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1 Introduction

The aim of this paper is to provide a theoretical foundation for the study of efficient interior-
point methods for problems that are extensions of linear programming. Standard form linear
programming problems minimize a linear function of a vector of variables subject to linear
equality constraints and the requirement that the vector belong to the nonnegative orthant
in n-dimensional Euclidean space. Here this cone is replaced by a possibly non-polyhedral
convex cone. Any convex programming problem can be expressed in this conical form.

Nesterov and Nemirovskii [9] have investigated the essential ingredients necessary to
extend several classes of interior-point algorithms for linear programming (inspired by Kar-
markar’s famous projective-scaling method [6]) to nonlinear settings. The key element is
that of a self-concordant barrier for the convex feasible region. This is a smooth convex
function defined on the interior of the set, tending to +∞ as the boundary is approached,
that together with its derivatives satisfies certain Lipschitz continuity properties. The bar-
rier enters directly into functions used in path-following and potential-reduction methods,
but, perhaps as importantly, its Hessian at any point defines a local norm whose unit ball,
centered at that point, lies completely within the feasible region. Moreover, the Hessian
varies in a well-controlled way in the interior of this ball.

This paper is concerned with a special class of convex cones and associated barriers that
we term self-scaled. While they must satisfy certain apparently restrictive conditions, it
seems that this class includes some important instances, for example the cone of positive
semidefinite matrices and the second-order cone (to be defined below), as well as the non-
negative orthant in Rn. For such cones, the Hessian of the barrier at any interior point
maps the cone onto its dual cone, and vice versa when we consider the conjugate barrier.
In addition, for any pair of points, one in the interior of the original (primal) cone and the
other in the interior of the dual cone, there is some point at which the Hessian carries the
first into the second. Thus there is a very rich class of scaling transformations, which come
from the Hessians evaluated at the points of the cone itself (hence self-scaled).

(After the first version of this paper appeared, we discovered through the work of Güler
[5] that self-scaled cones coincide with homogeneous self-dual cones. We will explain this
further in Section 3. We maintain the name self-scaled because our primary interest is in the
corresponding self-scaled barrier, and a homogeneous self-dual cone for which the associated
self-scaled barrier is not readily computable is not suitable for our algorithms.)

The consequences of these conditions are quite extensive. For our purposes, the key re-
sults are the existence of a symmetric primal-dual scaling and the fact that good approxima-
tions of self-scaled barriers and their gradients extend far beyond unit balls defined by the lo-
cal norm, and in fact are valid up to a constant fraction of the distance to the boundary in any
direction. Using these ideas we are able to derive primal long-step potential-reduction and
path-following algorithms as well as a symmetric long-step primal-dual potential-reduction
method.

The first half of the paper defines self-scaled cones and barriers and then makes a thor-
ough study of their structure. We establish that most relevant properties of the nonnegative
orthant extend to this nonpolyhedral setting. Section 2 defines our notions and gives exam-
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ples. In Section 3, we study the scaling transformations in detail and demonstrate symmetry
between the primal and dual cones with respect to the self-scaling property. Section 4 defines
several measures of the distance to the boundary of a self-scaled cone and establishes the
approximation results, and then in Section 5 we examine the behavior of such barriers on
certain two-dimensional cones defined by “orthogonal” directions and derive an important
consequence.

The second half of the paper applies these results to the derivation of long-step primal
and symmetric primal-dual methods. Section 6 states formally the problems with which we
are concerned and our assumptions and then investigates the projections that are used in all
the algorithms to obtain search directions. Primal potential-reduction methods like those of
Karmarkar [6] and Gonzaga [4] are studied in Section 7, while Section 8 develops a symmetric
primal-dual algorithm extending that of Kojima, Mizuno, and Yoshise [8]. Finally, Section
9 gives some improvements possible in a primal path-following method like that of Nesterov
and Nemirovskii [9] when the cone is self-scaled. In particular, we give a new long-step update
for the barrier parameter and a new step-size rule in Newton’s method in this approach; this
is based on an extension of the quadratic convergence result of Roos and Vial [11] to the
case of self-scaled cones.

All these methods require O(ν ln(1/ε)) or O(
√
ν ln(1/ε)) iterations to generate a feasible

solution with objective function within ε of the optimal value, where ν is a parameter of
the cone and barrier corresponding to n for the nonnegative orthant in Rn. All are vari-
ants of methods already known for the standard linear programming case or for the more
general conic case, but we stress the improvements possible because the cone is assumed
self-scaled. For example, we indicate why Gonzaga’s affine-scaling potential-reduction algo-
rithm [4] might be more efficient when the coefficient used in the potential function is chosen
as 2ν rather than ν +

√
ν because long steps can be taken while maintaining a guaranteed

reduction in the potential function and the reduction is likely to be much larger.
This paper is quite long and detailed. The reader may wish to omit some of the derivations

at a first reading. All of Section 2 should be read, with the possible exception of the
verification that the second-order cone is self-scaled. The proofs in Sections 3, 4, and 5 can
be omitted initially. The most important results are stated as theorems. All of Section 6
should be read, but the succeeding sections are largely independent of each other and can
be read separately.

In what follows we often refer to different statements of [9]. The corresponding references
we indicate by an upper-case asterisk. Thus, the reference T ∗ (C∗, D∗, P ∗) 1.1.1 corresponds
to the first theorem (corollary, definition, proposition) in the first section of Chapter 1 of [9].

2 Definition and examples

Let K be a closed convex cone in a finite-dimensional real vector space E (of dimension
at least 1) with dual space E∗. We denote the corresponding scalar product by 〈s, x〉 for
x ∈ E, s ∈ E∗. In what follows we assume that the interior of the cone K is nonempty and
that K is pointed (contains no straight line). Let F be a ν-self-concordant logarithmically
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homogeneous barrier (also called a ν-normal barrier) for cone K (see D∗ 2.3.2). Recall that
by definition, F is a self-concordant barrier for K (see D∗ 2.3.1) which for all x ∈ intK and
τ > 0 satisfies the identity:

F (τx) ≡ F (x) − ν ln τ. (2.1)

Since K is a pointed cone, ν ≥ 1 in view of C∗ 2.3.3.
We will often use the following straightforward consequences of (2.1): for all x ∈ intK

and τ > 0,

F ′(τx) =
1

τ
F ′(x), F ′′(τx) =

1

τ 2
F ′′(x), (2.2)

F ′′(x)x = −F ′(x), F ′′′(x)[x] = −2F ′′(x), (2.3)

〈F ′(x), x〉 = −ν, (2.4)

〈F ′′(x)x, x〉 = ν, 〈F ′(x), [F ′′(x)]−1F ′(x)〉 = ν (2.5)

(see P ∗ 2.3.4).
Define the cone K∗ dual to K as follows:

K∗ := {s ∈ E∗ : 〈s, x〉 ≥ 0, ∀x ∈ K}.

Note that K∗ is also a pointed cone with nonempty interior. Let the function F∗ on intK∗

be conjugate to F , namely:

F∗(s) := max{−〈s, x〉 − F (x) : x ∈ intK}. (2.6)

(Actually, this is a slight modification (−〈s, x〉 replaces 〈s, x〉) of the usual convex conjugate.)
In accordance with T ∗ 2.4.4, F∗ is a ν-self-concordant logarithmically homogeneous barrier
for K∗. We will often use the following properties of conjugate self-concordant barriers for
dual cones: for any x ∈ intK and s ∈ intK∗,

−F ′(x) ∈ intK∗, −F ′
∗(s) ∈ intK, (2.7)

F∗(−F ′(x)) = 〈F ′(x), x〉 − F (x) = −ν − F (x) (2.8)

(using (2.4)),
F (−F ′

∗(s)) = −ν − F∗(s), (2.9)

F ′
∗(−F ′(x)) = −x, F ′(−F ′

∗(s)) = −s, (2.10)

F ′′(−F ′
∗(s)) = [F ′′

∗ (s)]−1, F ′′
∗ (−F ′(x)) = [F ′′(x)]−1, (2.11)

F (x) + F∗(s) ≥ −ν + ν ln ν − ν ln〈s, x〉, (2.12)

and the last inequality is satisfied as an equality if and only if s = −αF ′(x) for some α > 0
(see P ∗ 2.4.1).

In this paper we consider cones and barriers of rather special type. As we will see later,
the properties of these cones are very close to those of the positive orthant. Let us give our
main definition.
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Definition 2.1 Let K be a pointed cone with nonempty interior and let F be a ν-self-
concordant logarithmically homogeneous barrier for cone K. We call F a ν-self-scaled barrier
for K if for any v and x from intK,

F ′′(v)x ∈ intK∗ (2.13)

and
F∗(F

′′(v)x) = F (x) − 2F (v) − ν. (2.14)

If K admits such a barrier, we call it a self-scaled cone.

We shall see later that self-scaled cones coincide with homogeneous self-dual cones, which
have been much studied in other branches of mathematics. We will maintain the name self-
scaled for such cones to emphasize our interest in the associated self-scaled barriers. In
what follows we always assume that K is a self-scaled cone and F an associated ν-self-scaled
barrier.

We will study properties of self-scaled cones and barriers in detail in the following sections.
Now let us give three important examples of such cones and their barriers.

1. Positive orthant. For

K := {x ∈ Rn : x(i) ≥ 0, i = 1 . . . n}

(x(i) denotes the ith component of x), we have

K∗ = {s ∈ Rn : s(i) ≥ 0, i = 1 . . . n}.

Let us take

F (x) := −
n
∑

i=1

ln x(i)

(this barrier is n-logarithmically homogeneous, see [9], Example 3, p. 40). Then

F ′(x)(i) = − 1

x(i)
, i = 1 . . . n, F ′′(x) = diag

{

1

(x(i))2
, i = 1 . . . n

}

,

and ν = n. Note that F∗ is given by

F∗(s) = −
n
∑

i=1

ln s(i) − n

and therefore relations (2.13) and (2.14) are evidently satisfied.
2. Cone of positive semidefinite matrices. Let K be the cone of positive semidefinite

matrices:
K := {X ∈Mn : 〈Xy, y〉 ≥ 0, ∀y ∈ Rn},

where Mn is the space of symmetric n × n-matrices. Then M ∗
n can be identified with Mn

and we can use the usual inner product

〈S,X〉 :=
n
∑

i=1

n
∑

j=1

S(i,j)X(i,j) ≡ Trace SX,
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where Trace denotes the trace. Then

K∗ = {S ∈Mn : 〈Sy, y〉 ≥ 0, ∀y ∈ Rn}.

Let us take
F (X) := − ln detX.

Note that
F ′(X) = −X−1, F ′′(X)H = X−1HX−1, ∀H ∈Mn,

and F is a logarithmically homogeneous ν-self-concordant barrier with ν = n (see [9], P ∗

5.4.5). The structure of the inverse Hessian for this barrier is also very simple:

[F ′′(X)]−1H = XHX, ∀H ∈Mn.

The corresponding conjugate barrier is given by

F∗(S) = − ln detS − n

and we see that conditions (2.13) and (2.14) are satisfied.
Note that in some applications the cone of positive semidefinite matrices is represented

in a slightly different form (see, for example, paper [2] devoted to the Truss Topology Design
Problem). Namely, consider the cone

K̄ := cl{(τ, x,W ) ∈ R× Rn ×Mn : τ > 〈W−1x, x〉, W ∈ intK}.

Note that the point (τ, x,W ) lies in the interior of cone K̄ if and only if the matrix

X̄(τ, x,W ) :=

(

τ xT

x W

)

is positive definite. This implies that cone K̄ is self-scaled and the corresponding (n + 1)-
self-scaled barrier is given by

F̄ (τ, x,W ) = − ln det X̄(τ, x,W ) = − ln(τ − 〈W−1x, x〉) − ln detW.

3. Second-order cone. Let

K := {(τ, x) ∈ Rn+1 : τ ≥‖ x ‖},

where ‖ · ‖ is the Euclidean norm on Rn. In this case

K∗ = {(ρ, s) ∈ Rn+1 : ρ ≥‖ s ‖}.

Let us take
F (τ, x) := − ln(τ 2− ‖ x ‖2).
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In accordance with [9], P ∗ 5.4.3, F is a 2-self-concordant logarithmically homogeneous barrier
for K. Note that

F ′(τ, x) =
2

τ 2− ‖ x ‖2

(

−τ
x

)

,

F ′′(τ, x) =
2

τ 2− ‖ x ‖2

(

−1 0
0 In

)

+
4

(τ 2− ‖ x ‖2)2

(

τ 2 −τxT

−τx xxT

)

.

