

Self-selecting, self-tuning, incrementally optimized indexes
Goetz Graefe

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

Harumi Kuno
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

Abstract
In a relational data warehouse with many tables, the

number of possible and promising indexes exceeds human
comprehension and requires automatic index tuning. While
monitoring and reactive index tuning have been proposed,
adaptive indexing focuses on adapting the physical data-
base layout for and by actual queries.

“Database cracking” is one such technique. Only if and
when a column is used in query predicates, an index for the
column is created; and only if and when a key range is que-
ried, the index is optimized for this key range. The effect is
akin to a sort that is adaptive and incremental. This sort is,
however, very inefficient, particularly when applied on
block-access devices. In contrast, traditional index creation
sorts data with an efficient merge sort optimized for block-
access devices, but it is neither adaptive nor incremental.

We propose adaptive merging, an adaptive, incre-
mental, and efficient technique for index creation. Index
optimization focuses on key ranges used in actual queries.
The resulting index adapts more quickly to new data and to
new query patterns than database cracking. Sort efficiency
is comparable to that of traditional B-tree creation. None-
theless, the new technique promises better query perform-
ance than database cracking, both in memory and on block-
access storage.

Categories and subject descriptors
E.2 Data storage representations – arrays, sorted trees.

Keywords
Database index, adaptive, autonomic, query execution. 1

1 Introduction
In a relational data warehouse with a hundred tables

and a thousand columns, billions of indexes are possible, in
particular if partial indexes, indexes on computed columns,

1 Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee.
EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00.

and materialized views with their indexes are considered.
Thus, index selection is a central, classic, and very hard
problem in physical database design. Too few or the wrong
indexes force many queries to scan large parts of the data-
base; too many indexes force high update costs. Unpredict-
able ad-hoc queries exacerbate the problem.

One approach is to focus on enabling very fast scans,
e.g., using shared scans and columnar storage formats, an
approach suitable to high-bandwidth high-latency devices
such as traditional disk drives and disk arrays. Low-latency
database storage such as flash memory will likely re-
energize research into index-based query processing.

Another approach is to tune indexes in response to the
actual workload. Contemporary index selection tools rely
on monitoring database requests and their execution plans,
occasionally invoking creation or removal of indexes on
tables and views. Such tools tend to suffer from three
weaknesses. First, the interval between monitoring and
index creation can exceed the duration of a specific request
pattern; in which case there is no benefit to those tools.
Second, even if that is not the case, there is no index sup-
port during this interval, so data access during the interval
is wasted with respect to index creation, and eventual index
creation imposes an additional load that interferes with
query execution. Last, but not least, traditional indexes on
tables cover all rows equally, even if some rows are needed
often and some never. For example, recent business trans-
actions are queried more often than those years ago, ex-
treme price fluctuations are more interesting than stable
prices, etc. Even where it is possible to limit an index, e.g.,
using a partial index or a materialized view, it is often dif-
ficult or impossible to predict the key ranges to focus on.

Database cracking [IKM 07a, KM 05] has pioneered
focused, incremental, automatic optimization of the repre-
sentation of a data collection − the more often a key range
is queried, the more its representation is optimized. This
optimization occurs entirely automatically, as a side effect
of queries over key ranges not yet fully optimized.

Figure 1. A column store partitioned by database cracking.

For example, after the column store illustrated in
Figure 1 has been queried with range boundary values c, g,
m, s, and u, all key values below c have been assigned to

Column domain and storage array

c g m s u
j y

371

storage locations to the far left, followed by all key values
between c and g, etc. When a new query with range
boundaries j and y is processed, the values below g are ig-
nored, the values between g and m are partitioned with
pivot value j, the values between m and u are returned as
query results without partitioning or sorting, and the values
above u are partitioned with pivot value y. Subsequent que-
ries continue to partition these key ranges.

Database cracking was a distinct innovation when it
was proposed, but it also has some weaknesses. First, data-
base cracking requires many steps to reach the final repre-
sentation for a key range, even if no further cracking is
applied to minimal partitions smaller than a pre-determined
size, say 4 MB. Thus, optimization of newly loaded data
and adaptation to a new focus of query activity are much
slower and more expensive than they ought to be. Second,
the efficiency of transforming an initial data representation
into a fully optimized one depends on the query pattern,
i.e., the sequence in which boundary keys and thus pivot
values are introduced. Third, search efficiency never
reaches that of a traditional index if cracking leaves un-
sorted minimal partitions, say 4 MB. While a traditional
index permits binary search with log2(N) comparisons
among N records, the expected cost for a linear search in an
unsorted minimal partition is N/2 comparisons (assuming
foreknowledge of precisely one match). For example, with
65,000 records in a partition (4 MB ÷ 60 B), the difference
is 16 versus 32,500 comparisons or a factor 2,000. Fourth,
database cracking seems to work well for in-memory data-
bases but not for block-access storage.

