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SELF-REPRODUCTION IN CELLULAR AUTOMATA 

Christopher G. L A N G T O N  
Dept. of Computer and Communication Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA 

Self-reproduction in cellular automata is discussed with reference to the models of yon Neumann and Codd. The conclusion 
is drawn that although the capacity for universal construction is a sufficient condition for self-reproduction, it is not a necessary 
condition. Slightly more "liberal" criteria for what constitutes genuine self-reproduction are introduced, and a simple 
self-reproducing structure is exhibited which satisfies these new criteria. This structure achieves its simplicity by storing its 
description in a dynamic "loop", rather than on a static "tape". 

1. Introduction 

Cellular automata were conceived by John von 
Neumann about  1950 as ideal structures for mod- 
eling self-reproducing "machines".  The problem 
was stated by A.W. Burks [1]: 

Von Neumann was interested in the general 
question: What kind of  logical organization is 
sufficient for an automaton to be able to reproduce 
itself?. The question is not precise and admits to 
trivial versions as well as interesting ones. Von 
Neumann had the familiar natural phenomenon of  
self-reproduction in mind when he posed it, but he 
was not trying to simulate the self-reproduction of  
a natural system at the levels of  genetics and 
biochemistry. He wished to abstract from the 
natural self-reproduction problem its logical form. 
(emphasis added) 

We will first review yon Neumann's  cellular 
self-reproducing automaton and a simplified model 
due to Codd. Then a further simplification will be 
presented: a small and compact " loop"  embedded 
in a cellular automaton which is capable of  self- 
reproduction. 

Von Neumann's  approach to the problem of  
self-reproduction was a classically logico- 
mathematical one: I f  self-reproduction is being 
carried out by a (highly complex) biochemical 

machine, then that machine's behavior is de- 
scribable as a logical sequence of steps, i.e. as an 
algorithm. Now, if an algorithm can be performed 
by any machine at all, then there is a Turing 
machine which can perform the same algorithm. 
For this reason yon Neumann set out to demon- 
strate the existence of  a Turing machine which 
could effect its own reproduction. If  such a Turing 
machine exists, it is entirely plausible that the 
processes by which living organisms reproduce 
themselves, and by implication, other processes on 
which life itself is based, are algorithmically de- 
scribable and, therefore, that life i/self is achievable 
by machines (a similar tenet is held by AI research- 
ers with regard to the processes underlying intel- 
ligence). 

Von Neumann was able to exhibit a universal 
Turing machine embedded in a cellular array using 
29-states per cell and the 5-cell neighborhood. His 
Turing machine is suitably modified so that, as 
output, it can "construct"  in the array any 
configuration which can be described on its input 
tape. Such a machine is called a universal construc- 
tor. His machine will construct any machine de- 
scribed on its input tape and, in addition, will also 
construct a copy of  the input tape and attach it to 
the machine it has constructed. Now, self- 
reproduction follows as the special case where the 
machine described on the tape is the universal 
constructor itself. The result of  the construction 
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process is a copy of  the universal constructor 
together with an input tape which contains its own 
description, which can then go on to construct a 
copy of itself, together with a copy of  its own 
description, and so on indefinitely. 

Note here that there are two levels of  "automa- 
ton" in this construction: 1) the cellular automaton 
itself (the array); and 2) the universal constructing 
automaton which is embedded in the cellular au- 
tomaton as a configuration of states. Thus a 
configuration can be an automaton itself. When 
referring to a "self-reproducing automaton"  we 
will be referring to the embedded automaton, not 
to the cellular automaton. 

Note also the manner in which the information 
on the input tape is used in two crucially different 
ways. First, the information on the tape is treated 
as instructions to be interpreted which, when exe- 
cuted, cause the construction of a machine some- 
where else in the array. Second, the information on 
the tape is treated as uninterpreted data, which 
must be copied and attached to the new machine. 
These two different uses of  information, inter- 
preted and uninterpreted, are found in the process 
of  natural self-reproduction as well, the former 
being the process of translation, and the latter 
transcription. It is interesting that the necessity for 
mechanisms which treat the same information 
in these two different ways resulted from von 
Neumann's  research into the general problem of  
self-reproduction, independently of the discovery 
of the actual physical processes which the cell 
employs to carry them out. 

The details of von Neumann's  cellular construc- 
tion were completed and published after his death 
by Arthur W. Burks [2], who worked with von 
Neumann on the logical design of one of the first 
stored program computers. As might be expected, 
von Neumann's  self-reproducing "machine" is an 
enormously complex configuration, "buil t"  in a 
cellular array, using the set of 29 states as logical 
building blocks, along the general lines of an early 
digital computer, replete with tape reading arms, 
"pulsers", clocks, encoders and decoders. Of 
course, the more complex the machine which is to 

accomplish the construction, the more complex the 
algorithm for building that machine will be, and, 
therefore, the longer the tape which contains the 
description of the machine. Thus, there is a genuine 
incentive for finding "simple" machines which are 
nonetheless still capable of self-reproduction. 