It can easily be seen that the conjugate barrier is given by

F∗(ρ, s) = − ln(ρ2− ‖ s ‖2) − 2 + 2 ln 2.

Therefore for any (η, v) and (τ, x) from intK we have:

F ′′(η, v)

(

τ
x

)

=

(

ρ
s

)

,

where

ρ =
2(τ(η2+ ‖ v ‖2) − 2η〈v, x〉)

(η2− ‖ v ‖2)2
,

s =
2((η2− ‖ v ‖2)x + 2(〈v, x〉 − τη)v)

(η2− ‖ v ‖2)2
.

This implies that
1

4
(η2− ‖ v ‖2)4(ρ2− ‖ s ‖2)

= (τ(η2+ ‖ v ‖2) − 2η〈v, x〉)2− ‖ (η2− ‖ v ‖2)x+ 2(〈v, x〉 − τη)v ‖2

= τ 2(η2+ ‖ v ‖2)2 − (η2− ‖ v ‖2)2 ‖ x ‖2 −4τ 2η2 ‖ v ‖2

= (τ 2− ‖ x ‖2)(η2− ‖ v ‖2)2.

Thus,

ρ2− ‖ s ‖2=
4(τ 2− ‖ x ‖2)

(η2− ‖ v ‖2)2
> 0.

Since

ρ ≥ 2(η2τ−1 ‖ x ‖2 +τ ‖ v ‖2 −2η〈v, x〉)
(η2− ‖ v ‖2)2

=
2 ‖ ητ−1/2x− τ 1/2v ‖2

(η2− ‖ v ‖2)2
≥ 0,

we conclude that (ρ, s) ∈ intK∗. Moreover,

F∗(ρ, s) = − ln(ρ2− ‖ s ‖2) − 2 + 2 ln 2 = F (τ, x) − 2F (η, v)− 2

and thus cone K is self-scaled.
In some applications the second-order cone arises in a “hyperbolic” form:

K̄ := {(τ, η, x) ∈ R× R× Rn : τη ≥‖ x ‖2, τ ≥ 0, η ≥ 0}.
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Note that this cone is also self-scaled since

K̄ = {(τ, η, x) ∈ R× R× Rn : 1
2
(τ + η) ≥

√

1
4
(τ − η)2+ ‖ x ‖2}

(see Theorem 2.1(ii)). The corresponding 2-self-scaled barrier for cone K̄ is given by

F̄ (τ, η, x) = − ln(τη− ‖ x ‖2).

In the next sections we will see that self-scaled cones and barriers have many interesting
properties. Let us present to conclude this section the combination rules which preserve the
self-scaling property.

Theorem 2.1 (i) Let E1 and E2 be finite-dimensional linear spaces. If cone Ki ⊆ Ei is
self-scaled with νi-self-scaled barrier Fi, i = 1, 2, then the cone

K := K1 ×K2 ⊆ E1 × E2

is also self-scaled, with ν-self-scaled barrier given by F (x1, x2) := F1(x1) + F2(x2),
where ν = ν1 + ν2. The self-scaled barrier for the conjugate cone K∗ = K∗

1 × K∗
2 is

the function defined by F∗(s1, s2) := (F1)∗(s1) + (F2)∗(s2) with the same value of the
parameter ν.

(ii) Let A be an automorphism of E. If a cone K ⊆ E is self-scaled with ν-self-scaled
barrier F , then the cone

K̄ := {x ∈ E : Ax ∈ K}
is also self-scaled, with ν-self-scaled barrier given by F̄ (x) := F (Ax). The ν-self-scaled
barrier for the dual cone

K̄∗ = {s ∈ Rn : A−∗s ∈ K∗}

is given by F̄∗(s) := F∗(A
−∗s). (A∗ denotes the adjoint of A, and A−∗ the inverse of

A∗.)

3 Self-dual transformations and scaling

This section begins our investigation of the special properties of self-scaled cones and barriers.
In particular, we show the existence of a scaling point w corresponding to any point x in
intK and any point s in intK∗, such that F ′′(w) takes x into s. Let us start from the
following result.

Theorem 3.1 (i) For any v and x from intK we have:

F ′
∗(F

′′(v)x) = [F ′′(v)]−1F ′(x), (3.1)

F ′′
∗ (F ′′(v)x) = [F ′′(v)]−1F ′′(x)[F ′′(v)]−1. (3.2)
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(ii) Let v1 and v2 belong to intK. If there exists x ∈ intK such that

F ′′(v1)x = F ′′(v2)x

then v1 = v2.

(iii) Let us fix any v ∈ intK. Then
K∗ = F ′′(v)K.

Proof:
Equations (3.1) and (3.2) are obtained by differentiating the identity (2.14) with respect to
x. Let us prove part (ii) of the theorem. For this, we choose any dual bases of E and E∗ and
represent the Hessians F ′′(·) as symmetric positive definite matrices with respect to these
bases. Let

s := F ′′(v1)x = F ′′(v2)x.

Denote Q := [F ′′(x)]1/2. From (3.2) we have:

QF ′′
∗ (s)Q = (Q[F ′′(v1)]

−1Q)2 = (Q[F ′′(v2)]
−1Q)2.

This implies that F ′′(v1) = F ′′(v2) since the symmetric positive definite square root of a
symmetric positive definite matrix is unique. Denote G := F ′′(v1) = F ′′(v2). From (2.3) we
have:

F ′(v1) = −Gv1, F ′(v2) = −Gv2.

Therefore (since F is convex),

0 ≤ 〈F ′(v1) − F ′(v2), v1 − v2〉 = −〈G(v1 − v2), v1 − v2〉
and we conclude that v1 = v2 since G is positive definite.

Let us now prove part (iii). Of course, it is enough to prove that

intK∗ = F ′′(v) intK.

For any ŝ ∈ intK∗ let x̂ := [F ′′(v)]−1ŝ. Then, in view of (2.14), (3.1) and (2.4), for any
z ∈ intK we have:

F∗(ŝ) ≥ F∗(F
′′(v)z) + 〈ŝ− F ′′(v)z, F ′

∗(F
′′(v)z)〉

= F (z) − 2F (v) − ν + 〈F ′(z), x̂− z〉 = F (z) − 2F (v) + 〈F ′(z), x̂〉.
Further, let s = −F ′(z). Then, by (2.9) and (2.10) we obtain:

F∗(ŝ) ≥ F (−F ′
∗(s)) − 2F (v) − 〈s, x̂〉 = −F∗(s) − ν − 2F (v) − 〈s, x̂〉.

Thus, we have proved that for any s ∈ intK∗,

F∗(s) + 〈s, x̂〉 ≥ −F∗(ŝ) − 2F (v) − ν.

However, the function (of s) on the left hand side of this inequality is bounded below if and
only if x̂ ∈ intK (see [9], T ∗ 2.4.2, T ∗ 2.4.4). This proves part (iii).

�

Let us now prove that Definition 2.1 leads to symmetric relations for the dual cone.

8



Proposition 3.1 Let K be a self-scaled cone with ν-self-scaled barrier F (x). Then, for any
u and s from intK∗, the point F ′′

∗ (u)s belongs to intK and

F (F ′′
∗ (u)s) = F∗(s) − 2F∗(u) − ν. (3.3)

Proof:
Let us fix u, s ∈ intK∗ and let v := −F ′

∗(u). Then by part (iii) of Theorem 3.1 there
exists x ∈ intK such that s = F ′′(v)x. Therefore

F ′′
∗ (u)s = [F ′′(v)]−1s = x ∈ intK

(see (2.11)). Further, since F∗(s) = F∗(F
′′(v)x), in view of (2.14) we have:

F∗(s) = F (x) − 2F (v) − ν = F (F ′′
∗ (u)s) − 2F (−F ′

∗(u)) − ν = F (F ′′
∗ (u)s) + 2F∗(u) + ν

(see (2.8)).
�

From now on we will present only the properties of the primal self-scaled cone and barrier.
The corresponding statements for the dual case have an absolutely symmetric form.

Thus, we have proved that any Hessian F ′′(x) of a self-scaled barrier defines a one-to-one
linear mapping from the primal to the dual cone. Let us now prove a converse statement.

Theorem 3.2 For each pair x ∈ intK, s ∈ intK∗, there exists a unique scaling point
w ∈ intK such that

s = F ′′(w)x.

Moreover, F ′(x) = F ′′(w)F ′
∗(s) and F ′′(x) = F ′′(w)F ′′

∗ (s)F ′′(w).

Proof:
Consider the function

φ(v) := 〈s, v〉 − 〈F ′(v), x〉.
In view of (2.6), (2.3), and (2.14), for any v ∈ intK we have:

φ(v) = 〈s, v〉 + 〈F ′′(v)x, v〉
≥ 〈s, v〉 − F (v) − F∗(F

′′(v)x)
= 〈s, v〉 + F (v) − F (x) + ν =: ψ(v).

Note that all level sets of ψ are closed and bounded, since it is strictly convex and attains
its minimum uniquely at v = −F ′

∗(s). Therefore the function φ also has closed and bounded
level sets and therefore attains its minimum. Its minimizers are exactly the solutions of the
equation

s = F ′′(w)x

in w. But this equation has a unique solution by part (ii) of Theorem 3.1.
The expressions for the derivatives of the barrier F follow from (3.1) and (3.2).

�
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Note that, if we set t := −F ′(w), then (2.11) implies that the theorem remains true with
x and s, K and K∗, w and t, and F and F∗ interchanged. Thus the existence of a scaling
point is completely symmetric between K and K∗.

In most applications, it is quite straightforward to compute w given x and s. For ex-
ample, if K = Rn

+, then w = [diag (x)]1/2[diag (s)]−1/2e, with e the vector of ones in Rn.
If K is the cone of positive semidefinite matrices, X ∈ K, and S ∈ K∗ = K, then
W = X1/2(X1/2SX1/2)−1/2X1/2. The case of the second-order cone can also be worked
out easily but tediously.

The results in Theorems 3.1 and 3.2 relate our self-scaled cones to the class of homo-
geneous self-dual cones. After the first version of our paper, Güler [5] showed the close
relationship between the universal barrier of Nesterov and Nemirovskii [9] and the charac-
teristic function of a cone, introduced by Köcher [7] in 1957, and used in several branches of
mathematics including complex analysis and the theories of Jordan algebras and Lie groups;
see [12, 14]. Theorem 3.1 shows that self-scaled cones are self-dual – there is an isomorphism
between such a cone and its dual. Theorem 3.2 shows that they are moreover homogeneous;
there is such an isomorphism taking any point in the interior of such a cone into any point
in the interior of its dual.

Conversely, suppose K is a homogeneous self-dual cone, and let F denote the logarithm
of its characteristic function. Then Rothaus’s Theorem 3.1 [12] shows that F ′′(v) takes K
into K∗ for any v ∈ intK, so that (2.13) holds. Also, Theorems 4.4 and 5.5 and the equation
above (10) in Güler [5] together yield a proof that

F∗(F
′′(v)x) = F (x) − 2F (v) − const.

The same equation in [5] implies that F is logarithmically homogeneous with parameter
equal to the dimension of E, from which we deduce that F ′′(x)x = −F ′(x). Hence using
v = x above and equation (17) in [5], we find that the constant equals the dimension of E,
so that (2.1) and (2.14) hold with ν = dim E. Finally, Theorem 4.1 in [5] and Nesterov
and Nemirovskii’s T ∗ 2.5.1 show that a universal constant times F is a ν ′-self-scaled barrier
U for K, which is thus self-scaled; here ν ′ is this constant times the dimension of E. This
barrier U is called the universal barrier for K.

Note that the derivation of the self-scaled barrier above is of no use in practice. The
universal barrier is hard to compute partly because of the unknown absolute constant, and
for the important cases (the cone of positive semi-definite matrices and the second-order
cone) it gives an unnecessarily high value of the parameter by a factor of order n in each
case (see [5]).

Homogeneous self-dual cones have been characterized: they are the direct sum of cones of
positive semidefinite symmetric real matrices, second-order cones, cones of positive semidef-
inite Hermitian complex matrices, cones of positive semidefinite Hermitian quaternion ma-
trices, and an exceptional 27-dimensional cone. This precisely limits the range of conical
problems we can handle. It turns out to be easier to establish results about these cones by
using general properties of the associated self-scaled barriers than by using this classification.

The results we establish for any self-scaled barrier hold a fortiori for the universal barrier.
Some of these special cases turn out to have been proved earlier by Rothaus [12]. Thus, for

10



F = U , parts (ii) and (iii) of our Theorem 3.1 give Theorem 3.12 and part of Theorem 3.1
in [12], our Theorem 3.2 gives Lemma 3.7, Theorem 3.12, and Corollary 3.15 in [12] and our
(2.12) is closely related to Lemma 2.1 in [12].