In this paper, we introduce adaptive merging, a new
technique that overcomes these weaknesses. It combines
the efficiency of traditional B-tree creation with the adap-
tive and incremental behavior of database cracking. It dif-
fers from database cracking as it is based on merging (as in
a merge sort) rather than on partitioning (as used in quick-
sort). The performance advantages of adaptive merging are
substantial both during adaptation when the focus of query
activity shifts to a new key range and during individual
queries against a fully optimized data representation.

2 Prior work
Our design relies on multiple directions of prior work.

Section 2.1 covers approaches that monitor execution and
periodically evaluate what indexes are appropriate for a
running workload. Section 2.2 reviews database cracking,
the only other approach we know of that continually adapts
index structures to reflect a running workload. Finally, Sec-
tion 2.3 describes one of multiple mechanisms well-suited
to providing an underlying storage mechanism for imple-
menting our adaptive merging approach.

2.1 Automatic index selection
As indexes are crucial to query performance in most

database systems, the problem of selecting the best index

set is as old as physical data independence. Most previous
approaches have focused on automating decisions of which
indexes to create, merge, or drop [BC 07, CN 07, FST 88,
H 76, S 74]. Both index tuning and index creation costs are
added to the database workload. Once a decision is made, it
affects all key ranges in an index. For example, Bruno and
Chaudhuri maintain a set of statistics about incoming que-
ries, use them to identify and evaluate existing and candi-
date indexes, and then explicitly create or drop target in-
dexes [BC 07]. They do not consider partial indexes, nor do
they support partially completing an index to focus efforts
on the key ranges of interest in the query workload, and to
avoid effort spent on other key ranges.

The recognition that some data items are more heavily
queried than others has led to the concept of partial indexes
[S 89, SS 95]. A generalization is the concept of material-
ized views and their indexes. This results in further in-
creases in the complexity and run-time of index tuning.

The present research is orthogonal to the contents of
indexes as it focuses on mechanisms for dynamic creation,
optimization, and maintenance of a general search struc-
ture. We propose a mechanism that, like database cracking,
can automatically create and refine index structures as re-
quired by the current pattern of selection queries. Note that
our approach is complementary to “monitor queries then
build indexes” approaches, in that our method could be
invoked when observations indicate a potential benefit.
That is to say, adaptive indexing could provide mechanisms
and could be guided by the observe-and-tune techniques
proposed in those earlier research efforts.

2.2 Database cracking
Database cracking, which combines features of both

automatic index selection and partial indexes, is the only
other proposal we have seen for refining index structures as
a side effect of unpredictable dynamically-arriving queries.
When a column is used in a predicate for the first time, a
cracker index is created by copying all data values in the
appropriate column from the table’s primary data structure.
When the column is used in the predicate of another query,
the cracker index is refined as long as a finer granularity of
key ranges is advantageous.

The keys in a cracker index are partitioned into disjoint
key ranges and unsorted within each. As illustrated in
Figure 2, each range query analyzes the cracker index,
scans the key ranges that fall entirely within the query
range, and uses the two end points of the query range to
further partition the appropriate two key ranges. Thus, in
most cases, each partitioning step creates two new sub-
partitions using logic very similar to the partitioning step in
quicksort [H 61]. A range is partitioned into 3 new sub-
partitions if both end points fall into the same key range.
This happens in the first partitioning step in a cracker index
(because there is only one key range encompassing all key
values) but unlikely thereafter [IKM 07a].

372

Figure 2. Partitioning in a cracker index.

Figure 2 illustrates how database cracking refines the
array of key values in a cracker index. Each character
represents a record; the character is its key value. In this
small example, each vowel appears twice and each conso-
nant once. The top box shows the initial cracker index im-
mediately after copying. The center box shows the cracker
index after a range query for keys d through g. Both end
points are included in the new center partition. The bottom
box shows the partitions after a subsequent range query for
key range f through j. The two new boundary keys are used
to further refine two partitions. Partition sizes are very un-
evenly distributed.

Key ranges never queried are never partitioned or op-
timized. This is a crucial advantage of adaptive indexing
over traditional indexes including those created by most
external tuning tools. On the other hand, each individual
data record is moved many times during the incremental
transformation from the un-optimized initial representation
to the fully optimized final representation.