For  his Doctoral research at the University of 
Michigan, E.F. Codd [3] set out to reduce the 
complexity of yon Neumann's  machine. He was 
able to demonstrate a construction universal 
configuration which requires just 8-states per cell. 
Self-reproduction u n d e r  Codd's construction is 
obtained as a special case of  universal construc- 
tion, just as it was in yon Neumann's.  In fact, the 
two machines behave in a very similar manner, the 
primary difference between them being that Codd's 
construction is obviously influenced by a careful 
consideration of  the physiology of  the nervous 
system in animals. Although simpler than yon 
Neumann's,  Codd's machine is still as complex as 
a modern digital computer, and, as far as is known, 
neither Codd's nor yon Neumann's  machines have 
actually been run under "real"  simulation on a 
computer. 

Thus, simpler machines than von Neumann's 
can be shown to be capable of reproducing them- 
selves. The question then arises: How simple can a 
machine become while still retaining the capacity 
to reproduce itself?. This question is the converse to 
yon Neumann's  question about sufficient or- 
ganization, for it asks: What kind of logical or- 
ganization is necessary for an automaton to be able 
to reproduce itself?. This question is not precise 
either, for it also admits of trivial versions. 

There are many examples of  configurations be- 
ing reproduced in cellular arrays which we would 
not want to call instances of self-reproduction. For  
example, if one takes the transition function to 
define modulo-two addition over the array, for an 
array of  two-states per cell using the 5-cell neigh- 
borhood,  one can observe simple configurations 
which appear to reproduce themselves. Starting 
with a single cell initialized to "o n "  and the rest to 
"off",  a short time later there are five, isolated cells 
which are "on" .  Does this constitute self- 



C.G. Langton ~Self-reproduction in cellular automata 137 

reproduction? Clearly not. The initial cell "got 
reproduced" by the transition "physics", rather 
than by having reproduced itself. In general, there 
is no way in which a configuration consisting of 
just one cell could be said to reproduce itself. Any 
reproductive process going on here resides entirely 
in the transition rules, and not at all within the 
"configuration" itself. 

In order to rule out such cases, as well as other 
trivially reproduced configurations, it has generally 
been required that any self-reproducing con- 
figuration must be capable of universal construc- 
tion. This criterion, indeed, eliminates the trivial 
cases, but it also has the unfortunate consequence 
that it eliminates all naturally occurring self- 
reproducing systems as well, since none of these 
have been shown to be capable of  universal con- 
struction. Furthermore, it is highly unlikely that 
the earliest self-replicating molecules, from which 
all living organisms are supposed to have been 
derived, were capable of universal construction, 
and we would not want to eliminate these from the 
class of truly self-reproducing configurations. 

Thus, the criteria for what consitutes true self- 
reproduction need to be relaxed a bit, but no so far 
as to include the passive kind of reproduction 
mentioned above. It seems clear that we should 
take the "self" of "self-reproduction" seriously, 
and require of a configuration that the construc- 
tion of the copy should be actively directed by the 
configuration itself. That is, responsibility for the 
production of the offspring should reside primarily 
within the sequences of  actions undertaken by the 
parent structure. Note that we want to require that 
responsibility reside primarily with the parent 
structure itself, but not totally. This means that the 
structure may take advantage of certain properties 
of the transition function "physics" of  the cellular 
space, as molecular reproduction most certainly 
does, but not to the extent that the structure is 
merely passively copied by mechanisms built into 
the transition function. 

Von Neumann's work suggests an appropriate 
criterion, which is all the more appropriate because 
it is satisfied by molecular self-reproduction: the 

configuration must treat its stored information in 
the two different manners mentioned above: in- 
terpreted, as instructions to be executed (trans- 
lation), and uninterpreted, as data to be copied 
(transcription). 

In the remainder of this paper, we present an 
extremely simple configuration which can be em- 
bedded in a cellular automaton and which can 
effect its own reproduction by employing the pro- 
cesses of transcription and translation. Further- 
more, self-reproduction is accomplished in a man- 
ner which does not depend on prior establishment 
of a capacity for universal construction. 

2. A self-reproducing loop 

Since the idea for this simple self-reproducing 
configuration came out of  a study of the com- 
ponents of Codd's universal constructor, we need 
to go into some of the details of Codd's automa- 
ton. The basic structure upon which Codd bases 
his entire machine is the data-path (fig. 1). This 
consists of a string of cells in state 1 ("core" cells) 
surrounded by ceils in state 2 ("sheath" cells). 
Data-paths, as their name implies, are capable of 
transmitting data in the form of"signals".  A signal 

2 2 2 2 2 2 2 2 2 2 2 2 2  
1 1 1 1 1 1 1 1 1 1 1 1 1  
2 2 2 2 2 2 2 2 2 2 2 2 2  

( a )  

2 2 2 2 2 2 2 2 2 2 2 2 2  
1 1 1 1 1 0 7 1 1 1 1 1 1  
2 2 2 2 2 2 2 2 2 2 2 2 2  

( b )  

2 2 2 2 2 2 2 2 2 2 2 2 2  
1 1 1 1 1 1 0 7 1  1 1 1 1 
2 2 2 2 2 2 2 2 2 2 2 2 2  

( c ) 