We now continue our development with a corollary of the previous theorem.

Corollary 3.1 For any v, z ∈ intK there exists w ∈ intK such that

F ′(v) = −F ′′(w)z.

Moreover, F ′(z) = −F ′′(w)v and therefore

F ′(v) − F ′(z) = F ′′(w)(v − z).

Proof:
This statement is a straightforward consequence of the above theorem in view of Theorem
3.1 (iii).

�

Let us describe now some interesting properties of the derivatives of a self-scaled barrier.
For fixed v ∈ K, denote

g(x) := −〈F ′(x), v〉.

Lemma 3.1 The function g is convex.

Proof:
Assume first that v ∈ intK. Let us fix z ∈ intK. It is sufficient to prove that for any
x ∈ intK the following inequality holds:

g(x) = −〈F ′(x), v〉 ≥ g(z) + 〈g′(z), x− z〉 = −〈F ′(z), v〉 − 〈F ′′(z)v, x− z〉,

or equivalently, that the function −〈F ′(x), v〉 + 〈F ′′(z)v, x〉 (of x) attains its minimum at
x = z. Note that in the proof of Theorem 3.2 we have already established that the function

−〈F ′(x), v〉 + 〈s, x〉

(of x) attains its minimum for any s ∈ intK∗. In our case s = F ′′(z)v, which belongs to
intK∗ in view of Definition 2.1. Thus, the (unique) minimizer of this function can be found
from the equation

F ′′(x)v = F ′′(z)v;

it is z by part (ii) of Theorem 3.1. This establishes the inequality and hence the convexity
of g in this case.

The convexity of g defined by a boundary point v follows from continuity reasons.
�

Corollary 3.2 (i) For any v ∈ K and x ∈ intK the operator F ′′′(x)[v] is negative
semidefinite.
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(ii) Let x ∈ intK and x+ p ∈ K for some p ∈ E. Then

F ′′′(x)[p] ≤ 2F ′′(x). (3.4)

(This inequality, and similar ones following, is with respect to the cone of positive
semi-definite operators; thus it is equivalent to saying that the right hand side minus
the left hand side is positive semidefinite.)

(iii) Let us fix a point v ∈ intK. Then the function

h(x) := 〈[F ′′(v)]−1F ′(x), F ′(x)〉

is strictly convex on intK.

(iv) The mapping Φ := F ′ : intK → −intK∗ is concave on intK with respect to K∗.

Proof:
Part (i) of the corollary is a straightforward consequence of Lemma 3.1. For part (ii), let
z = x + p ∈ K. By part (i) and (2.3), for any v ∈ E we have:

〈F ′′′(x)[p]v, v〉 = 〈F ′′′(x)[z]v, v〉 − 〈F ′′′(x)[x]v, v〉 ≤ 2〈F ′′(x)v, v〉.

In order to prove part (iii) we need only compute the Hessian of the function h:

h′′(x) = 2F ′′′(x)[[F ′′(v)]−1F ′(x)] + 2F ′′(x)[F ′′(v)]−1F ′′(x),

and this is positive definite using part (i) since the point z := −[F ′′(v)]−1F ′(x) belongs to
intK.

Let us now consider part (iv). In view of the definition of a concave mapping (see, for
example, [9], Section 5.1.2), we shall prove that for any x, v ∈ intK

s := Φ(x) + Φ′(x)(v − x) − Φ(v) ∈ K∗.

Indeed, for any z ∈ K we have:

〈s, z〉 = −
1
∫

0

〈[Φ′(x+ τ(v − x)) − Φ′(x)](v − x), z〉dτ

= −
1
∫

0

τ
∫

0

〈F ′′′(x + θ(v − x))[v − x, v − x], z〉dθdτ

= −
1
∫

0

τ
∫

0

〈F ′′′(x + θ(v − x))[z](v − x), v − x〉dθdτ ≥ 0

in view of (i). This implies that s ∈ K∗.
�
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4 Distance to the boundary

Here we introduce several functions which provide a measure of the distance to the boundary
of a convex cone with respect to some interior point x. In the general case, the only such
measure available is the local norm defined by the Hessian of the barrier function. The new
measures here allow us to obtain approximations of F and F ′ which are valid in a much
larger neighborhood of a point than one given by a bound on the local norm.

Let us fix x ∈ intK and let p ∈ E. Denote

σx(p) :=
1

sup{α : x− αp ∈ K} = min{β ≥ 0 : βx− p ∈ K};

so 0 ≤ σx(p) <∞. Thus, x− αp ∈ intK for all

α ∈
[

0,
1

σx(p)

)

.

(Here 1/σx(p) is interpreted as +∞ if σx(p) = 0.)
It is clear that for any v ∈ K we have:

σx(x− v) ≤ 1, σx(−v) = 0.

Indeed,
σx(−v) = 0 iff v ∈ K.

In particular,
σx(x) = 1, σx(−x) = 0.

It is also clear that for any λ > 0 we have:

σx(λp) = λσx(p) = σx/λ(p).

For p ∈ E and q ∈ E∗ denote

‖ p ‖x:= 〈F ′′(x)p, p〉1/2, ‖ q ‖∗x:= 〈q, [F ′′(x)]−1q〉1/2.

We also write, for s ∈ intK∗,

‖ p ‖s:= 〈[F ′′
∗ (s)]−1p, p〉1/2, ‖ q ‖∗s:= 〈q, F ′′

∗ (s)q〉1/2.

Using Theorem 3.2, we have the following intriguing symmetry result: for x ∈ intK,
s ∈ intK∗,

‖ s ‖∗x = 〈s, [F ′′(x)]−1s〉1/2 = 〈s, [F ′′(w)]−1[F ′′
∗ (s)]−1[F ′′(w)]−1s〉1/2

= 〈[F ′′
∗ (s)]−1x, x〉1/2 = ‖ x ‖s,

(4.1)

where w ∈ intK is such that F ′′(w)x = s.
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We also define
| p |x= max{σx(p), σx(−p)}. (4.2)

When K is the nonnegative orthant in Rn, σx(p) is the maximum component of the scaled
vector [diag (x)]−1p, and −σx(−p) is its minimum component, assuming the vector has both
nonnegative and nonpositive components; ‖ p ‖x is the Euclidean norm of this scaled vector,
and | p |x is its `∞-norm. Similarly, if K is the cone of positive semidefinite matrices, then
σX(P ) is the largest eigenvalue of the (scaled) matrix X−1/2PX−1/2 if this is nonnegative,
‖ P ‖X is the Euclidean norm of the vector of its eigenvalues, and | P |X is its spectral
norm. Finally, in the case of the second-order cone, ‖ · ‖(τ,x), σ(τ,x)(·), and | · |(τ,x) are easy
to compute.

For any x ∈ intK, u ∈ E∗, and v, z ∈ E, we have the Cauchy-Schwartz inequalities

〈F ′′(x)v, z〉 ≤ ‖ v ‖x‖ z ‖x,

〈u, z〉 ≤ ‖ u ‖∗x‖ z ‖x .

Applying this with v = x and z = p, we find (using (2.3) and (2.5))

〈−F ′(x), p〉 ≤‖ x ‖x‖ p ‖x=
√
ν ‖ p ‖x . (4.3)

Another useful inequality comes from 〈F ′′(x)x, x−αp〉 ≥ 0 as long as α ∈ [0, 1/σx(p)], which
yields

〈−F ′(x), p〉 ≤ νσx(p). (4.4)

In view of T ∗ 2.1.1,
{v :‖ v − x ‖x≤ 1} ⊆ K.

Therefore
σx(p) ≤‖ p ‖x, σx(−p) ≤‖ p ‖x, | p |x≤‖ p ‖x . (4.5)

Let us define also the corresponding measure for the dual cone. Let s ∈ intK∗ and
q ∈ E∗. Denote

σ∗
s(q) =

1

sup{α : s− αq ∈ K∗} = min{β ≥ 0 : βs− q ∈ K∗}, σx(q)
∗ = σ∗

−F ′(x)(q).

We can then define | q |∗s and | q |∗x in the natural way. Let x ∈ intK, s ∈ intK∗, p ∈ E, and
q ∈ E∗. As a straightforward consequence of the definitions we get the following inequality:

〈q, p〉 ≥ σ∗
s(q)〈s, p〉 + σx(p)〈q, x〉 − σx(p)σ

∗
s(q)〈s, x〉.

(For example, if σx(p) and σ∗
s(q) are positive, this follows from the fact that the scalar

product of x − p/σx(p) and s − q/σ∗
s(q) is nonnegative.) Since σx(−x) = 0, we obtain the

following particular case for p = −x:

〈q, x〉 ≤ σ∗
s(q)〈s, x〉.
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In view of (2.4) this implies that
〈q, x〉 ≤ νσx(q)

∗

for any q ∈ E∗.
The following theorem underlines the main difference between self-scaled and self-conco-

rdant barriers. By T ∗ 2.1.1, for general self-concordant barriers, we can bound the Hessian
at a point w in terms of the Hessian at x only when ‖w − x‖x less than one.

Theorem 4.1 For any α ∈ [0, 1/σx(p)) the following inequality holds:

1

(1 + ασx(−p))2
F ′′(x) ≤ F ′′(x− αp) ≤ 1

(1 − ασx(p))2
F ′′(x). (4.6)

Proof:
We first prove the right hand inequality. Let p̄ := −p/σx(p) if σx(p) > 0, p̄ := −p/σ for
arbitrary σ > 0 otherwise, so that x + p̄ ∈ K. Let us fix a direction v ∈ E. Consider the
following function:

φ(β) := 〈F ′′(x(β))v, v〉, x(β) := x+ βp̄, β ∈ [0, 1).

Note that
φ′(β) = 〈F ′′′(x(β))[p̄]v, v〉.

Since x(β) + (1 − β)p̄ ∈ K, we have from (3.4):

〈F ′′′(x(β))[p̄]v, v〉 ≤ 2

1 − β
〈F ′′(x(β))v, v〉.

This corresponds to the following inequality:

φ′(β) ≤ 2

1 − β
φ(β).

Introducing ψ(β) := lnφ(β) we can rewrite this inequality as follows:

ψ′(β) ≤ 2

1 − β
.

This implies that
ψ(β) ≤ ψ(0) − 2 ln(1 − β),

or, which is the same,

φ(β) ≤ φ(0)

(1 − β)2
.

If σx(p) > 0, using the definition of φ and setting β = ασx(p) immediately yields the right
hand inequality of (4.6); otherwise, use the definition of φ and set β = ασ, and then take
limits as σ → 0 to get the result.
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The inequality we have proved shows that F ′′(x+ v) ≤ F ′′(x) for any x ∈ intK, v ∈ K.
Hence if σx(−p) = 0, the left hand inequality of (4.6) follows directly by substituting x−αp
for x and αp for v. Otherwise, we have

(x− αp) + (α + 1/σx(−p))p ∈ K,

which shows that
σx−αp(−p) ≤ σx(−p)/(1 + ασx(−p)).

Then applying the right hand inequality of (4.6) again with x and x− αp interchanged and
the sign of p reversed yields the left hand inequality.

�

Corollary 4.1 (i) For any x ∈ intK, v ∈ K and α ∈ [0, 1) we have:

F ′′(x+ v) ≤ F ′′(x) ≤ F ′′

(

x− α

σx(v)
v

)

.

(ii) For any x, w ∈ intK the following inequality holds:

F ′′(x) ≤ σ2
x(w)F ′′(w).

(iii) For any x, v ∈ intK we have:

1

σx(v)
F ′′(x) ≤ F ′′(w) ≤ σv(x)F

′′(x), (4.7)

where w ∈ intK is such that F ′(v) = −F ′′(w)x.

Proof:
The left hand inequality in (i) is a direct consequence of the right hand inequality of (4.6)
since σx(−v) = 0. The right hand inequality in (i) holds for the same reason: we simply say
that for

z := x− α

σx(v)
v

we have x− z ∈ K.
Further, from the definition of σx(w) we have:

v := σx(w)x− w ∈ K.

Therefore
F ′′(σx(w)x) = F ′′(w + v) ≤ F ′′(w).

It remains to use relation (2.2). Part (ii) is proved.

16



We now prove part (iii) of the corollary. (Note that Corollary 3.1 demonstrates the
existence of the required w.) Again, we assume that the Hessians F ′′(·) are represented as
symmetric positive definite matrices with respect to dual bases of E and E∗. Let

Qv = [F ′′(x)]−1/2F ′′(v)[F ′′(x)]−1/2, Qw = [F ′′(x)]−1/2F ′′(w)[F ′′(x)]−1/2.