As the core operation of database cracking is very
similar to partitioning in quicksort [H 61]. In an in-memory
database, it performs very well. As each key value in the
database must be compared with the boundary key of the
query predicate, it adds very little to the elapsed time of
each query. In a sense, database cracking is designed to
achieve the maximal benefit in the data organization with-
out slowing down in-memory scans, i.e., to maximize the
benefit that can be achieved “for free.”

With block-access devices like disk and flash storage,
it probably performs like quicksort in virtual memory,
which database systems do not use. For block-access stor-
age, database developers have long favored external merge
sort and B-tree indexes. As shown in Section 4, adaptive
merging performs well over block access storage, requiring
an order of magnitude fewer queries than database cracking
to optimize an optimized index for a query set.

2.3 Partitioned B-trees
Our search for an adaptive indexing technique suitable

for block-access storage led us to an algorithm based on
merging rather than on partitioning and to a data structure
known as partitioned B-trees [G 03], which are variants of
traditional B-tree indexes [BM 72]. Our proposal applies to
hash indexes if those are B-trees on hash values and to
multi-dimensional indexes if those use a space-filling curve
such as UB-trees [B 97]; whether it applies to other hash

indexes and other multi-dimensional indexes is left to fu-
ture research. It applies to indexes on block-access devices
such as traditional disks and flash storage as well as to in-
memory indexes optimized for CPU caches. Finally, it ap-
plies to both primary and secondary B-tree indexes, includ-
ing multi-column (“compound”) B-tree indexes, i.e., to the
vast majority of indexes used in practice today.

Partitioned B-trees differ from traditional B-trees as
they add an artificial leading key field. Distinct values in
this field define partitions within the B-tree. Partitions ap-
pear and disappear due to record insertion and deletion,
with no catalog modification. Records with the same value
in this field can be searched as efficiently as in a traditional
B-tree. The desired steady state is to have only a single
partition. Temporary additional partitions enable optimiza-
tions during index creation, roll-in (loading), and roll-out
(purging). Moreover, external merge sort can store runs in
B-tree partitions with benefits for deep read-ahead, pause-
and-resume, dynamic resource management, etc. Reorgani-
zation and optimization from multiple partitions to a single
one uses the same merge logic as traditional merge sort.

Figure 3. Partitioned B-tree and search pattern.

Figure 3 illustrates a partitioned B-tree (the root at the
top and leaves along the bottom) with partitions (each a
sequence of shaded boxes indicating key ranges) identified
by an artificial leading key field in each record (shown as
Partition #). A query enumerates the partitions and searches
each one. In the most naïve implementation, a root-to-leaf
probe is required to find the next actual value in the artifi-
cial leading key field and another probe is required to apply
the query predicate within the partition [LJB 95]. The num-
ber of probes can be reduced to one per partition.

The fact that adaptive merging exploits partitioned B-
trees is incidental; our starting point was a quest to find a
technique that is self-tuning similar to database cracking
but with better query execution performance both during
index optimization and when querying the final data struc-
ture. The introduction of partitioned B-trees [G 03] sug-
gested some related techniques but did not suggest optimiz-
ing key ranges as a side effect of query execution, the core
of both database cracking and adaptive merging.

3 Adaptive merging
Adaptive merging, the technique introduced here, aims

to combine efficient merge sort with adaptive and incre-

Partition #1 #3 #4

hbnecoyulzqutgjwvdokimreapxafsi

bcaa,egdef,hnoyulzqutjwvokimrpxsi

bcaa,egde,f,hjii ,noyulzqutwvokmrpxs

373

mental index optimization. Like database cracking, it re-
quires a flexible underlying storage structure for partially
and locally optimized index states. Partitioned B-trees ap-
pear to be an ideal choice.

The essence of partitioned B-trees, as described above,
is to use standard B-trees to persist intermediate states dur-
ing an external merge sort, to provide efficient search at all
times even before B-tree optimization is complete, and thus
to separate run generation and merging into independent
activities with arbitrary intermediate delay. Partitioned B-
trees can also capture intermediate states during index crea-
tion, data loading, view materialization, etc.

The essence of adaptive merging is to exploit parti-
tioned B-trees in a novel way, namely to focus merge steps
on those key ranges that are relevant to actual queries, to
leave records in all other key ranges in their initial places,
and to integrate the merge logic as side effect into query
execution. Thus, adaptive merging is like database cracking
as it is similarly adaptive and incremental but they differ
fundamentally as one relies on merging whereas the other
relies on partitioning, resulting in substantial differences in
the speed of adaption to new query patterns.

The differences in query performance are due to data
being kept sorted at all times in a B-tree. The difference in
reorganization performance, i.e., the number of queries
required before a key range is fully optimized, is primarily
due to merging with a high fan-in as opposed to partition-
ing with a low fan-out of 2 or 3. The following sections
explain in more detail.