Fig. 1. Signal propagation. (a) Codd's data-path: a string of  
"'core" cells surrounded by "sheath" cells. (b) A "7 0" signal 
at time t. (c) The "7 0" signal at time t + 1. (Note: In all figures, 
cells not explicitly specified are in state 0.) 
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consists of  a packet of  two co-traveling states: the 
signal state itself (state 4, 5, 6 or 7) followed by the 
state 0. The packet travels with the signal state 
leading, and the 0 state trailing (figs. 1 b, c). Data- 
paths may branch and fan out, in which case the 
signals are duplicated at the branching points, one 
copy proceeding down each branch (fig. 2). Signals 
are grouped into sequences, which are treated as 
instructions to effect certain actions. One such 
action, the extension of  a data-path, is illustrated 
in fig. 3, The signal sequence "7 0 - 6  0", when it 
arrives at the cap at the end of  a data-path, results 
in the data-path being extended by one cell. There 
is a similar signal sequence for retracting the 
data-path by one cell. There are also signal se- 
quences which effect extension to the left or right 
instead of  straight ahead, along with associated 
sequences to effect retraction of  a left or right 
corner in a data-path. 

2 1 2  
2 1 2  
2 1 2  

2 2 2 2 2 2 1 2 2 2 2 2 2  
1 1 1 1 0 7 1 1 1 1 1 1 1  
2 2 2 2 2 2 2 2 2 2 2 2 2  

time t 

2 1 2  
2 1 2  
2 1 2  

2 2 2 2 2 2 1 2 2 2 2 2 2  
1 1 1 1 1 0 7 1 1 1 1 1 1  
2 2 2 ~ 2 2 2 2 2 2 2 2 2  

time t+1 

2 1 2  
2 1 2  
2 1 2  

2 2 2 2 2 2 7 2 2 2 2 2 2  
1 1 1 1 1 1 0 7 1 1 1 1 1  
2 2 2 2 2 2 2 2 2 2 2 2 2  

time t+2 

2 1 2  
2 1 2  
2 7 2  

2 2 2 2 2 2 0 2 2 2 2 2 2  
1 1 1 1 1 1 1 0 7 1  1 1 1 
2 2 2 2 2 2 2 2 2 2 2 2 2  

time t+3 

Fig. 2. Signal duplication. What happens when a signal en- 
counters a T-junction. 

2 2 2 2 2 2 2 2 2 2 2 2 2  
1 1 1 1 0 6 1 1 0 7 1 1 1 2  
2 2 2 2 2 2 2 2 2 2 2 2 2  

( a )  

2 2 2 2 2 2 2 2 2 2 2 2 2  
1 1 1 1 1 1 1 1 0 6 1 1 1 1  
2 2 2 2 2 2 2 2 2 2 2 2 2  

( b )  

2 2 2 2 2 2 2 2 2 2 2 2 2 2  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2  

( c )  

Fig. 3. Path extension. (a) A capped data-path with the "ex- 
tend" signal sequence travelling along it. (b) The result of the 
"7 0" signal hitting the cap: the cap becomes a core cell. (c) The 
result of the "6 0" signal hitting the exposed core cell: the 
sheath is extended one cell and the path is capped. 

The basic operation of  Codd's machine is as 
follows. A data path is used as a tape reading arm, 
which is extended over a " tape",  a linear string of 
states 0 and 1. The sequence of  l 's and O's on the 
tape is sensed by the tape arm and these sequences 
are decoded into a sequence of  instructions. This 
sequence of  instructions causes another data path, 
the "construction arm",  to be extended into an 
empty area of  the array and scanned back and 
forth over it, setting the cells it passes over to the 
proper states to form the configuration which is the 
machine described on the tape. Finally, a starting 
signal is injected into the new machine and the 
construction arm is withdrawn. 

Codd uses a structure which he calls a "periodic 
emitter' as a basic timing element in his machine. 
The periodic emitter consists simply of  a data path 
which folds back on itself to form a loop with a 
path leading away from it (fig. 4). Any signal 
traveling within the loop will be duplicated at the 
T-junction, with one copy going back around the 
loop, while the other copy heads off down the 
data-path leading away from the loop. Since the 
signal traveling around inside of the loop will 
arrive at the T-junction at regular intervals, a 
signal will be sent off down the data-path at regu- 
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2 2 2 2 2 2  
2 0 1 1 1 1 1 2  
2 7 2 2 2 2 1 2  
2 1 2  2 1 2  
2 1 2  2 1 2  
2 1 2 2 2 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2  
2 1 1 1 1 1 0 ? 1 1 1 1 1 1 1 1 0 7 1 1  

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

Fig. 4. Periodic emitter. The two "7 0" si~al sequences will 
keep cycling around the loop, sending a copy of the "7 0" 
si~al off along the data-path every ten time steps. 

2 2 2 2 2 2  
2 0 1 1 6 0 1 2  
2 7 2 2 2 2 1 2  
2 1 2  2 1 2  
2 1 2  2 1 2  
2 1 2 2 2 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2  
2 1 0 6 1 1 0 7 1 1 1 1 0 6 1 1 0 7 1 1 2  

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

Fig. 5. Path extension machine. As the two "extend" sequences 
cycle around the loop, they will form copies which will travel 
down the data-path, extending it indefinitely. 

lar intervals as well, whence the name of  this 
component. 