Note that in view of Theorem 3.1(i) and (2.11) we have:

F ′′(v) = F ′′(w)[F ′′(x)]−1F ′′(w)

and therefore Qv = Q2
w. Using (ii) we obtain

1

σ2
x(v)

I ≤ Qv ≤ σ2
v(x)I.

Hence
1

σx(v)
I ≤ Qw ≤ σv(x)I,

which yields the desired conclusion.
�

Let us now prove two important inequalities. The first one provides bounds on the vari-
ation of a self-scaled barrier which we will use in the analysis of both our primal (potential-
reduction and path-following) and our primal-dual algorithms. Note that our result allows
good approximations even for long steps, i.e., those taking us a fixed fraction of the way to
the boundary of the cone K.

Theorem 4.2 Let x ∈ intK and p ∈ E be such that σx(p) > 0. Then for any α ∈
[0, 1/σx(p)) we have:

F (x− αp) ≤ F (x) − α〈F ′(x), p〉 +
‖ p ‖2

x

σ2
x(p)

(−ασx(p) − ln(1 − ασx(p))) . (4.8)

Proof:
Let p̄ := −p/σx(p), and note that x+ p̄ ∈ K. Consider the following function:

θ(β) := F (x(β)), x(β) := x + βp̄, β ∈ [0, 1).

Note that in view of Theorem 4.1

θ′′(β) ≤ θ′′(0)

(1 − β)2
, β ∈ [0, 1).

Therefore

θ(β) − θ(0) =

β
∫

0

θ′(λ)dλ = θ′(0)β +

β
∫

0

λ
∫

0

θ′′(τ)dτdλ
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≤ θ′(0)β + θ′′(0)

β
∫

0

λ
∫

0

dτdλ

(1 − τ)2
= θ′(0)β + θ′′(0)(−β − ln(1 − β)).

It remains to use the concrete form of the function θ.
�

We can follow the argument used in the proof of Theorem 4.1 in the case that σx(p) = 0.
Thus for p ∈ K we get the following form of (4.8):

F (x+ αp) ≤ F (x) + α〈F ′(x)p〉 +
α2

2
‖ p ‖2

x . (4.9)

We will often use the inequality (4.8) combined with the following simple result.

Proposition 4.1 (i) For any τ ≥ 0 the function

τ − ln(1 + τ)

is monotonically increasing.
(ii) For any τ > −1 the function

τ − ln(1 + τ)

τ 2

(defined as 1/2 if τ = 0) is monotonically decreasing.
(iii) For any τ < 1 the function

−τ − ln(1 − τ)

τ 2

(defined as 1/2 if τ = 0) is monotonically increasing.

Our second inequality estimates the second-order term in the Taylor approximation of the
gradient. It is very useful in the analysis of Newton’s method and path-following strategies.

Theorem 4.3 For any x, v ∈ intK the following inequality holds:

‖ F ′(v) − F ′(x) − F ′′(x)(v − x) ‖∗v≤| v − x |x · ‖ v − x ‖x .

Proof:
Let us choose w ∈ intK such that F ′(v) = −F ′′(w)x (which is possible by Corollary 3.1).
Then in view of Corollary 3.1,

F ′(v) − F ′(x) − F ′′(x)(v − x) = (F ′′(w) − F ′′(x))(v − x).

Let us estimate the matrix

Q := (F ′′(w) − F ′′(x))[F ′′(v)]−1(F ′′(w) − F ′′(x))
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from above using the matrix F ′′(x). (We assume that the Hessians F ′′(·) are represented as
symmetric positive definite matrices with respect to dual bases of E and E∗.) Note that by
Theorem 3.2 and (2.11)

F ′′(v) = F ′′(w)[F ′′(x)]−1F ′′(w).

Therefore
Q = F ′′(w)[F ′′(v)]−1F ′′(w) − F ′′(x)[F ′′(v)]−1F ′′(w)

−F ′′(w)[F ′′(v)]−1F ′′(x) + F ′′(x)[F ′′(v)]−1F ′′(x)

= F ′′(x) − 2F ′′(x)[F ′′(w)]−1F ′′(x) + F ′′(x)[F ′′(w)]−1F ′′(x)[F ′′(w)]−1F ′′(x)

= [F ′′(x)]1/2(Qw − I)2[F ′′(x)]1/2,

where
Qw = [F ′′(x)]1/2[F ′′(w)]−1[F ′′(x)]1/2.

Note that in view of Corollary 4.1 (iii)

1

σv(x)
I ≤ Qw ≤ σx(v)I.

Therefore

(Qw − I)2 ≤
(

max

{

σx(v) − 1, 1 − 1

σv(x)

})2

I

(note that at least one of the arguments of the maximum in the right hand side of the
inequality is nonnegative since σx(v)σv(x) ≥ 1, see (4.7)).

Further, denote p := v − x. Then for any α > 0 such that x− αp ∈ K we have:

x− αp = (1 + α)x− αv ∈ K.

Therefore σx(v) ≤ 1 + σx(p). Similarly, for any α ≥ 1 such that x + αp ∈ K we have:

x + αp = αv − (α− 1)x ∈ K,

and so σv(x) ≤ 1/(1 − σx(−p)).
Thus, we have proved that

(Qw − I)2 ≤| p |2x I.
By definition of Q this implies that

(‖ F ′(v) − F ′(x) − F ′′(x)(v − x) ‖∗v)2 = 〈Q(v − x), v − x〉

= 〈(Qw − I)2[F ′′(x)]1/2(v − x), [F ′′(x)]1/2(v − x)〉 ≤| p |2x · ‖ p ‖2
x .

�
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5 Behavior of a self-scaled barrier along orthogonal

feasible directions

Let us fix v ∈ ∂K, v 6= 0. Then there exists a point s ∈ ∂K∗ such that 〈s, v〉 = 0. Let us fix
also w ∈ intK. By part (iii) of Theorem 3.1 K∗ = F ′′(w)K. Therefore there exists a point
z ∈ ∂K such that s = F ′′(w)z. Thus, we can find a point z ∈ ∂K such that

〈F ′′(w)v, z〉 = 0.

We will call direction z orthogonal to v with respect to w. The main result of this section is
that the self-scaled barrier F (·) is in a sense separable on the two-dimensional plane defined
by the directions v and z that passes through the point w. Besides its intrinsic interest, we
use this to derive a key inequality to be used in the analysis of our primal-dual algorithm.

Let
D := {x : x = w + αv + βz, α ≥ 0, β ≥ 0}.

Lemma 5.1 For any x ∈ D the following identities hold:

〈F ′′(x)v, z〉 = 0, (5.1)

〈F ′′′(x)[z]v, v〉 = 0, 〈F ′′′(x)[v]z, z〉 = 0. (5.2)

Proof:
Let

ψ(α) := −〈F ′(w + αv), z〉, α ≥ 0.

In view of Lemma 3.1 this function is convex. Therefore for any α ≥ 0 we have:

ψ′(α) ≥ ψ′(0) = −〈F ′′(w)v, z〉 = 0.

However
ψ′(α) = −〈F ′′(w + αv)v, z〉 ≤ 0

from part (iii) of Theorem 3.1, and we conclude that

〈F ′′(w + αv)v, z〉 = 0

for any α ≥ 0.
Now we can replace in this reasoning the point w by w̄ = w + αv for some fixed α ≥ 0

and prove that 〈F ′′(w̄ + βz)v, z〉 = 0 for any β ≥ 0. Thus, identity (5.1) is proved.
The relations (5.2) are just the right derivatives of identity (5.1) with respect to α and

β respectively.
�
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Theorem 5.1 For any x = w + αv + βz with α, β ≥ 0 we have:

F (x) = F (w + αv) + F (w + βz) − F (w), (5.3)

〈F ′(x), v〉 = 〈F ′(w + αv), v〉, 〈F ′(x), z〉 = 〈F ′(w + βz), z〉, (5.4)

〈F ′′(x)v, v〉 = 〈F ′′(w+αv)v, v〉, 〈F ′′(x)v, z〉 = 0, 〈F ′′(x)z, z〉 = 〈F ′′(w+ βz)z, z〉. (5.5)

Proof:
Relations (5.4) and (5.5) can be obtained by differentiating (5.3) with respect to α and β.
Therefore we need only prove (5.3).

In view of (5.1) we have:

F (x) − F (w + αv) =

β
∫

0

〈F ′(w + αv + τz), z〉dτ

=

β
∫

0



〈F ′(w + τz), z〉 +

α
∫

0

〈F ′′(w + ρv + τz)v, z〉dρ


 dτ

=

β
∫

0

〈F ′(w + τz), z〉dτ = F (w + βz) − F (w).

�

Let us now prove a very useful inequality.

Theorem 5.2 For any x ∈ intK and s ∈ intK∗ we have:

〈F ′(x), F ′
∗(s)〉 ≥

ν(ν − 1)

〈s, x〉 +
3

4
σ2

x(w), (5.6)

where the point w ∈ intK is such that s = F ′′(w)x.

(This theorem is an extension of Lemma 2.5 of Kojima, Mizuno, and Yoshise [8], and is used
similarly to prove constant decrease in a primal-dual potential function.)
Proof:
Note that from Theorem 3.2 F ′(x) = F ′′(w)F ′

∗(s), and therefore the inequality (5.6) can be
rewritten as follows:

(‖ F ′(x) ‖∗w)
2 ≥ ν(ν − 1)

‖ x ‖2
w

+
3

4
σ2

x(w). (5.7)

Further, from the definition of the coefficient σx(w) we have:

v := σx(w)x− w ∈ ∂K.
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Therefore x = (w + v)/σx(w) and (5.7) is equivalent to the following inequality:

(‖ F ′(w + v) ‖∗w)
2 ≥ ν(ν − 1)

‖ w + v ‖2
w

+
3

4
(5.8)

(using (2.2)). We want to prove that (5.8) is true for any v ∈ ∂K. In fact, we prove the
stronger inequality

(‖ F ′(w + v) ‖∗w)
2 ≥ (ν − 1)2

‖ w + v ‖2
w −1

+ 1. (5.9)

To show that (5.9) implies (5.8), let

ρ :=‖ w + v ‖2
w;

we then want to show that

(ν − 1)2

ρ− 1
+ 1 ≥ ν(ν − 1)

ρ
+

3

4
.

Note that ρ ≥‖ w+v ‖2
w+v= ν by part (i) of Corollary 4.1. The inequality above is equivalent

to
1

4
ρ(ρ− 1) − (ν − 1)(ρ− ν) ≥ 0,

which holds for any ρ ≥ ν ≥ 1 since the left hand side equals 1
4
(ρ− 1 + [(ρ− ν)− (ν − 1)]2).

In order to establish (5.9) for any v ∈ ∂K, let z be a direction orthogonal to v with
respect to w. Define

µ =
ρ− ν

ν − 1
, τ = − µ

〈F ′(w + v), z〉 = − µ

〈F ′(w), z〉

(see (5.4) with α = 1, β = 0). Then in view of (2.4) and (5.4)

〈F ′(w + v), w + v + τz〉 = −ν + τ〈F ′(w), z〉 = −ν − µ.

Therefore
(ν + µ)2 ≤ (‖ F ′(w + v) ‖∗w)

2 ‖ w + v + τz ‖2
w .

Since z and v are orthogonal with respect to w, we have:

‖ w + v + τz ‖2
w= ρ+ 2τ〈F ′′(w)w, z〉 + τ 2 ‖ z ‖2

w

= ρ+ 2µ+ µ2 〈F ′′(w)z, z〉
〈F ′(w), z〉2 ≤ ρ+ 2µ+ µ2

(we have used C∗ 2.3.1). Note that

ν + µ =
ρ− 2ν + ν2

ν − 1
,
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ρ+ 2µ+ µ2 = ρ− 1 + (µ+ 1)2 = (ρ− 1)

(

1 +
ρ− 1

(ν − 1)2

)

=
(ρ− 1)(ρ− 2ν + ν2)

(ν − 1)2
.

Combining these inequalities,

(‖ F ′(w + v) ‖∗w)
2 ≥ (ν + µ)2

ρ + 2µ+ µ2
= 1 +

(ν − 1)2

ρ− 1
,

which is exactly (5.9).
�

6 Problems, assumptions, and projections

In this section, we state the problems we are concerned with, list our assumptions, and then
prove some results about (oblique) projections and relate them to Euclidean orthogonal pro-
jections. These projections will frequently arise as search directions in algorithms described
in succeeding sections.