3.1 Index selection
For index selection, our design copies the heuristic

from database cracking: When a column is used in a predi-
cate for the first time, a new index is created by copying
appropriate values. Refinements such as external guidance
which indexes to avoid and which ones to choose with pri-
ority in queries with multiple predicates, partial indexes,
multi-column indexes, consideration of other predicates
and their desirable indexes, etc. apply quite similarly to
both techniques. The record formats are also similar unless
compression is used, e.g., for duplicate key values.

The ordering of data records in an initial copy, how-
ever, are quite different due to partitioning in database
cracking versus merging in our approach.

3.2 Initial index creation
The initial format of a partitioned B-tree consists of

many partitions. Each partition is sorted, but the partitions
most likely overlap in their key ranges. Subsequent merg-
ing brings the B-tree closer to a single sort sequence in a
single partition, as described later.

The initial creation of a new partitioned B-tree per-
forms run generation using an in-memory algorithm such
as quicksort or replacement selection. The advantage of the

latter is the opportunity for runs larger than the memory
allocation during initial index creation. Each run forms a
partition in the new B-tree.

Figure 4. Appending partitions during initial index creation.

Figure 4 illustrates the data movement during initial
index creation. Boxes with the same shading indicate the
same key range. A run generation algorithm such as quick-
sort is used to append as many partitions as necessary.
Their number depends primarily on input size and memory
allocation but also on sort algorithm and any incidental
correlation between the sort order in the data source and in
the new index.

Figure 5. Unsorted input and initial sorted partitions.

Figure 5 shows a concrete example, with the same data
as shown in Figure 2. The upper box shows the input, en-
tirely unsorted. The lower box shows the initial index, i.e.,
records and partitions within a partitioned B-tree. A “,”
(comma) separates sorted partitions. Run generation during
copying produces runs of 6 records in this small example.

Search performance immediately after index creation
depends on the count (and thus the average size) of the
partitions in the partitioned B-tree, as does the break-even
point between probing each partition with a traditional B-
tree search and an end-to-end scan of the index. For exam-
ple, if scan bandwidth is 100 MB/s and each probe takes
20 ms, partitions larger than 100 MB/s × 20 ms = 2 MB
ought to be probed rather than scanned, corresponding to a
modest memory allocation of 1 MB during run generation
by replacement selection. Note that the “lock footprint” can
be smaller during probing than during scanning, further
favoring probing over scans. Modern flash storage also
favors probing over scans. Nonetheless, scanning is always
possible if desired, e.g., in order to exploit shared scans.

3.3 Incremental index optimization
When a column is used in a predicate for the second

time, an appropriate index exists, albeit not yet fully opti-
mized and merged into a single partition. In this situation, a
query must find its required records within each partition,
typically by probing within B-tree for the low end of the
query range and then scanning to the high end.

hbnecoyulzqutgjwvdokimreapxafsi

bcehno,lquuyz,dgjtvw,eikmor,aafpsx,i

#1 #2 #3 #4

…

… data source … quicksort

374

Instead of just scanning the desired key range one par-
tition at a time, however, the query might as well scan mul-
tiple partitions in an interleaved way, merge these multiple
sorted streams into a single sorted stream, write those re-
cords into a new partition within the partitioned B-tree, and
also return those records as the query result. The data vol-
ume touched and moved is that of the query result.

Figure 6. Partitioned B-tree before and after a query.

Figure 6 illustrates merging and data movement during
the second query. The top half shows the B-tree when the
query starts. In processing the query, records satisfying the
query predicate are automatically merged into the new par-
tition, as shown in the bottom half of Figure 6. Ideally, a
single merge step suffices to merge records from all exist-
ing partition into a single, final partition.

Figure 7. Merging as side effect of query execution.

Figure 7 continues the concrete example of Figure 5,
using the same data and range queries as Figure 2. The top
box shows sorted partitions after run generation. The center
box shows the partitions after a range query for keys d
through g. A subsequent query for key range e through f
would access only the new partition. The bottom box
shows the partitions after subsequent range query for keys f
through j. Some of this range can be answered from the
merged partition and some of it causes additional merge
activity. Note that the smallest among the original sorted
partitions vanishes as side effect of the second query. Also
note that the merge activity during the second and third

queries inserts data into the same partition. This is easily
possible as their merge steps focus on disjoint key ranges.

If all existing partitions can be merged to form a single
partition in a single step, i.e., the number of initial parti-
tions is smaller than the merge fan-in as limited by the
memory allocation available for merging, then the query
may leave the keys within its query range in a single loca-
tion comparable to a traditional, fully optimized B-tree
index.

