermarriage

between different racial/ethnic groups gets more and

more common [94], it is increasingly difficult to assign a

single ethnicity to an individual. There is a need of clear

distinction between personalized medicine and guide-

lines for the application of personalized medicine in the

context of homogeneous and an admixed population.

Personalized medicine is a dynamic and broad term used

to describe the incorporation of patients’ genomic profiles,

family history, and social and other health details into

clinical decision-making. Personalized medicine is easier to

implement in a more uniform population using the genetic

variation present in an individual. In admixed populations,

it is much more complex to have a “public health” person-

alized medicine guideline as the context of the variants

may be ancestry-sensitive and on an individual basis. For

Figure 6 Nicotine metabolisms in ancestral and admixed

population. Nicotine metabolism was estimated by salivary 3-HC:

COT ratio. The X-axis shows population groups with sample size in

brackets, and the Y-axis labels the nicotine metabolism. These data

provide evidence that a) Maori smokers have significantly (p = 0.001)

slower nicotine metabolic rates compared to Caucasian smokers and

b) there is a significant linear correlation between nicotine metabolic

rate and the degree of Maori ancestry. The admixed population has

intermediate nicotine metabolism compared with parental nicotine

metabolisms. Reproduced from Lea et al. [93].
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example, one person may have susceptibility variants that

are common in one of their ancestral populations, but not

the other (and the other way around for another individual

from the same admixed population). In order for the per-

sonalized medicine to be meaningful and applicable to the

global populations, we will need to know how genetic vari-

ants found in different parts of the world influence health

and drug response. Thus, the application of personalized

medicine should not be limited to patients with well-

understood genotypes.

Although knowledge gained in genomics has advanced

our understanding of biology, the promise of perso-

nalized medicine continues to appear far off for minority

and admixed populations. For example, recently, phar-

macogenomic information has been added to over 70

drug labels [95], but the studies on which label infor-

mation are based have mostly focused on European

populations. Meanwhile, African populations, who have

the greatest genetic variation resulting in more haplotypes,

lower levels of linkage disequilibrium, more divergent

patterns of linkage disequilibrium, and more complex pat-

terns of population substructure, are grossly underrepre-

sented in the genomic studies that inform pharmaceutical

guidance [95]. The result is that clinicians may rely too

heavily on data obtained from Europeans to make clinical

decisions for Africans and other non-European popula-

tions. In addition, this inadequate representation of global

populations in the cataloging of genetic variation is hinder-

ing the need to move away from the use of group labels

such as race, which is often a poor proxy for genetic ances-

try. This concern extends to the momentous debate about

the development of ‘race-targeted’ drugs, such as BiDil

(approved by the US Food and Drug Administration

(FDA) to treat heart failure in admixed African Americans),

based on subgroup analyses without any adjustment for

potential confounders in samples [94]. Intra-ethnic diver-

sity adds complexity to the scientific appraisal, regulatory

decisions, and, eventually, prescription of race-targeted

drugs. Ignoring admixture or stratification within ethnic

groups will complicate the promise of personalized medi-

cine [96-99]. A study by Lee [100] showed that warfarin

dosing algorithms that are based on ‘race’ terms for well-

defined ethnic groups are not applicable to the heteroge-

neous admixed population. In April 2011, the American

Congress of Obstetricians and Gynecologists (ACOG)

adopted a policy to screen all patients for cystic fibrosis

because of the difficulty in assigning ethnicity to indi-

viduals [101]. The US FDA recommends screening all

groups, regardless of race or ethnicity, for the presence

of the HLA-B*5701 allele before starting or restarting

therapy with Abacavir or Abacavir-containing medica-

tions (http://www.fda.gov/Drugs/DrugSafety/ucm123927.

htm). Abacavir is used to treat human immunodeficiency

virus (HIV) infection. Patients with the HLA-B*5701 allele

have a higher risk of developing a hypersensitivity reac-

tion. Furthermore, several medication dosing algorithms

around the world are now being developed using the

patient’s own genotype data [79,102,103].

Conclusion
Although conceptual distinction between race/ethnicity

and ancestry is widely recognized [104-106], it has not

been translated into measurements of how well each

accounts for health disparities. Thus, the continued use of

race in genetic research obscures the fundamental causes

of racial differences in health. Although race and/or

ethnicity could serve as good markers to predict socio-

economic differentials like housing, income, and/or edu-

cation, they are poor predictor of genetic ancestry [90].

Increasingly, the world’s populations do not fall into con-

ventional homogeneous ethnic categories, and ancestry in-

formative markers with appropriate statistical methods

must be used for quantitative measurement of the genetic

ancestry of individuals. Quantifying the contributions of

ancestry, environment (such as socio-economic status, life

style), and their interactions to disease outcome in the

genetically heterogeneous population will be critical to

applying genomic-based biomarkers to the practice of

medicine. The path to personalized medicine for all ethnic

groups requires improvements to our ability to decipher

genotype and sequence data using different analysis

methods that integrate race/ethnicity information and ac-

count for ancestral genetic structure, complex haplotypes,

and gene-gene and gene-environment interactions. It is

crucial to recognize that disease and health disparities are

the products of complex interactions that are not solely

limited to genes but also involve environmental factors,

socioeconomic status, lifestyle factors, and the biases of

health care providers. Thus, it is important to place gene-

tic ancestry factors in context with social, environmental,

and economic factors for the purpose of resolving health

disparities between populations.

Given higher genetic diversity within races than between

races, the use of race/ethnicity as a dissimilarity marker is

misleading [107,108]. Genetic ancestry can describe gen-

etic relatedness accurately than race and ethnicity, but it

could still exacerbate disparities since it sidesteps the

interaction of biological and social factors that contribute

to health. The current inference of ancestry based on

computer programs with built-in assumptions about how

the data should be grouped can sometimes reify racial

distinctions by presenting genetic clusters or racial

boundaries that do not exist in human population spe-

cially in admixed population. In addition, current ances-

try inferences are based on reference samples with limited

representation of the entire population (e.g., West African

ancestry sample for the entire African Americans and

Northern European sample for the entire European
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Americans). Understanding the sources of human genetic

variation (using genetic markers) and the causes of health

disparities (using race/ethnicity information) could lead to

interventions that would improve the public health and

bring personalized medicine to all.
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