The problem we address is:

(P) min 〈c, x〉
s.t. Ax = b,

x ∈ K,

where we assume that

A is a surjective linear operator from E to
another finite-dimensional real vector space Y ∗.

(6.1)

Here, b ∈ Y ∗ and c ∈ E∗. The assumption that A is surjective is without loss of generality
(else replace Y ∗ with its range).

The dual to problem (P) is then (see [3]):

(D) max 〈b, y〉
s.t. A∗y + s = c,

s ∈ K∗,

where A∗ denotes the adjoint of A, mapping Y to E∗, and y ∈ Y .
We make the following assumptions about (P) and (D):

S0(P ) := {x ∈ intK : Ax = b} is nonempty, (6.2)

and
S0(D) := {(y, s) ∈ Y × intK∗ : A∗y + s = c} is nonempty. (6.3)

23



These assumptions imply (see [9], T ∗ 4.2.1; note that the primal objective function is bounded
below by (6.3) and L∗ 4.2.1) that both (P) and (D) have optimal solutions and that their
optimal values are equal, and that the sets of optimal solutions of both problems are bounded
(see [10]). Also, it is easy to see that, if x and (y, s) are feasible in (P) and (D) respectively,
then

〈c, x〉 − 〈b, y〉 = 〈s, x〉.
This quantity is the (nonnegative) duality gap.

For primal-dual algorithms, we will assume we have available a point x0 ∈ S0(P ) and
a point (y0, s0) ∈ S0(D) from which to start the iterations; primal algorithms only need to
have x0 ∈ S0(P ) and a lower bound ζ0 on the optimal value ζ∗ of (P) and (D).

Both kinds of algorithm obtain search directions by computing solutions to linear systems
of the form

Ap(u) = 0,
A∗y(u) + F ′′(w)p(u) = u,

(6.4)

where w is a fixed point in intK and u a point of E∗. We seek y(u) in Y and p(u) in E.
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Proposition 6.1 Under the assumptions above, there is a unique solution to (6.4).

We call the solution p(u) the projection of u into the kernel of A with respect to the positive
definite operator F ′′(w).
Proof:
It is enough to show that the linear operator defined by the left hand side of (6.4) is injective,
since it maps the finite-dimensional vector space Y × E into its dual, which has the same
dimension. Thus we need to show that any solution (y(0), p(0)) with u = 0 is uniquely
zero. But taking the scalar product of the second set of equations with p(0) we obtain
〈F ′′(w)p(0), p(0)〉 = 0, whence p(0) must be zero since F ′′(w) is positive definite. Then
the second set of equations yields A∗y(0) = 0, which implies y(0) = 0 since A∗ is injective.
Alternatively, note that if we represent the linear transformation defined by the left hand
side of (6.4) with respect to dual bases of E and E∗ and Y and Y ∗, we get a symmetric
indefinite matrix of an invertible form that is standard in interior-point methods (the matrix
representing the surjective mapping A has full row rank).

�

Next we prove a simple proposition generalizing the fact that the square of the norm of
the projection of a vector is equal to the scalar product of the projection with the vector.

Proposition 6.2 If p(u) is a projection of u with respect to the positive definite operator
F ′′(w), then

‖ p(u) ‖2
w= 〈u, p(u)〉. (6.5)

Proof:
From the definition, F ′′(w)p(u) = u−A∗y(u). Taking the scalar product of both sides with
p(u) gives the result.

�

Applying the Cauchy-Schwartz inequality to the right hand side of (6.5), we have
‖ p(u) ‖w≤‖ u ‖∗w. More generally, we have

Proposition 6.3 For any y ∈ Y the following inequality holds:

‖ p(u) ‖w≤‖ u− A∗y ‖∗w . (6.6)

This inequality becomes an equality only when y is an exact minimizer of the right hand side.

Proof:
Let us consider the following convex quadratic optimization problem:

min{−〈u, p〉 + 1
2
〈F ′′(w)p, p〉 : Ap = 0}. (6.7)

Let µ∗ be the optimal value and p∗ be the optimal solution of this problem. Note that p∗

can be found from the following system of linear equations:

F ′′(w)p∗ + A∗y = u, Ap∗ = 0,
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where y ∈ Y . Therefore we conclude that p∗ = p(u) and

µ∗ = −〈u, p∗〉 + 1
2
〈F ′′(w)p∗, p∗〉 = −1

2
‖ p(u) ‖2

w

in view of Proposition 6.2.
Let us write the Lagrangean for the problem (6.7):

L(p, y) = −〈u, p〉 + 1
2
〈F ′′(w)p, p〉+ 〈Ap, y〉.

Therefore the problem dual to (6.7) is:

max{−1
2
〈u− A∗y, [F ′′(w)]−1(u− A∗y)〉 : y ∈ Y }.

Thus, we conclude that

−1
2
‖ p(u) ‖2

w= µ∗ ≥ −1
2
(‖ u− A∗y ‖∗w)2

for any y ∈ Y .
�

We now relate the projections above to Euclidean orthogonal projections. Note that we
can rewrite (6.4) as

Ap(u) = 0,
−A∗y(u) + s(u) = 0,

s(u) + F ′′(w)p(u) = u.
(6.8)

Thus p(u) is in the kernel of A, s(u) in the range of A∗, and the sum of s(u) and a transfor-
mation of p(u) equals the given vector u.

Let us choose dual bases for the spaces E and E∗, and let H be the symmetric positive
definite matrix representing the transformation F ′′(w) with respect to these bases, of order
n := dim(E). Let V := Rn with the standard coordinate basis, so that V ∗ can be identified
with V and the basis is then self-dual. V is then a Euclidean space with the usual inner
product and norm.

Let J be the mapping from E to V represented by an upper triangular matrix R with
RTR = H. Then J∗ : V ∗ = V → E∗ is represented by the matrix RT , and thus J∗J : E → E∗

is represented by the matrix H, and thus coincides with F ′′(w). We have therefore factored
the operator F ′′(w) : E → E∗ into the product of two mappings from E to V and from V
to E∗. (This factorization corresponds to a Cholesky factorization RTR of the matrix H.)
Then (6.8) can be rewritten as

(AJ−1)(Jp(u)) = 0,
−(AJ−1)∗y(u) + J−∗s(u) = 0,

J−∗s(u) + Jp(u) = J−∗u,
(6.9)

which says that the vectors Jp(u) and J−∗s(u), both in the Euclidean space V , lie respectively
in the kernel of AJ−1 and the range of its adjoint, two complementary orthogonal subspaces
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of V , and have as their sum the vector J−∗u in V . They are therefore the orthogonal
projections of this vector into the appropriate subspaces.

(Note that, when K is the nonnegative orthant in E := Rn, x and s in intK, and
w ∈ intK so that F ′′(w)x = s, then F ′′(w) is represented with respect to the standard basis
as diag (s)[diag (x)]−1 and thus J by the matrix [diag (s)]1/2[diag (x)]−1/2, which is the usual
scaling matrix used in primal-dual methods.)

Finally, let us discuss the arithmetical complexity of computing solutions to (6.8), either
to obtain just p(u) (for primal methods) or to get (p(u), y(u), s(u)) (for primal-dual methods).
We have seen that we can alternatively solve (6.9), which is a Euclidean projection or least-
squares problem, for which many methods are available. One simple scheme for solving
(6.8) is as follows. Usually the Hessians of self-scaled barriers have a rather simple form
and it is not too difficult to invert them. Thus we first compute v := [F ′′(w)]−1u, thence
y(u) = (A[F ′′(w)]−1A∗)−1Av, and so obtain s(u) = A∗y(u) and p(u) = [F ′′(w)]−1(u− s(u)).
If all linear mappings are represented by matrices and Y is m-dimensional, this requires
the solution of a linear system with an m×m symmetric positive definite matrix and some
matrix multiplications.

7 Primal potential-reduction methods

In this section, we discuss extensions of two primal potential reduction methods for problem
(P), where assumptions (6.1)–(6.3) hold. (Such an extension of Karmarkar’s method [6] is
already given in [9], Section 4.3. But here we allow “long steps,” i.e., steps that typically go
a large fraction of the way to the boundary of K, whereas the theory in [9] only applies to
“short steps,” i.e., those which go only a fraction of the way to the boundary of a ball defined
by the local norm ‖ · ‖x.) We assume that we have available an initial point x0 ∈ S0(P ) and
a lower bound ζ0 on the optimal value of (P). We also assume that the objective function is
not constant on the feasible region of (P), so that it is strictly greater than the optimal value
at any point in S0(P ).

For both algorithms, convergence is based on forcing a decrease in the primal potential
function, parametrized by ζ ≤ ζ∗, defined by

Φ(x; ζ) := µ ln(〈c, x〉 − ζ) + F (x). (7.1)

for various values of µ. Our last assumption above implies that this is well-defined at all
points in S0(P ). (In fact, this assumption is made only for convenience. If it fails, we may
apply the algorithms exactly as stated, except that if we ever generate a feasible solution
x and a lower bound ζ with 〈c, x〉 = ζ, we terminate with an indication that x is exactly
optimal. In any case, the same complexity bounds hold.) The algorithms of this section are
guaranteed to generate a feasible solution x whose objective function value is within ε of the
optimal value in O(ν ln(1/ε)) iterations.

27



7.1 Karmarkar’s method

Here we assume further that the constraints Ax = b can be written as Bx = 0, 〈d, x〉 = 1,
with d ∈ K∗. (This can always be achieved by replacing E by E × R, x by (x, τ), K by
K × R+, and the constraints by Ax − bτ = 0, τ = 1.) Let Ỹ ∗ be the range of B, so that
Y ∗ = Ỹ ∗ × R, and let us write elements of Y as (y, ζ) ∈ Ỹ × R. In this case, our problem
takes the form

(P) min 〈c, x〉
s.t. Bx = 0,

〈d, x〉 = 1,
x ∈ K,

and its dual can be written as:

(D) max ζ
s.t. B∗y + dζ + s = c,

s ∈ K∗,

where B∗ denotes the adjoint of B and y ∈ Ỹ . Under the assumptions we have made, this
has an optimal solution (y∗, ζ∗, s∗), and ζ∗ equals the optimal value of (P).

We use the potential function Φ of (7.1) with µ := ν, but extend it to {x ∈ intK : Bx =
0}, by defining

Φ(x; ζ) := ν ln〈c− ζd, x〉 + F (x).

Note that this function is homogeneous (of degree 0) in x, since F is ν-logarithmically
homogeneous. Our first result shows that decreasing this potential function sufficiently
yields an approximately optimal solution to (P). From our assumptions,

K̄ := {x ∈ K : Bx = 0, 〈c, x〉 ≤ γ0 := max(〈c, x0〉, 0) + 1, 〈d, x〉 ≤ 1}

is bounded. The barrier F is bounded below on this set: let F denote its minimum there.

Theorem 7.1 Let x ∈ S0(P ) and ζ ∈ [ζ0, ζ
∗] be such that Φ(x; ζ) ≤ Φ(x0; ζ0) − ∆. Then,

as long as
∆ > ν ln(〈c, x0〉 − ζ0) + F (x0) − F ,

we have

〈c, x〉 − ζ ≤ (〈c, x0〉 − ζ0) · exp

(

F (x0) − F

ν

)

· exp
(

−∆

ν

)

. (7.2)

Proof:
Let λ := max(1, 〈c, x〉/γ0) and x̄ := x/λ. Then if x ∈ K̄, λ = 1 and x̄ = x, while if not,
x̄ ∈ K̄ with 〈c, x̄〉 = γ0. (We will show that the first case holds for ∆ sufficiently large.) In
either case, since Φ is homogeneous, our hypothesis implies that

〈c− ζd, x̄〉 ≤ (〈c, x0〉 − ζ0) · exp

(

F (x0) − F (x̄)

ν

)

· exp
(

−∆

ν

)

,
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and since x̄ ∈ K̄ and thus F (x̄) ≥ F , we deduce

〈c− ζd, x̄〉 ≤ (〈c, x0〉 − ζ0) · exp

(

F (x0) − F

ν

)

· exp
(

−∆

ν

)

.

If x = x̄, this immediately yields the conclusion of the theorem. Suppose not. Then λ > 1
and

〈c− ζd, x̄〉 = γ0 − ζ/λ ≥ 1 + 〈c, x0〉/λ− ζ/λ ≥ 1,

and we deduce that

1 ≤ (〈c, x0〉 − ζ0) · exp

(

F (x0) − F

ν

)

· exp
(−∆

ν

)

.