If the query range of the third query is a subset of that
of the second query, the third query can search as effi-
ciently in a partitioned B-tree as in a traditional B-tree. If
the query ranges of the second and third queries do not
overlap, it leaves its result behind in the same format as the
second query for the benefit of the future queries. In this
case, multiple queries can merge their output into the same
new partitions.

Actually, this logic applies to individual key ranges. If
the range predicates of the second and third queries overlap
partially, the third query needs to split its key range into
overlapping and non-overlapping sub-ranges. For overlap-
ping key ranges, the third query finds all data in a single
location comparable to a traditional B-tree. For non-
overlapping key ranges, it probes all existing partitions,
extracts the required records, merges them, and moves
them to a new partition, as shown in Figure 6.

All subsequent queries also must analyze their range
predicates for overlap with prior queries and the merge
effort they applied to the index. Once all records within a
key range have been merged into a single partition, subse-
quent queries in that key range work and perform like que-
ries using a traditional B-tree index.

Key ranges without query activity are never reorgan-
ized or merged. Those keys remain in the initial runs pro-
duced by run generation. Thus, as in database cracking, no
effort is wasted on inactive key ranges after the initial copy
step. By adaptively merging only those key ranges actually
queried, and by performing merge steps as side effects of
query execution, adaptive merging preserves the main
strength of database cracking. The main difference is in the
speed of adaptation, i.e., the number of times each record is
moved before it is in its final location.

If more than a single merge step is required to trans-
form the B-tree index from many initial partitions into a
single final partition, each key range must be searched and
merged by multiple queries before it is in its final, com-
pletely optimized format.

The number of merge steps for each key range is
equivalent to the merge depth in an external merge sort,
i.e., logF (W) for W initial runs merged with fan-in F. With
the memory sizes of modern computers, sort operations
with a single merge step are common, and sort operations
with more than two merge levels are quite unusual. Just as
in external merge sort with optimized merge patterns, the

bcehno,lquuyz,dgjtvw,eikmor,aafpsx,i

bchno,lquuyz,jtvw,ikmor,aapsx,i,deefg

bcno,lquuyz,tvw,kmor,aapsx,deefghiij

#1 #2 #3 #4

#1 #2 #3 #4 #5

375

merge depth may not be uniform for all records and thus
the average merge depth might be a fraction, e.g., 1¾.

In fact, the number of merge steps per record is a key
difference between database cracking and adaptive merg-
ing. The merge fan-in can easily exceed 100, whereas the
partitioning fan-out in database cracking is usually 2 or 3,
limited by the number of new partitioning keys available in
any one range query. Thus, database cracking may move
each record many times before its final place is found. The
exact number depends on the size of partitions to which no
further cracking is applied and the size of the initial parti-
tions in the proposed design.

For example, if the size of the cracked index is 1 GB,
if partitions smaller than 4 MB are no further partitioned,
and the partitioning fan-out is 2, no further partitioning is
required for a key range after log2 (1GB ÷ 4MB) = log2 256
= 8 partitioning steps affecting this key range – even more
if skew is an issue. In partitioned B-trees with adaptive
merging, if the average size of the initial runs is 16 MB and
the merge fan-in is 64, then the number of merge levels is
log64 (1 GB ÷ 16 MB) = log64 64 = 1. In other words, in this
example, database cracking moves each record 8 times
before its final location is found, whereas adaptive merging
requires just a single move. Other numeric examples pro-
duce similar differences as long as the merge fan-in is
much larger than 2.

3.4 Table of contents
As in database cracking, an auxiliary data structure is

required to retain information about reorganization efforts
already completed. In fact, the set of keys is the same in the
auxiliary data structures for database cracking and for
adaptive merging. The information associated with those
keys differs. In database cracking, the start position of the
partition with the given key is indicated. In adaptive merg-
ing, the data structure indicates the range of identifiers for
partitions with records in the given key range.

For example, suppose that run generation creates runs
with identifiers 1 through 1,000. All key ranges can be
found in this set of partitions. After a key range has been
merged once, say with merge fan-in of 32, records within
this key range can be found in partitions 1,001 through
1,032 but not longer in partitions 1 through 1,000. A key
range merged twice can be found only in partition 1,033.
Query performance in such key ranges equals traditional B-
trees.

3.5 Transaction support
As the proposed structure is a B-tree, even if an artifi-

cial leading key field is added, all traditional methods for
concurrency control, logging, and recovery apply.

In addition, key prefixes could be locked, a generaliza-
tion of Tandem’s “generic locks” [G 07]. When a conflict
arises, a merge step can be committed immediately because

merge operations do not change the contents of the index,
only its representation.