Codd uses the periodic emitter solely for timing 
processes within his machine. However, this simple 
structure is an extremely important  one, for it 
constitutes a storage element: signals cycling within 
the loop will remain cycling indefinitely, in a 
manner reminiscent of the serial delay line memo- 
ries of  the earliest stored program computers. 
Thus, one can use a loop of  this sort to store a 
program dynamically~ rather than in static form, as 
on a tape. This is of  tremendous aid in the design 
of  a self-reproducing machine because it eliminates 
the complex machinery associated with moving a 
read head back and forth over a static tape, and the 
simpler the machine, the simpler it is to reproduce. 
Furthermore, rather than having to decode the 
information on a tape to obtain the signal se- 
quences necessary to effect the construction of  a 
machine, the "program" which we store in the loop 
can simply be the proper signal sequence to effect 
the construction, the same sequence which would 
have been generated as a result of  decoding a 
sequence of 1 and 0 marks on a static tape. Thus, 
we can also eliminate the complex decoding and 
signal generation circuitry from our machine. 

Thus, from these cyclic storage loops, we can 
build many machines, simple or complex, which 
can perform any task that we desire, simply by 
storing the appropriate sequence of  instructions in 
a loop of the appropriate size. For  example, if we 
put the path extension sequence into a loop, we get 
a machine which will extend its data-path 
indefinitely (fig. 5). 

Can we make such a loop reproduce itself? It is 
not immediately obvious that we can, because it 

may not be possible to fit the instructions to build 
a loop into a loop of that size. Indeed, it does not 
seem possible to do this with Codd's signal se- 
quences, since he requires the sequence 
"7 0 1 1 6 0" just to extend the path by one cell. 
I f  it takes six cells to store the information to 
construct a single cell of  the new machine, how 
could a loop store enough information to build a 
structure identical in size to itself? The answer is 
that if we make the storage loop a perfect square, 
we need only store the instructions necessary to 
build one side and one corner of  the loop. As these 
instructions cycle around the loop four times, they 
will repeat the process of  building a side and a 
corner four times. Thus we can reduce the space 
requirement for the storage of  the instructions by 
a factor of  four. 

As it turns out, using Codd's signal sequences, 
there is still not enough room in a loop to store the 
instructions to build one side and one corner, as 
they are too long. However, since we are not 
interested in maintaining the capacity of  universal 
construction, we alter the meaning of  some of  his 
signals, making them individually more powerful, 
at the expense of  making them collectively less 
general. Altering the meaning of  signals is accom- 
plished, not by changing configurations in the 
array, as we have been describing above, but by 
changing the transition rules which control the 
behavior of  the configurations in the array. By this 
technique, we shorten the overall sequence neces- 
sary to build one side and one corner sufficiently 
so that it can now fit into a loop of  the size which 
it constructs. Thus, where Codd requires the se- 
quence "7 0 -  6 0" to extend the data-path by one 
cell, we redefine the "7 0" signal to cause this 
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extension by itself. Furthermore, where signals in 
Codd's machine had to be spaced four cells apart, 
we allow signals to be only three cells apart. We 
also allow a left path extension to be accomplished 
by two successive "4 0" signals, where Codd re- 
quired the sequence "4 0 - 4  0 - 5  0 - 6  0". We 
also allow a path which is extended into the side 
of another path to "fuse" with that path, forming 
a new T-junction. After all of these changes have 
been made, we have freed several of Codd's signals 
from any vestiges of their former meanings and can 
therefore apply them to other ends. The altered set 
of transition rules is listed in table I. 

The loop configuration which emerges after all 
of this modification is shown in fig. 6. The in- 
struction sequence for self-reproduction is: 

2 2 2 2 2 2 2 2  
2 1 7 0 1 4 0 1 4 2  
2 0 2 2 2 2 2 2 0 2  
2 7 2  2 1 2  
2 1 2  2 1 2  
2 0 2  2 1 2  
2 7 2  2 1 2  
2 1 2 2 2 2 2 2 1 2 2 2 2 2  
2 0 7 1 0 7 1 0 7 1 1 1 1 1 2  

2 2 2 2 2 2 2 2 2 2 2 2 2  

TIME = 0 

Fig. 6. Self-reproducing loop. 

7 0 - 7  0 - 7  0 - 7  0 - 7  0 - 7  0 - 4  0 - 4  0. 