But this contradicts our hypothesis on the size of ∆.
�

From the theorem, it suffices to show that we can reduce Φ by a constant at each iteration
(possibly adjusting the lower bound ζ), and then we will have an O(ν ln(1/ε))-iteration
algorithm to obtain a feasible solution with objective value within ε of the optimal value of
(P). (Here the O(·) notation hides additive constants that depend on the initial solution x0

and the initial lower bound ζ0.) We now show how this can be achieved.
Suppose at any iteration we have x̂ ∈ S0(P ) and ζ̂ ≤ ζ∗. In trying to find a new point

with smaller Φ, we can ignore the constraint 〈d, x〉 = 1, since our new point can be rescaled
to satisfy this equality without changing the homogeneous potential. Thus we will obtain
the search direction by projecting into the kernel of B the derivative of Φ (with respect to
x). Note that

Φ′(x̂; ζ) =
ν

〈c− ζd, x̂〉(c− ζd) + F ′(x̂)

=
ν

〈c− ζd, x̂〉(ĉ− ζd̂),

where

ĉ := c− 〈c, x̂〉
ν

F ′(x̂), d̂ := d− 〈d, x̂〉
ν

F ′(x̂).

Since we do not yet know how ζ will be updated, we will separately project ĉ and d̂. We
therefore solve the two linear systems

Bp(u) = 0,
B∗y(u) + F ′′(x̂)p(u) = û,

(7.3)

for the two right hand sides û = ĉ and û = d̂, to get p(c) and p(d), etc. By Proposition 6.1
these have unique solutions. Our search direction will be of the form p := p(c) − ζp(d) for
some ζ. We may be able to choose ζ = ζ̂, but sometimes it is necessary to first update our
lower bound.

29



Lower bounds will be derived from feasible solutions to (D). In order to try to find these,
let us define, for ζ ≤ ζ∗,

x̃(ζ) :=
〈c− ζd, x̂〉

ν
x̂ + (p(c) − ζp(d)) (7.4)

and

s̃(ζ) := F ′′(x̂)x̃(ζ) = −〈c− ζd, x̂〉
ν

F ′(x̂) + F ′′(x̂)(p(c) − ζp(d)).

We then have
B∗(y(c) − ζy(d)) + s̃(ζ) = c− ζd

so that, as long as s̃(ζ) ∈ K∗, ζ is a lower bound on the optimal value of (P) since it is the
value of a feasible solution to (D).

There are now two cases. If x̃(ζ̂) /∈ intK, we set ζ+ := ζ̂, choose the search direction as

p := p(c) − ζ+p(d), (7.5)

and note that by (7.4) ν/(〈c, x̂〉 − ζ+) ≥ 1/σx̂(−p), so that 〈c, x̂〉 − ζ+ ≤ νσx̂(−p). On the
other hand, if x̃(ζ̂) ∈ intK, then note that x̃(ζ) = x̃(ζ̂) − (ζ − ζ̂)p̃, where p̃ := p(d) + x̂/ν.
In this case, we update ζ̂ to

ζ+ := ζ̂ + 1/σx̃(ζ̂)(p̃). (7.6)

Then set the search direction again to p given by (7.5), and note that x̃(ζ+) ∈ ∂K, so that
ν/(〈c, x̂〉 − ζ+) = 1/σx̂(−p) and 〈c, x̂〉 − ζ+ = νσx̂(−p). Also, s̃(ζ+) = F ′′(x̂)x̃(ζ+) ∈ K∗ by
part (iii) of Theorem 3.1, which implies that ζ+ is a valid lower bound. We therefore have
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Lemma 7.1 After possibly updating the lower bound as shown above, we have ζ+ ≤ ζ∗ and,
with p given by (7.5),

〈c, x̂〉 − ζ+ ≤ νσx̂(−p). (7.7)

�

This lemma generalizes a result of Anstreicher [1] for the case of standard linear program-

ming. Note that it implies (if x̂ is not optimal) that σx̂(−p) > 0.
We need one more observation before we prove the main theorem of this subsection.

Applying Proposition 6.2 with p given by (7.5), we have

‖ p ‖2
x̂= 〈ĉ− ζ+d̂, p〉.

But from (7.3), we find

0 + 〈−F ′(x̂), p(u)〉 = 〈B∗y(u), x̂〉 + 〈F ′′(x̂)p(u), x̂〉 = 〈û, x̂〉 = 0

for both u = c and u = d, so that 〈ĉ− ζ+d̂, p〉 = 〈c− ζ+d, p〉. Hence we obtain

‖ p ‖2
x̂= 〈c− ζ+d, p〉. (7.8)

We now see how these results and Theorem 4.2 enable us to establish a fixed decrease in
potential. For simplicity, let p+ := σx̂(p) and p− := σx̂(−p).

Theorem 7.2 Let the (possibly updated) lower bound ζ+ and the search direction p be as
above. Then, for a suitable value of α, x+ := x̂ − αp lies in {x ∈ intK : Bx = 0} and
satisfies

Φ(x+; ζ+) ≤ Φ(x̂; ζ̂) − ‖ p ‖2
x̂

| p |2x̂
(1 − ln 2) ≤ Φ(x̂; ζ̂) − (1 − ln 2). (7.9)

(Note that x+ may not be feasible, because it may not satisfy the constraint 〈d, x〉 = 1; but
because Φ is homogeneous, we may take as our next iterate x̂+ := x+/〈d, x+〉 and achieve
the same reduction in the potential function.)
Proof:
Let ∆Φ(α) := Φ(x̂−αp; ζ+)−Φ(x̂; ζ+). Since ζ+ ≥ ζ̂ and thus Φ(x̂; ζ+) ≤ Φ(x̂; ζ̂), it suffices
to prove that ∆Φ(α) is suitably small for some positive α ≤ 1/p+.

Let c̄ := c− ζ+d. Then, from Theorem 4.2,

∆Φ(α) = ν ln
(

1 − α 〈c̄,p〉
〈c̄,x̂〉

)

+ F (x̂− αp) − F (x̂)

= ν ln
(

1 − α
‖p‖2

x̂

〈c̄,x̂〉

)

+ F (x̂− αp) − F (x̂)

≤ ν ln
(

1 − α
‖p‖2

x̂

νp−

)

+ F (x̂− αp) − F (x̂)

≤ −α ‖p‖2
x̂

p−
+

‖p‖2
x̂

p2
+

[−αp+ − ln(1 − αp+)]

≤ −α ‖ p ‖2
x̂ ( 1

p−
+ 1

p+
) − ‖p‖2

x̂

p2
+

ln(1 − αp+).

(7.10)
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The right hand side is minimized by choosing

α =
1

p+ + p−
<

1

p+
,

and then x+ lies in intK (and hence in {x ∈ intK : Bx = 0}) and we have

∆Φ(α) ≤ −‖ p ‖2
x̂

p+p−
+

‖ p ‖2
x̂

p2
+

ln

(

1 +
p+

p−

)

= − ‖ p ‖2
x̂

max{p+, p−}2

[

(max{p+, p−})2

p+p−
− (max{p+, p−})2

p2
+

ln

(

1 +
p+

p−

)]

.

Let us write the expression in brackets as

max{1, τ 2}
τ

− max{1, τ 2}
τ 2

ln(1 + τ) =: g(τ),

where τ := p+/p− > 0. Then we see that for τ ≥ 1, in view of Proposition 4.1(i), the
function g(τ) is monotonically increasing, so that g(τ) ≥ g(1) = 1 − ln 2 > 0, while for
τ ≤ 1, in view of Proposition 4.1(ii), the function g(τ) is monotonically decreasing, so that
g(τ) ≥ g(1) = 1 − ln 2 > 0. Hence

∆Φ(α) ≤ − ‖ p ‖2
x̂

(max{p+, p−})2
(1 − ln 2) = −‖ p ‖2

x̂

| p |2x̂
(1 − ln 2) ≤ −(1 − ln 2).

This completes the proof.
�

For future reference, we note that if p− is replaced in (7.10) by any λ ∈ (0, ‖ p ‖x̂], the
proof above can be applied to give

∆Φ(α) ≤ − ‖ p ‖2
x̂

(max{p+, λ})2
(1 − ln 2) ≤ −(1 − ln 2).

The algorithm is now clear. Given x̂ ∈ S0(P ) and ζ̂ ≤ ζ∗, first try to update the lower
bound as described above Lemma 7.1 to get ζ+, and hence define p from (7.5). Now choose
the step size α ∈ [0, 1/σx̂(p)) so that (7.9) holds for x+ := x̂− αp and set x̂+ := x+/〈d, x+〉.
Now x̂+ and ζ+ replace x̂ and ζ̂ and the iteration is finished. Starting with x0 and ζ0, we
continue these iterations until 〈c, x̂〉 − ζ̂ ≤ ε, which, by Theorems 7.1 and 7.2, occurs within
O(ν ln(1/ε)) iterations.

7.2 An affine potential-reduction method

Now we discuss a method that solves (P) without assuming that the constraints have a
special form. This algorithm extends that of Gonzaga in [4]. We use the potential function
Φ of (7.1), but here with µ > ν. We now let

K̄ := {x ∈ K : Ax = bτ, 0 ≤ τ ≤ 1, 〈c, x〉 ≤ γ0 := max(〈c, x0〉, 0) + 1}
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which is again bounded by our assumptions. The barrier F is bounded below on this set, and
we let F denote its minimum there. As before, we first show that decreasing the potential
function sufficiently is enough to give an approximately optimal solution to (P).

Theorem 7.3 Let x ∈ S0(P ) and ζ ∈ [ζ0, ζ
∗] be such that Φ(x; ζ) ≤ Φ(x0; ζ0) − ∆. Then,

as long as
∆ > µ ln(〈c, x0〉 − ζ0) + F (x0) − F ,

we have

〈c, x〉 − ζ ≤ (〈c, x0〉 − ζ0) · exp

(

F (x0) − F

µ

)

· exp

(

−∆

µ

)

. (7.11)

Proof:
We follow the argument of Theorem 7.1, letting λ := max(1, 〈c, x〉/γ0) and x̄ := x/λ. Since
µ > ν, Φ is not homogeneous, but we have instead Φ(x̄; ζ/λ) = Φ(x; ζ)−(µ−ν) lnλ ≤ Φ(x; ζ).
The rest of the proof is exactly as before.

�

Hence we wish to decrease Φ by a constant at each iteration (possibly adjusting the lower
bound ζ) in order to have an O(µ ln(1/ε))-iteration algorithm to obtain a feasible solution
with objective value within ε of the optimal value of (P). As in the previous subsection, we
show how this can be achieved from any x̂ ∈ S0(P ) and ζ̂ ≤ ζ∗.

First we solve the two linear systems

Ap(u) = 0,
A∗y(u) + F ′′(x̂)p(u) = u,

(7.12)

for u = c and u = d := F ′(x̂). Noting that

Φ′(x̂; ζ) =
µ

〈c, x̂〉 − ζ
c+ F ′(x̂), (7.13)

we see that
p := p(c) + λp(d), (7.14)

for

λ = λ(ζ) :=
〈c, x̂〉 − ζ

µ
, (7.15)

is λ times the projection of the gradient of Φ(·; ζ) into the kernel of A. Our search direction
will have the form of p above where ζ is a possibly updated lower bound on the optimal
value ζ∗ of (P). (Note that the search direction used in the previous subsection can also be
viewed as a scaled projection of this gradient, there into the kernel of B intersected with the
kernel of F ′(x̂).)

We first consider the lower bound update. Note that, for any λ ∈ R,

A∗(y(c) + λy(d)) + F ′′(x̂)(p(c) + λp(d)) − λF ′(x̂) = c.
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We therefore define
x̃(λ) := λx̂ + p(c) + λp(d) (7.16)

and
s̃(λ) := F ′′(x̂)x̃(λ) = F ′′(x̂)(p(c) + λp(d)) − λF ′(x̂).

Thus, as long as s̃(λ) ∈ K∗, 〈c, x̂〉 − 〈s̃(λ), x̂〉 is a lower bound on the optimal value of (P)
since it is the value of a feasible solution to (D). The gap

〈s̃(λ), x̂〉 = 〈−F ′(x̂), p(c)〉 + λ((‖ F ′(x̂) ‖∗x̂)2 − 〈F ′(x̂), p(d)〉)
= 〈−F ′(x̂), p(c)〉 + λ((‖ F ′(x̂) ‖∗x̂)2− ‖ p(d) ‖2

x̂)

is an increasing function of λ, using Propositions 6.2 and 6.3. Thus we choose λ̂ as the
minimum λ such that s̃(λ) ∈ K∗ (or +∞ if there is no such λ), and then set

ζ+ := max(ζ̂, 〈c, x̂〉 − 〈s̃(λ̂), x̂〉), (7.17)

where the second argument of the “max” is taken to be −∞ if λ̂ = ∞. (Note that we could
use a similar update in our extension of Karmarkar’s algorithm, updating ζ̂ whenever an
improvement is possible using some s̃(ζ) ∈ K∗.)