The logging volume during merge operations can be
reduced to allocation-only logging. In this mode of opera-
tion, the page contents are not logged during merge steps,
neither deletions in the merge inputs nor insertions in the
merge output. Deletion of individual records can be imple-
mented as updates from valid records to “ghost” records
(also known as pseudo-deleted records). A single small log
record suffices for multiple records. Deletion of entire pag-
es can be captured by a single small log record. Insertion of
new pages requires that the new pages be flushed to disk
before the data sources for the page contents are erased,
i.e., before committing a merge step.

3.6 Updates
For insertions, deletions, and record modifications,

there are each multiple alternative techniques. In each case,
the first technique is similar to traditional techniques
whereas the second one is optimized for efficient comple-
tion of many small transactions.

Insertions can be placed either into the final target par-
tition or they can be gathered in a new partition dedicated
to gathering insertions. This partition ought to remain in the
buffer pool such that all insertions only update in-memory
data structures (other than the recovery log). Multiple new
partitions may be added over time.

Deletions can either search for the appropriate record
in the index, in whatever partition it might be found, or
they insert “anti-matter” quite similar to the “negative”
records employed during maintenance of materialized
views and during online index creation.

Modifications of existing records can be processed ei-
ther as traditional updates after an appropriate search or
they can be processed as pairs of deletion and insertion,
with alternative processing techniques as outlined above.

If insertions, deletions, or updates create new partitions
in a B-tree, i.e., introduce new partition identifiers, those
partitions and their key ranges must be reflected in the table
of contents such that subsequent queries search in all ap-
propriate partitions.

3.7 Variations
Several variations and optimizations are possible be-

yond the design described so far. This section lists some
ideas; we have not yet analyzed them for their true practical
value or their precise performance effects.

First, the basic idea seems well suited to capturing and
indexing continuous streams, in particular if multiple inde-
pendent indexes are desired for a single stream. Incoming
records are always appended to all indexes in partitions
formed by run generation. Continuous “trickle updates” in
data warehouses are a special case of streams that can be
indexed using the proposed techniques.

376

Second, the general technique applies not only to disk-
based databases but also to databases on flash devices and
even to in-memory databases. The resulting differences are
quantitative rather than qualitative. For example, due to
very fast access latency, smaller page sizes are optimal for
flash devices, resulting in higher merge fan-in with a fixed
memory allocation and thus fewer merge levels from initial
runs to a final, fully optimized B-tree [G 07b]. For in-
memory databases, optimization of cache faults leads to run
generation within the cache and explicit merge steps to
form memory-sized indexes [NBC 95].

Third, partitioned B-trees are useful not only for effi-
cient search but also for efficient query execution with
merge joins, “order by” clauses, etc. The final merge activ-
ity in the query is precisely equivalent to B-tree optimiza-
tion, and the merge output can replace the previous parti-
tions with a single, fully optimized partition. For orderings
on B-tree fields other than the leading field, a general me-
chanism comparable to MDAM [LJB 95] seems possible
but has not yet been described in the literature.

Fourth, adaptive merging in combination with parti-
tioned B-trees provides mechanisms for dynamically ad-
justing query costs for the purpose of workload manage-
ment. During index creation, it is possible at any time to
defer the remaining key range within the data source. Do-
ing so speeds up the current query but leaves the new index
only partially populated. During index optimization, it is
possible at any time to reduce the fan-in of merge steps or
to interrupt all merge activity in order to defer some merge
effort to later queries. Doing so frees up memory (merge
input buffers) and speeds up the current query but fails to
optimize the key range for subsequent queries.

Fifth, B-tree optimization and partition merging does
not depend on queries. Instead, any idle capacity can be
used to optimize a partitioned B-tree for future queries.
Adaptive merging can focus on those key ranges that have
been queried once but are not yet fully optimized. Database
cracking, in contrast, cannot exploit prior queries during
idle times because it requires a new partitioning key for
each additional step.

Finally, instead of merging the precise key range of a
query, the logic could be modified to consume entire B-tree
leaves. Space management would become simpler and
more efficient, whereas the table of contents would become
more complex. Consequently, determining the required
partitions during query execution would also be more com-
plex. As a compromise, one can extend a query range to the
next “short enough” separator key, quite similar to the key
optimizations in suffix truncation (compression) [BU 77].
For example, if the query range starts with “Smith,” the
merge could start with “Sm”. Even an equality query could
merge an appropriate key range, for example all keys start-
ing with “Sm”. If suffix truncation is applied during B-tree
construction, the probability is high that merge range coin-
cides with boundaries between leaf pages in all input parti-

tions. In fact, such a policy might be very useful to avoid
an excessive number of small merge steps and thus to en-
sure efficient adaptation of an index to a new query pattern.
If multiple merge levels are required, the heuristics might
differ among the levels in order to avoid repeatedly search-
ing a large number of initial partitions. The experiment
below extends each merge range in both directions to a
multiple of the largest power of two smaller than the width
of the query range.