The six "7 0" signals will extend the construction 
arm by six cells, while the two "4 0" signals will 
build a left hand corner at the end of the arm. After 
each cycle of the instructions around the loop, 

Table I 
Transition function table for self-reproducing loops 

CTRBL->I CTRBL->| CTRBL->I CTRBL->I CTRBL->I 

00000->0 02527->I 11322->I 20242->2 30102->I 
00001->2 10001->1 12224->4 20245->2 30122->0 
00002->0 10006->1 12227->7 20252->0 30251->1 
00003->0 10007->7 12243->4 20255->2 40112->0 
00005->0 10011->1 12254->7 20262->2 40122->0 
00006->3 10012->1 12324->4 2 0 2 7 2 - > 2  40125->0 
00007->1 10021->1 12327->7 20312->2 40212->0 
00011->2 10024->4 12425->5 20321->6 40222->1 
00012->2 10027->7 12426->7 20322->6 40232->6 
00013->2 10051->1 12527->5 20342->2 40252->0 
00021->2 10101->1 20001->2 20422->2 40322->1 
00022->0 10111->1 20002->2 20512->2 50002->2 
00023->0 10124->4 20004->2 20521->2 50021->5 
00026->2 10127->7 20007->1 20522->2 50022->5 
00027->2 10202->6 20012->2 20552->1 50023->2 
00032->0 10212->1 20015->2 20572->5 50027->2 
00052->5 10221->1 20021->2 20622->2 50052->0 
00062->2 10224->4 20022->2 20672->2 50202->2 
00072->2 10226->3 20023->2 20712->2 50212->2 
00102->2 10227->7 20024->2 20722->2 50215->2 
00112->0 10232->7 20025->0 20742->2 50222->0 
00202->0 10242->4 20026->2 20772->2 50224->4 
00203->0 10262->6 20027->2 21122->2 50272->2 
00205->0 10264->4 20032->6 21126->1 51212->2 
00212->5 10267->7 20042->3 21222->2 51222->0 
00222->0 10271->0 20051->7 21224->2 51242->2 
00232->2 10272->7 20052->2 21226->2 51272->2 
00522->2 10542->7 20057->5 21227->2 60001->1 
01232->1 11112->1 20072->2 21422->2 60002->1 
01242->1 11122->1 20102->2 21522->2 60212->0 
01252->5 11124->4 20112->2 21622->2 61212->5 
01262->1 11125->1 20122->2 21722->2 61213->1 
01272->1 11126->1 20142->2 22227->2 61222->5 
01275->1 11127->7 20172->2 22244->2 70007->7 
01422->1 11152->2 20202->2 22246->2 70112->0 
01432->1 11212->1 20203->2 22276->2 70122->0 
01442->1 11222->1 20205->2 22277->2 70125->0 
01472->I 11224->4 20207->3 30001->3 70212->0 
01625->1 11225->1 20212->2 30002->2 70222->1 
01722->1 11227->7 20215->2 30004->1 70225->I 
01725->5 11232->1 20221->2 30007->6 70232->1 
01752->1 11242->4 20222->2 30012->3 70252->5 
01762->1 11262->1 20227->2 30042->1 70272->0 
01772->I 11272->7 20232->I 30062->2 

Neighborhoods are read as follows (rotations are not 

T 
LC R ==> I 

B 

listed) 
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another side and corner has been built (fig. 7). This 
process continues until the arm has closed back on, 
and "fused", with itself. Fig. 8 shows the way in 
which the collision of  signals at the newly formed 
junction results in the generation of two new 
signals: a "5"  signal, traveling back toward the 
parent loop, pulling the "umbilical cord" behind it 
back into the body of  the parent loop; and a "6 0" 
signal traveling on into the offspring loop. This 
"6 0" signal does not turn the corner in the 
offspring loop when it hits it, but instead breaks 
through the sheath and initiates the construction of  
a new construction arm for the offspring loop. 
Meanwhile, a "7 0" signal was sent on around the 
corner, in place of the "6 0" signal which broke 
through the sheath, patching up the sequence of  
instructions, which is now left cycling around the 
offspring loop. Meanwhile, back in the parent 
loop, the "5"  signal progresses on to the next 
corner, via the sheath, where it will initiate the 
construction of a new construction arm for the 
parent loop. The result of all of this activity is that, 
after 151 time steps, we are left with an offspring 
loop which is an exact copy of its parent at time 
0 (fig. 9). Thus the loop has succeeded in re- 
producing itself. 

Since the offspring loop is an exact duplicate of 
the parent loop, it will behave in exactly the same 

manner as its parent and construct an offspring 
loop to its "right". Notice that the parent loop is 
about to construct a second offspring loop 
"above" itself. Although not explicitly required by 
our criteria, one feels intuitively that to effect true 
reproduction the result should be two copies which 
are identical both physically and behaviorally to 
the original. Thus we want to leave the parent with 
the capacity to reproduce itself after it has pro- 
duced an offspring which can do so. 

As can be seen, after each offspring has been 
produced, the construction arm is moved 90 de- 
grees counterclockwise, and a new offspring will be 
constructed in this area of the array. However, this 
process cannot continue indefinitely without a loop 
eventually trying to build an offspring in an area 
already occupied by another loop. When a loop 
encounters another loop residing in a potential 
offspring site, the loop retracts its arm back into 
the corner, actually blocking its own core-path 
with a sheath-cell. When the cycling instructions 
run into this sheath-cell blockade, they are simply 
erased, one by one, until the loop is left empty of 
instructions. 