With this update, we set

λ+ := λ(ζ+), p := p(c) + λ+p(d).

Lemma 7.2 If µ ≥ ν +
√
ν, then λ+ ≤‖ p ‖x̂, while if µ ≥ 2ν, then λ+ ≤| p |x̂.

Recall that | p |x̂ is defined as max{σx̂(p), σx̂(−p)} (see (4.2)).
Proof:
Suppose λ+ >‖ p ‖x̂ or λ+ >| p |x̂, so that in either case λ+ > σx̂(−p). Then λ+x̂ + p ∈ K,
so s̃(λ+) ∈ K∗. Now ζ+ is defined as the best lower bound that can be deduced from an s
of this form, so we have

〈c, x̂〉 − ζ+ ≤ 〈s̃(λ+), x̂〉 = 〈F ′′(x̂)(λ+x̂+ p), x̂〉
= λ+〈F ′′(x̂)x̂, x̂〉 + 〈F ′′(x̂)p, x̂〉 = λ+ν + 〈−F ′(x̂), p〉.

If µ ≥ ν +
√
ν, we use (4.3), so that λ+ >‖ p ‖x̂ implies

〈c, x̂〉 − ζ+ ≤ λ+ν +
√
ν ‖ p ‖x̂< (ν +

√
ν)λ+ ≤ µλ+,

contradicting λ+ = (〈c, x̂〉 − ζ+)/µ.
If µ ≥ 2ν, we use (4.4), so that λ+ >| p |x̂≥ σx̂(p) implies

〈c, x̂〉 − ζ+ ≤ λ+ν + νσx̂(p) < 2νλ+ ≤ µλ+,

again contradicting the definition of λ+.
�

We can now show that a constant decrease in potential is possible. As above, let us write
p+ := σx̂(p) and p− := σx̂(−p).
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Theorem 7.4 Let the (possibly updated) lower bound ζ+ and the search direction p be as
above.

(a) If µ ≥ ν +
√
ν, a suitable value of α can be chosen so that x+ := x̂− αp lies in S0(P )

and satisfies

Φ(x+; ζ+) ≤ Φ(x̂; ζ̂) − ‖ p ‖2
x̂

(max{p+, ‖ p ‖x̂})2
(1 − ln 2) = Φ(x̂; ζ̂) − (1 − ln 2). (7.18)

(b) If µ ≥ 2ν, a suitable value of α can be chosen so that x+ := x̂− αp lies in S0(P ) and
satisfies

Φ(x+; ζ+) ≤ Φ(x̂; ζ̂) − ‖p‖2
x̂

(max{p+,|p|x̂})2
(1 − ln 2) = Φ(x̂; ζ̂) − ‖p‖2

x̂

|p|2
x̂

(1 − ln 2)

≤ Φ(x̂; ζ̂) − (1 − ln 2).
(7.19)

Proof:
Note first that, since Ap = 0, x− αp lies in S0(P ) as long as α ∈ (0, 1/p+). Now, as in the
analysis of Karmarkar’s method, let ∆Φ(α) := Φ(x̂− αp; ζ+) − Φ(x̂; ζ+). Since ζ+ ≥ ζ̂ and
thus Φ(x̂; ζ+) ≤ Φ(x̂; ζ̂), it suffices to prove that ∆Φ(α) is suitably less than 0.

We find

∆Φ(α) = µ ln
(

1 − α 〈c,p〉
〈c,x̂〉−ζ+

)

+ F (x̂− αp) − F (x̂)

≤ − α
λ+ 〈c, p〉 − α〈F ′(x), p〉 +

‖p‖2
x̂

p2
+

[−αp+ − ln(1 − αp+)]

= − α
λ+ 〈c+ λ+F ′(x), p〉 +

‖p‖2
x̂

p2
+

[−αp+ − ln(1 − αp+)]

= − α
λ+ ‖ p ‖2

x̂ +
‖p‖2

x̂

p2
+

[−αp+ − ln(1 − αp+)]

= −α ‖ p ‖2
x̂ ( 1

λ+ + 1
p+

) − ‖p‖2
x̂

p2
+

ln(1 − αp+).

(7.20)

If µ ≥ ν +
√
ν, Lemma 7.2 yields λ+ ≤‖ p ‖x̂, and we can substitute this in (7.20) to

get an upper bound on ∆Φ(α). As in the proof of Theorem 7.2, this bound is minimized by
taking

α =
1

p++ ‖ p ‖x̂

<
1

p+

,

and then we have

∆Φ(α) ≤ − ‖ p ‖2
x̂

(max{p+, ‖ p ‖x̂})2
(1 − ln 2)

using the proof of Theorem 7.2, which gives (7.18).
On the other hand, if µ ≥ 2ν, Lemma 7.2 yields λ+ ≤| p |x̂, and substituting this in

(7.20) yields a different upper bound on ∆Φ(α). Following the proof of Theorem 7.2, we
minimize this bound by taking

α =
1

p++ | p |x̂
<

1

p+
,
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and then we have

∆Φ(α) ≤ − ‖ p ‖2
x̂

(max{p+, | p |x̂})2
(1 − ln 2),

which gives (7.19) as desired.
�

Of course, this argument also naturally yields an O(µ ln(1/ε))-iteration algorithm to
obtain a feasible solution with objective value within ε of the optimal value of (P). This is
the same complexity bound as before as long as we choose µ = O(ν).

7.3 Remarks

In the previous subsection, we made a distinction between the cases with µ ≥ ν +
√
ν and

µ ≥ 2ν which might have seemed irrelevant. However, in the first case, we were only able to
show a decrease in Φ for α = 1/(p++ ‖ p ‖x̂) ≤ 1/ ‖ p ‖x̂, i.e., only for a step within a unit
ball in the local norm, and the (bound on the) decrease was only 1 − ln 2 (see (7.18)). In
the second case, we could choose α = 1/(p++ | p |x̂), which is typically a reasonable fraction
of the way to the boundary of K (for example, half way if p− = p+), and the (bound on
the) decrease was then [‖ p ‖2

x̂ / | p |2x̂](1 − ln 2) (see (7.19)), typically much larger. For
Karmarkar’s algorithm, even with µ = ν, a large step and a typically large decrease in Φ are
possible (see (7.9)).

Another interesting observation concerns the derivation of lower bounds. Given a current
iterate x̂ and search direction p, the new iterate is of the form x̂ − αp for some positive α.
However, if the lower bound is updated, it corresponds to a dual feasible solution with s
equal to a positive multiple of F ′′(x̂)(x̂ + αp) for some positive α, i.e., to a search in the
opposite direction (see (7.4),(7.16)).

8 Joint scaling primal-dual interior-point method

In this section we describe an algorithm that works symmetrically in the primal and dual
spaces. At each iteration it strives to decrease the symmetric primal-dual potential function
given by

φ(x, s) = (ν + ρ) ln〈s, x〉 + F (x) + F∗(s),

where ρ is a constant at least equal to
√
ν, defined for x ∈ S0(P ) and (y, s) ∈ S0(D). Recall

that 〈s, x〉 is the duality gap corresponding to feasible x and (y, s). We again assume (6.1)–
(6.3), and now we need to have available a point x0 ∈ S0(P ) and a point (y0, s0) ∈ S0(D).

As in the previous section, a suitable reduction in the potential function guarantees that
we have near-optimal solutions, here to both (P) and (D). Indeed, by [9], P ∗ 4.5.1, we have

Theorem 8.1 Let x ∈ S0(P ), (y, s) ∈ S0(D) be such that φ(x, s) ≤ φ(x0, s0) − ∆. Then

〈s, x〉 ≤ 〈s0, x0〉 ·R(x0, s0) · exp

(

−∆

ρ

)

,
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where
R(x0, s0) := exp{(ν ln〈s0, x0〉 + F (x0) + F∗(s0) − ν ln(ν) + ν)/ρ}.

�

The theorem implies that, if we can assure a constant decrease in the potential function
at each iteration, we can obtain primal and dual feasible solutions that are within ε of the
common optimal value in O(

√
ν ln(1/ε)) iterations by choosing ρ = γ

√
ν for constant γ ≥ 1,

an improvement of a factor of
√
ν over the methods of the previous section. This symmetric

primal-dual potential function was first used to establish such a complexity bound in Todd
and Ye [13] for a short-step symmetric primal-dual algorithm. Ye [15] obtained a long-step
algorithm which was not symmetric, and Kojima et al. [8] developed a symmetric primal-
dual method. Nesterov and Nemirovskii [9], Section 4.5, extended Ye’s algorithm to the
setting of general cones. Here we extend the method of Kojima et al. when the cones are
self-scaled:

1. Initialization. Choose x0 ∈ S0(P ) and (y0, s0) ∈ S0(D).

2. k-th iteration (k ≥ 0).

a) Compute the scaling point wk ∈ intK such that

sk = F ′′(wk)xk,

and the coefficient
σk = σxk

(wk).

b) Compute the displacement (∆xk,∆sk,∆yk) as a solution of the following system of
linear equations:

F ′′(wk)∆xk + ∆sk = uk :=
ν + ρ

〈sk, xk〉
sk + F ′(xk), (8.1)

A∆xk = 0, A∗∆yk + ∆sk = 0.

c) Find σxk
(∆xk) and σ∗

sk
(∆sk) and set σ̄k := max{σxk

(∆xk), σ
∗
sk

(∆sk)}. Choose the
initial step size

ᾱk =
1

σ2
k + σ̄k

and find the step size αk from the condition

φ(xk − αk∆xk, sk − αk∆sk) ≤ φ(xk − ᾱk∆xk, sk − ᾱk∆sk).

d) Set
xk+1 = xk − αk∆xk, sk+1 = sk − αk∆sk, yk+1 = yk − αk∆yk.

End of iteration.
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Note that uk = φ′
x(xk, sk), the partial derivative of φ with respect to the x-variable. We

also observe that we can write (8.1) as

∆xk + F ′′
∗ (tk)∆sk = vk :=

ν + ρ

〈sk, xk〉
xk + F ′

∗(sk),

where tk := −F ′(wk) so that F ′′
∗ (tk)sk = xk, and note that vk = φ′

s(xk, sk). Thus the
direction choice is symmetric between K and K∗. In addition, it is easy to see that σk can
equally be defined as σ∗

sk
(tk), so the choice of step size is also symmetric. Finally, note the

similarity between (8.1) and the projection equations (6.8), demonstrating that ∆xk is the
projection of φ′

x(xk, sk) into the kernel of A with respect to F ′′(wk), and similarly ∆sk is
the projection of φ′

s(xk, sk) into the range of A∗ with respect to F ′′
∗ (tk). Alternatively, in the

Euclidean space V , the primal and dual steps (in that space) are the Euclidean projections
of the corresponding gradients (which happen to be equal).

Theorem 8.2 For any k ≥ 0 the following inequality holds:

φ(xk+1, sk+1) ≤ φ(xk, sk) −
√

3

2
+ ln

(

1 +

√
3

2

)

.

Proof:
Let us analyze one iteration of the method. In order to simplify the notation let us omit all
indices denoting the number of the iteration. Denote H = F ′′(w).

Note that in view of Theorem 3.2

µ2 := (‖ u ‖∗w)2 = (ν+ρ)2

〈s,x〉2
〈s,H−1s〉 + 2 ν+ρ

〈s,x〉
〈F ′(x), H−1s〉 + 〈F ′(x), H−1F ′(x)〉

= (ν+ρ)2−2ν(ν+ρ)
〈s,x〉

+ 〈F ′(x), F ′
∗(s)〉 = 〈F ′(x), F ′

∗(s)〉 − ν2−ρ2

〈s,x〉

≥ 〈F ′(x), F ′
∗(s)〉 − ν(ν−1)

〈s,x〉

(8.2)

(recall that ρ ≥ √
ν). On the other hand

µ2 = 〈H∆x+ ∆s,H−1(H∆x+ ∆s)〉 =‖ ∆x ‖2
w +(‖ ∆s ‖∗w)2. (8.3)

Let us introduce the function

∆φ(α) = φ(x− α∆x, s− α∆s) − φ(x, s).