4 Performance evaluation
Here, we focus on a comparison of database cracking

and adaptive merging. These two adaptive indexing tech-
niques can be compared experimentally with concise, fo-
cused experiments. A comparison with index tuning tech-
niques that run workload analysis and index creation exter-
nally and in addition to query execution requires a com-
plete system, a representative physical database design as
starting point, and a representative workload, all of which
are not available to us at this time.

Our first experiment simulates 50 queries against a
random permutation of the integers 0 to 9,999,999. Each
query requests a random range of 1 value to 20% of the
domain; 10% on average. Cracking stops with partitions of
1,000 values. Initial runs in the partitioned B-tree are cre-
ated with a workspace of 100,000 records, for 51 initial
partitions. The merge fan-in is sufficient to complete all B-
tree optimization in a single merge level.

Figure 8. Database cracking and adaptive merging.

Figure 8 shows the overhead effort of database crack-
ing and of adaptive merging. Each query must scan records
to produce its output; those are not reflected in the diagram
and must be added to compute the total effort. The cost
scale in Figure 8 is logarithmic. Note that our cost metric is
focused on movements in the memory hierarchy and on the
number of records touched; it does not reflect the number
of comparisons. Both techniques essentially implement sort
algorithms O (N log N) comparisons.

Database cracking

Adaptive merging

377

The upper curve shows database cracking. It reflects
the behavior known from an earlier performance study
[IKM 07a]. The first query partitions the entire domain and
thus its overhead is high. The overhead then decreases
slowly. Each range query provides two more boundary
keys between partitions; thus, the number of partitions in a
cracker index is about twice the number of queries proc-
essed so far. Dividing 10,000,000 records into partitions no
larger than 1,000 records requires at least 9,999 partitioning
keys. With at most two new partitioning keys per query,
partitioning requires at least 5,000 queries.

The lower curve shows adaptive merging. It converges
much faster than database cracking. Merging is practically
complete after about 40 queries, meaning the B-tree is fully
optimized. In all subsequent queries, search performance
equals that of a traditional B-tree. When each query scans
precisely the key range needed as query output, the over-
head is zero (shown as 1 due to the logarithmic scale).

With a smaller memory allocation during run genera-
tion or during merging, multiple merge levels would have
been required. For example, convergence would take twice
as long with a merge fan-in of only 8 and thus 2 merge
levels. Nonetheless, even 100 queries for full convergence
would be much faster than database cracking with its strict
binary partitioning and thousands of queries prior to steady
state. Overhead and convergence rate also depend on the
sizes of query ranges as well as skew.

An alternative perspective on the experiment of Figure
8 focuses on the “sortedness” of intermediate states of the
index, which may be measured in the number of “adjacent
inversions,” i.e., neighboring keys with the wrong order
relationship. Database cracking enforces no sort order with-
in each partition; thus, each query reduces the number of
adjacent inversions only at the new boundaries between
partitions, at most two per range query. Adaptive merging
permits adjacent inversions only between partitions, and
thus even the initial state immediately after run generation
has relatively few adjacent inversions.

A third perspective focuses on the relative rather than
the absolute overhead in query execution. Key ranges for
queries were chosen between 1 value and 20% of the do-
main, with an average of 10% of the domain or 1,000,000
distinct values, equal to 1,000,000 records in this database.
Thus, an overhead of 100,000 records is equal to an extra
scan effort of 10% on average, which might seem accept-
able in an adaptive indexing technique. From this point of
view, database cracking might reach acceptable perform-
ance after about a dozen queries. Adaptive merging, on the
other hand, always scans only as much data as is required
for the query at hand. Merging, if required, can achieve
very high bandwidth if the units of disk transfer are suffi-
ciently large, e.g., 1 MB or more.

Figure 9 shows the same experiment as Figure 8 but
run over a workload of 5,000 queries. Each data point
shows the average of 1% of the workload or 50 queries.

Database cracking slowly reduces the overhead per query,
although it takes many queries before incremental index
optimization ceases. Adaptive merging leaves a fully opti-
mized B-tree after less than 50 queries.

Figure 9. Long query sequence.