Thus, over a period of time, there will emerge an 
expanding colony of loops growing out into the 
array. Figure 10 shows seven generations of the 
growth of the colony. The colony consists of  a 

2 2 2 2 2 2 2 2  
2 4 0 1 1 1 1 1 7 2  
2 1 2 2 2 2 2 2 0 2  
2 0 2  2 1 2  
2 4 2  2 7 2  
2 1 2  2 0 2  
2 0 2  2 1 2  2 
2 7 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 2 2 1 2  
2 1 0 7 1 0 7 1 0 7 1 0 7 1 0 7 1 1 1 1 2  

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

TIME = 35 

2 2 2 2 2 2 2 2  2 2  
2 7 0 1 7 0 1 7 0 2  2 1 1 2  
2 1 2 2 2 2 2 2 1 2  2 1 2  
2 1 2  2 7 2  2 1 2  
2 1 2  2 0 2  2 1 2  
2 1 2  2 1 2  2 7 2  
2 1 2  2 7 2  2 0 2  
2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 1 2  
2 4 1 0 4 1 0 7 1 0 7 1 0 7 1 0 7 1 0 7 2  

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

TIME = 70 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
2 0 1 7 0 1 7 0 1 2  2 1 1 1 1 7 0 1 7 2  
2 7 2 2 2 2 2 2 7 2  2 1 2 2 2 2 2 2 0 2  
2 1 2  2 0 2  2 2 1 2  
2 0 2  2 1 2  2 7 2  
2 7 2  2 4 2  2 0 2  
2 1 2  2 0 2  2 1 2  
2 0 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 7 2  
2 7 1 1 1 1 1 0 4 1 0 4 1 0 7 1 0 7 1 0 2  

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
3 0 1 1 1 1 1 7 0 2  2 1 7 0 1 7 0 1 4 2  
2 4 2 2 2 2 2 2 1 2  2 0 2 2 2 2 2 2 0 2  
2 1 2  2 7 2  2 7 2  2 1 2  
2 0 2  2 0 2  2 1 2  2 4 2  
2 4 2  2 1 2  2 1 2  2 0 2  
2 1 2  2 7 2  2 2 1 2  
2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 1 2  
2 7 1 0 7 1 0 7 1 0 7 1 0 7 1 0 7 1 1 1 2  

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

TIME = 105 T /ME = 120 

Fig. 7. Construction of offspring loop. With every cycle of the instructions around the parent loop, a side and a corner of the offspring 
loop are built. 
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2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 3  
2 1 1 7 0 1 7 0 1 2  2 7 0 1 4 0 1 4 0 2  
2 1 2 2 2 2 2 2 7 2  2 1 2 2 2 2 2 2 1 2  
2 1 2  2 0 2  2 0 2  2 1 2  
2 1 2  2 t 2  2 7 2  2 t 2  
2 0 2  2 7 2  2 1 2  2 1 2  
2 4 2  2 0 2  2 1 2  2 1 2  
2 1 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 7 2  
2 0 4 1 0 7 1 0 7 1 0 7 1 0 7 1 0 7 1 0 2  

3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

TIME = 124 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
2 1 7 0 1 7 0 1 7 2  2 0 1 4 0 1 4 0 1 2  
2 1 2 2 2 2 2 2 0 2  2 7 2 2 2 2 2 2 1 2  
2 1 2  2 1 2  2 1 2  2 1 2  
2 1 2  2 7 2  2 0 2  2 1 2  
2 1 2  2 0 2  2 7 2  2 1 2  
2 0 2  2 1 2  2 t 2  2 7 2  
2 4 2 2 2 2 2 2 7 2 2 2 1 2 2 2 2 2 2 0 2  
2 1 0 4 1 0 7 1 0 7 1 0 0 1 0 7 1 0 7 1 2  

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

TIME = 125 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
2 7 0 1 7 0 1 7 0 2  2 1 4 0 1 4 0 1 1 2  
2 1 2 2 2 2 2 2 1 2  2 0 2 2 2 2 2 2 1 2  
2 1 2  2 7 2  2 7 2  2 1 2  
2 t 2  2 0 2  2 1 2  2 1 2  
2 1 2  2 1 2  2 0 2  2 7 2  
2 1 2  2 7 2  2 7 2  2 0 2  
2 0 2 2 2 2 2 2 0 2 2 2 1 2 2 2 2 2 2 | 2  
2 4 1 0 4 1 0 7 1 0 " 7 5 8 6 1 0 7 1 0 7 2  

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

TINE = 126 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
2 0 1 7 0 1 7 0 1 2  2 4 0 1 4 0 1 1 1 2  
2 7 2 2 2 2 2 2 7 2  2 1 2 2 2 2 2 2 1 2  
2 1 2  2 0 2  2 0 2  2 1 2  
2 1 2  2 1 2  2 7 2  2 7 2  
2 1 2  2 7 2  2 1 2  2 0 2  
2 1 2  2 0 2  2 0 2  2 1 2  
2 1 2 2 2 2 2 2 1 2 2 2 7 2 2 2 2 2 2 7 2  
2 0 4 1 0 4 1 0 7 1 5 2 1 0 6 1 0 7 1 0 2  