Since

〈s− α∆s, x− α∆x〉 − 〈s, x〉 = −α(〈∆s, x〉 + 〈s,∆x〉)
= −α(〈u−H∆x, x〉 + 〈s,∆x〉) = −α〈u, x〉 = −αρ

(see (2.4)), in view of Theorem 4.2 we have:

∆φ(α) ≤ (ν + ρ) ln

(

1 − αρ

〈s, x〉

)

− α〈F ′(x),∆x〉 +
‖ ∆x ‖2

x

σ2
x(∆x)

(−ασx(∆x) − ln(1 − ασx(∆x)))
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−α〈∆s, F ′
∗(s)〉 +

(‖ ∆s ‖∗s)2

(σ∗
s(∆s))

2
(−ασ∗

s(∆s) − ln(1 − ασ∗
s(∆s))) ≤ −α∆0 + ∆x(α) + ∆s(α),

where

∆0 =
ρ(ν + ρ)

〈s, x〉 + 〈F ′(x),∆x〉 + 〈∆s, F ′
∗(s)〉,

∆x(α) =
‖ ∆x ‖2

x

σ2
x(∆x)

(−ασx(∆x) − ln(1 − ασx(∆x))),

∆s(α) =
(‖ ∆s ‖∗s)2

(σ∗
s(∆s))

2
(−ασ∗

s(∆s) − ln(1 − ασ∗
s(∆s))).

Let us estimate each ∆(·) separately.
In view of Theorem 3.2 and (2.4) we have:

〈∆s, F ′
∗(s)〉 = 〈ν + ρ

〈s, x〉s+ F ′(x) −H∆x, F ′
∗(s)〉

= −ν(ν + ρ)

〈s, x〉 + 〈F ′(x), F ′
∗(s)〉 − 〈F ′(x),∆x〉.

Therefore

∆0 = 〈F ′(x), F ′
∗(s)〉 −

ν2 − ρ2

〈s, x〉 = µ2.

Further, by Corollary 4.1 (ii)
‖ ∆x ‖2

x≤ σ2 ‖ ∆x ‖2
w, (8.4)

and therefore from (4.5) and (8.3),

σx(∆x) ≤‖ ∆x ‖x≤ σ ‖ ∆x ‖w≤ σµ (8.5)

and similarly σ∗
s(∆s) ≤ σµ. Recalling the definition of σ̄, we thus have

max{σx(∆x), σ
∗
s(∆s)} = σ̄ ≤ σµ.

In view of Proposition 4.1(iii) and (8.4) we can estimate ∆x(α) as follows:

∆x(α) ≤ σ2 ‖ ∆x ‖2
w

σ̄2
(−ασ̄ − ln(1 − ασ̄)).

The symmetric reasoning for ∆s(α) leads to the following estimate:

∆s(α) ≤ σ2(‖ ∆s ‖∗w)2

σ̄2
(−ασ̄ − ln(1 − ασ̄)).

Therefore in view of (8.3) we conclude that

∆x(α) + ∆s(α) ≤ σ2µ2

σ̄2
(−ασ̄ − ln(1 − ασ̄))
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and we come to the following inequality:

∆φ(α) ≤ −ασ2µ2
(

1

σ2
+

1

σ̄

)

− σ2µ2

σ̄2
ln(1 − ασ̄).

This is exactly the same form as the bound of (7.10), and is minimized by α = ᾱ := 1/[σ2+σ̄],
which yields

∆φ(ᾱ) ≤ −µ
2

σ̄
+
σ2µ2

σ̄2
ln
(

1 +
σ̄

σ2

)

= −µ
2

σ2

[

τ − ln(1 + τ)

τ 2

]

,

where τ := σ̄/σ2 ≤ µ/σ. As before, in view of Proposition 4.1 (ii) the function in brackets
is decreasing in τ . Therefore we may replace τ by its upper bound:

∆φ(ᾱ) ≤ −
(

µ

σ
− ln

(

1 +
µ

σ

))

.

It remains to note that by (8.2) and Theorem 5.2 we have µ/σ ≥
√

3/2.
�

(The reader may be confused by the presence of σ2 above, especially in conjunction with σ̄
in the expression for ᾱ. Why is it squared? It turns out that σ2 = σx(−F ′

∗(s)) = σ∗
s(−F ′(x)),

but the proof would take us rather far afield. Thus the step size is expressed in terms of the
maximum steps to the boundary for x or s in the directions ∆x and −F ′

∗(s) or the directions
∆s and −F ′(x), and is at least half the minimum of these steps.)

In view of Theorems 8.1 and 8.2, if we choose ρ = γ
√
ν for a constant γ ≥ 1, we have

the desired O(
√
ν ln(1/ε))-iteration algorithm. In this algorithm, the fact that we have a

self-scaled barrier is used to assure the existence of the scaling point w (and hence get a
symmetric method) as well as to allow a long step.

9 Newton’s method and the path-following approach

Here we discuss the possibilities of applying to problem (P) the path-following approach, i.e.,
following the trajectory {x(τ) : τ > 0}, where x(τ) is the minimizer of the penalty function

ψ(τ, x) := τ〈c, x〉 + F (x)

over S0(P ). Under assumptions (6.1)–(6.3), this trajectory is well-defined (see [9], [10]).
Each point x(τ) is the unique solution of the following system:

τc + F ′(x(τ)) − A∗y = 0, Ax(τ) = b, x ∈ intK.

All complexity estimates for path-following methods are based on the behavior of New-
ton’s method as applied to minimizing the function ψ(τ, x) over S0(P ). The complete de-
scription of this behavior in the case of general cones is presented in [9], Section 2.2. In this
section we improve several estimates of [9] using the specific properties of self-scaled cones.

Let us fix τ > 0. Consider Newton’s method in the following form:
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1. Initialization Choose x0 ∈ S0(P ).

2. kth iteration

a) Find the search direction pk := p(τ, xk), where p(τ, x) is the solution of the following
system:

τc + F ′(x) − F ′′(x)p(τ, x) − A∗y(τ, x) = 0, Ap(τ, x) = 0,

and y(τ, x) ∈ Y .

b) Choose a step size αk such that xk − αkpk ∈ intK.

c) Set xk+1 = xk − αkpk.

End of iteration.

We will consider two strategies for choosing αk. The first one can be applied at the initial
stages of the minimization process.

Theorem 9.1 Let us choose in Newton’s method

αk =
1

1 + σxk
(pk)

.

Then for any k ≥ 0 we have:

ψ(τ, xk+1) ≤ ψ(τ, xk) −
(

‖pk‖xk

σxk
(pk)

)2

(σxk
(pk) − ln(1 + σxk

(pk)))

≤ ψ(τ, xk) − (‖ pk ‖xk
− ln(1+ ‖ pk ‖xk

)) .
(9.1)

Proof:
By Proposition 6.2

〈τc + F ′(xk), pk〉 =‖ pk ‖2
xk
.

Therefore the first inequality of (9.1) is a direct consequence of the inequality (4.8). The
second follows from Proposition 4.1(ii).

�

Let us introduce the following proximity measure:

π(τ, x) :=‖ p(τ, x) ‖x .

It is clear that π(τ, x(τ)) = 0. We will prove that the inequality

π(τ, x) < 1

defines a region of quadratic convergence of Newton’s method (with coefficient 1), so that
in this region we should choose αk = 1. This result extends Theorem 2.1 of Roos and Vial
[11]. Note that in view of Proposition 6.3 we have

π(τ, x) ≤‖ F ′(x) + τc− A∗y ‖∗x . (9.2)

for any τ > 0, x ∈ intK, and y ∈ Y .
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Theorem 9.2 Let π(τ, x0) < 1 and let us choose in Newton’s method αk = 1. Then

π(τ, xk+1) ≤| pk |xk
π(τ, xk) ≤ π2(τ, xk).

Proof:
Indeed, in view of (9.2) and the definition of pk we have:

π(τ, xk+1) ≤ ‖ F ′(xk+1) + τc− A∗y(τ, xk)) ‖∗xk+1

= ‖ F ′(xk+1) − F ′(xk) − F ′′(xk)(xk+1 − xk) ‖∗xk+1
.

It remains to use Theorem 4.3.
�

Thus, we have demonstrated that using Newton’s method we can find a good approx-
imation to a point on the central path x(τ). Let us prove that we can follow the central
path when τ → ∞ by updating points in the region of quadratic convergence of Newton’s
method.

Consider the following scheme:

1. Initialization Choose a value τ0 > 0 and a point x0 ∈ S0(P ) such that

π(τ0, x0) ≤
1

4
.

2. kth iteration

a) Set vk = v(xk), where v(x) is the solution of the following linear system:

c− F ′′(xk)v(x) − A∗ŷ(x) = 0, Av(x) = 0,

and ŷ(x) ∈ Y .

b) Choose the tangent step size ∆τk as follows:

∆τk =
3

8
√

| vk |xk
‖ vk ‖xk

.

Set (predictor step)
zk = xk − ∆τkvk, τk+1 = τk + ∆τk.

c) Set (corrector step)
xk+1 = zk − p(τk+1, zk).

End of iteration.

Theorem 9.3 The above path-following scheme preserves the condition

π(τk, xk) ≤
1

4
, k = 0, 1, . . . . (9.3)

Further, for any k ≥ 0, the following inequality holds:

τk+1 ≥


1 +
3

8
√
ν + 2

√

√

√

√

‖ vk ‖xk

| vk |xk



 τk ≥
(

1 +
3

8
√
ν + 2

)

τk. (9.4)
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Proof:
In view of Theorem 9.2, in order to prove (9.3) we shall prove that

π(τk+1, zk) ≤ 1
2
.

Therefore, by Proposition 6.3, it is enough to prove that

‖ F ′(zk) + (τk + ∆τk)c− A∗ȳ ‖∗zk
≤ 1

2

for some ȳ ∈ Y .
Indeed, let us choose

ȳ = y(τk, xk) + ∆τkŷ(xk).

Then

F ′(zk) + (τk + ∆τk)c− A∗ȳ = F ′(zk) − F ′(xk) + ∆τkF
′′(xk)vk + F ′′(xk)p(τk, xk)

= F ′(zk) − F ′(xk) − F ′′(xk)(zk − xk) + F ′′(xk)p(τk, xk).

Therefore in view of Theorem 4.3 we have:

‖ F ′(zk) + (τk + ∆τk)c− A∗ȳ ‖∗zk
≤ ∆τ 2

k | vk |xk
· ‖ vk ‖xk

+ ‖ F ′′(xk)p(τk, xk) ‖∗zk
.

Note that from Theorem 4.1

F ′′(zk) ≥
1

(1 + ∆τk | vk |xk
)2
F ′′(xk).

This implies that

‖ F ′′(xk)p(τk, xk) ‖∗zk
≤ (1 + ∆τk | vk |xk

)π(τk, xk)

≤ 1

4
(1 + ∆τk | vk |xk

) =
1

4



1 +
3

8

√

√

√

√

| vk |xk

‖ vk ‖xk



 ≤ 11

32
.

Thus, we conclude that

‖ F ′(zk) + (τk + ∆τk)c− A∗ȳ ‖∗zk
≤ 9

64
+

11

32
<

1

2
.

Let us now prove inequality (9.4). Note that

τk+1 = τk + ∆τk = τk +
3

8 ‖ vk ‖xk

√

√

√

√

‖ vk ‖xk

| vk |xk

≥ τk +
3

8 ‖ vk ‖xk

.

Thus, we only have to prove that

‖ τkvk ‖xk
≤

√
ν +

1

4
. (9.5)
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Let us choose

ȳ =
1

τk
y(τk, xk).

Then in view of Proposition 6.3 and the definitions of vk, p(τk, xk) and y(τk, xk) we have:

‖ τkvk ‖xk
≤ ‖ τkc− τkA

∗ȳ ‖∗xk

= ‖ F ′(xk) − F ′′(xk)p(τk, xk) − A∗(y(τk, xk) − τkȳ) ‖∗xk

= ‖ F ′(xk) − F ′′(xk)p(τk, xk) ‖∗xk

≤ ‖ F ′(xk) ‖∗xk
+ ‖ F ′′(xk)p(τk, xk) ‖∗xk

≤
√
ν +

1

4
.

Thus, (9.5) and therefore (9.4) is proved.
�

Note that ∆τk in part (b) of the algorithm is chosen in accordance with a kind of “large-
step” rule. Indeed, let

v̄k =
vk

‖ vk ‖xk

.

Then the maximal step α∗ such that xk ± α∗v̄k ∈ K is given by the formula:

α∗ =
‖ vk ‖xk

| vk |xk

.

Note that α∗ ≥ 1. And it is easy to see that our rule is

zk = xk −
3
√
α∗

8
v̄k.

Of course, this rule depends on worst-case behavior. We can alternatively increase τk using
an adaptive rule, which could allow even faster increase.
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