3 2 2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  

TIME = 127 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
2 1 7 0 1 7 0 1 7 2  3 0 1 4 0 1 1 1 1 2  
2 0 2 2 2 2 2 2 0 2  2 4 2 2 2 2 2 2 1 2  
2 7 2  2 1 2  2 1 2  2 7 2  
2 1 2  272 2 0 2  2 0 2  
2 1 2  2 0 2  2 7 2  2 1 2  
2 1 2  2 1 2  2 1 2  2 7 2  
2 1 2 2 2 2 2 2 7 2  2 0 2 2 2 2 2 2 0 2  
2 1 0 4 1 0 4 1 0 5  2 7 1 0 6 1 0 7 1 2  

2 2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  

TIME = 128 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
2 7 0 1 7 0 1 7 0 2  2 1 4 0 1 1 1 1 1 2  
2 1 2 2 2 2 2 2 1 2  2 0 2 2 2 2 2 2 7 2  
2 0 2  2 7 2  2 4 2  2 0 2  
2 7 2  2 0 2  2 1 2  2 t 2  
2 1 2  2 1 2  2 0 2  2 7 2  
2 1 2  2 7 2  272 2 0 2  
2 1 2 2 2 2 2 2 0 5  2 1 2 2 2 2 2 2 1 2  
2 1 1 0 4 1 0 4 1 2  2071061072 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  

TIME = 129 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
2 0 1 7 0 1 7 0 1 2  2 4 0 1 1 1 1 1 7 2  
2 7 2 2 2 2 2 2 7 2  2 1 2 2 2 2 2 2 0 2  
2 1 2  2 0 2  2 0 2  2 1 2  
2 0 2  2 1 2  2 4 2  2 7 2  
2 7 2  2 7 2  2 1 2  2 0 2  
2 1 2  2 0 5  2 0 2  2 1 2  
2 1 2 2 2 2 2 2 1 2  2 7 2 2 2 2 2 2 7 2  
2 1 1 1 0 4 1 0 4 2  2 1 0 7 1 0 6 1 0 2  

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  

TIME = 130 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
2 1 7 0 1 7 0 1 7 2  3 0 1 1 1 1 1 7 0 2  
2 0 2 2 2 2 2 2 0 2  2 4 2 2 2 2 2 2 1 2  
2 7 2  2 1 2  2 1 2  2 7 2  
2 1 2  2 7 2  2 0 2  2 0 2  
2 0 2  2 0 5  2 4 2  2 1 2  
2 7 2  2 1 2  2 1 2  2 7 2  
2 1 2 2 2 2 2 2 4 2  2 0 2 2 2 2 2 2 0 2  
2 1 t 1 1 0 4 1 0 3  2 7 1 0 7 1 0 6 1 2  

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  

TIME = 131 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
2 7 0 1 7 0 1 7 0 2  2 1 1 1 1 1 7 0 1 2  
2 1 2 2 2 2 2 2 1 2  2 0 2 2 2 2 2 2 7 2  
2 0 2  2 7 2  2 4 2  2 0 2  
2 7 2  2 0 5  2 1 2  2 1 2  
2 1 2  2 1 2  2 0 2  2 7 2  
2 0 2  2 4 2  2 4 2  2 0 2  
2 7 2 2 2 2 2 2 0 2  2 1 2 2 2 2 2 2 1 2  
2 1 1 1 1 1 0 4 1 2  2 0 7 1 0 7 1 0 3 2  

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  

TIME ffi 132 

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  
2 0 1 7 0 1 7 0 1 2  2 1 1 1 1 7 0 1 7 2  
2 7 2 2 2 2 2 2 7 2  2 1 2 2 2 2 2 2 0 2  
2 1 2  2 0 5  2 0 2  2 1 2  
2 0 2  2 1 2  2 4 2  2 7 2  
2 7 2  2 4 2  2 1 2  2 0 2  
2 1 2  2 0 2  2 0 2  2 1 2  
2 0 2 2 2 2 2 2 1 2  2 4 2 2 2 2 2 2 7 2  
2 7 1 1 1 1 1 0 4 2  2 1 0 7 1 0 7 1 0 6  

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  

TIME = 133 

22212222 22222222 
2170170172 2 1 1 1 7 0 1 7 0 2  
2022222205 2122222212 
272 212 212 272 
212 242 202 202 
2 0 2  2 0 2  2 4 2  2 1 2  
2 7 2  2 1 2  2 1 2  2 7 2  
2 1 2 2 2 2 2 2 4 2  2 0 2 2 2 2 2 2 0 2  
2 0 7 1 1 1 1 1 0 3  2 4 1 0 7 1 0 7 1 1 3  

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2 2  

TIME = 134 

Fig. 8. Separation o/offspring. Collision o/signals at new junction generates signals which separate the loops and initiate construction 

o f  new c o n s t r u c t i o n  a r m s  in b o t h  p a r e n t  a n d  o f f sp r ing  loops.  
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2 
2 1 2  
2 7 2  
2 0 2  
2 1 2  

2 2 2 2 2 2 2 7 2  2 2 2 2 2 2 2 2  
2 1 1 1 7 0 1 7 0 2  2 1 7 0 1 4 0 1 4 2  
2 1 2 2 2 2 2 2 1 2  2 0 2 2 2 2 2 2 0 2  
2 1 2  2 7 2  2 7 2  2 1 2  
2 0 2  2 0 2  2 1 2  2 1 2  
2 4 2  2 1 2  2 0 2  2 1 2  
2 1 2  2 7 2  2 7 2  2 1 2  
2 0 2 2 2 2 2 2 0 2  2 1 2 2 2 2 2 2 1 2 2 2 2 2  
2 4 1 0 7 1 0 7 1 2  2 0 7 1 0 7 1 0 7 1 1 1 1 1 2  

2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2 2 2 2 2 2  

'rill].-. = 151 

Fig. 9. Self-reproduction completed. After 151 time steps, the 
loop has reproduced itself exactly. 

Generation t [ ~  Generation 2 
[~ [~_. Generation 3 
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"El B U Et 1 
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• A "deod' ,oop ~1 ~ 

Fig. 10. Growth of loop colony. Seven generations of growth 
in a colony of loops. 

reproductive fringe surrounding a growing core of  
empty loops, much like the growth of a coral reef. 
In an infinite cellular array, the colony would keep 
growing indefinitely. 

It is of interest to note that, although each loop 
is .identical in structure, the loops will behave 
differently in different environments. Specifically, 

the original loop (the "Adam" loop) will reproduce 
four times, whereas each of  its immediate offspring 
will reproduce only twice. The first offspring of an 
offspring of the "Adam" loop will reproduce twice, 
while the second offspring will reproduce only 
once. Thus identical loops will behave differently in 
different environments, the determining environ- 
mental factor being the concentration of  loops in 
the immediate neighborhood of a loop. Of course, 
any loop could become an "Adam" loop if the 
other loops in its neighborhood were suddenly 
cleared away. 

It is also of  interest to note the various stages in 
the "life cycle" of a loop. Each loop has a "fetal" 
stage: the period during which the arm of the 
parent is being extended and bent around to form 
the offspring, the arm eventually becoming an 
"umbilical cord" which serves as a channel for 
getting the cycling instructions to the growing end 
of the "looplet". Following this fetal stage is the 
"adolescent" stage, which lasts from "birth", the 
moment when the umbilical cord is disconnected, 
until the offspring's construction arm has been 
completed. Then follows the period of  reproductive 
"adulthood", during which the loop produces as 
many offspring as the environment will allow. As 
soon as the loop encounters another loop oc- 
cupying a potential offspring site, the loop enters 
into its decline as its cycling instructions are slowly 
erased. The final result is an empty or "dead" loop. 

A significant difference between these loops and 
van Neumann's or Codd's machines is that the 
latter involve a passive description on the tape 
being acted upon by a dynamic interpreter, whereas 
the loops involve a dynamic description acting 
upon an essentially passive interpreter (the body of 
the loop itself). Despite this reversal of roles on the 
part of  the description and the interpreter, the two 
operations of translation and transcription remain 
well defined. Translation is accomplished when the 
instruction signals are "executed" as they reach the 
end of the construction arms, and upon the col- 
lision of signals with other signals. Transcription is 
accomplished by the duplication of signals at the 
T-junctions. 
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These loops are also significantly simpler than 
the machines of yon Neumann or Codd. If  we 
imagine a continuous scale of complexity of self- 
reproducing entities, with one end representing the 
simple, marginally self-facilitating copying pro- 
cesses which must have been supported by the 
physics and chemistry (the "transition rules") of 
the early pre-biological "soup",  and the other end 
representing the highly complex mechanisms of 
molecular self-reproduction, as well as the univer- 
sal constructors of yon Neumann and Codd, these 
loops occupy a spot somewhere in the middle 
ground. They are sufficiently complex so as to be 
quite clearly self-reproductive, yet, at the same 
time, they are sufficiently simple so as to consti- 
tute "believable" extensions of simpler copying 
processes. 

We return now to consider our criteria for 
self-reproduction and ask if the loops satisfy all of  
our requirements. In the first place, the re- 
sponsibility for the production of the offspring 
quite obviously resides with the sequences of ac- 
tions taken by the parent loop. The cycling in- 
struction sequence actively directs every phase of 
the construction of  the offspring. In the second 
place, the reproduction is effected by using the 
information contained in the cycling description in 
two different ways: as instructions to be translated, 
and as data to be transcribed. Thus, the loops 
satisfy all of the criteria and must be considered as 
truly self-reproducing structures. 

3. Conclusion 

We have now demonstrated the existence of a 
simple self-reproducing structure. We conclude 
with a brief summary of  the novel features of this 
structure. 

In the first place, the loops are very simple 
structures. Whereas von Neumann's and Codd's 
machines occupy many tens of thousands of cells, 
a loop will fit in a rectangular area of just 10 by 15 
cells. 

In the second place, the loop's reproduction does 
not depend on any demonstrated capacity for 
universal construction. It was argued that, al- 
though universality is a sufficient condition for 
self-reproduction, it is not a necessary condition. 
This is a primary factor in the simplicity of the 
loops. 

Finally, it was shown that the loops actively 
direct their reproduction, employing both tran- 
scription and translation in the process, and thus 
reproduce non-trivially. This was shown to be the 
case despite the reversal of dynamic and static roles 
by the description and the interpreter. 
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