If the average query range is small, however, this ar-
gument might no longer pertain. For example, if the aver-
age query requests only 0.1% (rather than 10%) of the do-
main, it takes hundreds of queries to achieve acceptable
overhead on average, with no guarantee for the worst case.
Note that the convergence rate of database cracking should
barely affected by the width of the ranges in the queries –
each query introduces two new partition boundaries.

Figure 10. Small query ranges.

Figure 10 shows the average per-query overhead for
queries with small ranges. Query predicates range from 1
value to 0.2% of the domain, or 0.1% on average. In other
words, this is the same experiment as the prior one except
that the average query result size equals 10,000 records
rather than 1,000,000 records. Database cracking and its
convergence behavior are not affected by the query size;
two new partition boundaries with each range query require
about 5,000 queries to divide an index with 10,000,000
unique values into minimal partitions of 1,000 records.

Adaptive merging

Database cracking

Adaptive merging

Database cracking

378

Adaptive merging requires more queries than in the prior
experiment, but it still optimizes the B-tree over about
1,250 queries (25% of 5,000 queries).

In fact, for the speed of index optimization to be simi-
lar in database cracking and adaptive merging, the queries
would have to be point queries rather than range queries. If
key ranges to be merged are rounded as proposed above as
an obvious improvement to the basic technique, it always
finishes the index faster than database cracking.

Figure 11. Very small query ranges.

Figure 11 shows the same experiment again with aver-
age query result size of 100 rather than 10,000 records. The
convergence behavior of database cracking is again un-
changed, as expected. The convergence rate of adaptive
merging would suffer without an implementation heuristic
we found necessary. Inspired by B-trees on block-access
devices, our implementation merges a larger key range than
is required by the query at hand. Rounding depends on the
size of the workspace and the prescribe merge fan-in, based
on the assumption that the merge fan-in as the quotient of
workspace size and block size. With this optimization,
adaptive merging finishes optimization of the B-tree with
less than 2,500 queries (50% of 5,000 queries).

Figure 12. Small memory allocation.

Figure 12 illustrates the effect of a small memory allo-
cation. This experiment equal that of Figure 8 except for
the workspace size, the merge fan-in, and the number of
queries in the workload. Compared to the prior experiment,
both the workspace during run generation and the fan-in
during merge steps are reduced by a factor of 10. The
workload consists of 200 queries to illustrate the effects.
Database cracking is very little affected – it is not designed
to exploit a large memory even when memory is readily
available. Adaptive merging requires more effort than in
the experiment of Figure 8. Each record must go through 3
merge steps before reaching its proper place in the final
partition. Nonetheless, adaptive merging converges towards
the final index format with fewer moves per record than
database cracking. In other words, among the two adaptive
indexing schemes, adaptive merging requires much less
reorganization effort, whether or not memory is plentiful.

Figure 13. Small query focus.

Finally, Figure 13 illustrates the effect of all queries
focusing on the same fraction of the domain, i.e., the case
in which adaptive indexing methods are supposed to shine.
Here, all queries focus on the 1,000,000 key values in the
center of the domain. Otherwise, this experiment equals
that of Figure 8. Both adaptive indexing techniques per-
form better than in the base case shown in Figure 8. How-
ever, database cracking imposes more overhead than adap-
tive merging because it takes many queries before the
cracker index attains its final form whereas adaptive merg-
ing converges after only 35 queries due to sorted runs and
merging with high fan-in. Moreover, the overhead of data-
base cracking exhibits occasional spikes when a query key
forces partitioning of the keys above or below the query
focus. For example, if the highest key of interest in all que-
ries so far is 5,490,000, a new query with range boundary
of 5,491,000 forces partitioning of all records and key up to
the 10,000,000.

Adaptive merging

Database cracking

Adaptive merging

Database cracking

Database cracking

Adaptive merging

379

5 Summary and conclusions
In summary, database cracking and adaptive merging

offer a promising alternative to traditional index tuning that
relies on monitoring, offline what-if analyses, and long-
running index creation utilities that can disrupt processing
of the current workload.

While database cracking was designed for in-memory
arrays, adaptive merging enables automatic creation and
incremental improvements of indexes in large data ware-
houses on “external” block-access storage. It uses a stan-
dard data structure, B-trees, with only a few non-traditional
improvements. First, an artificial leading key field permits
creation and removal of partitions by insertion and deletion
of records with specific partition identifiers; well-known B-
tree access algorithms permit efficient search in such parti-
tioned B-trees. Second, index creation is divided into run
generation and merging. Both can be side effects of query
execution or other scans over the data. Run generation uses
a single pass over the future index records and results in a
complete, coherent, and searchable B-tree index, even if it
is not yet fully optimized. Third, query execution may op-
timize such an index by merging the key ranges required to
answer actual queries, with no effort spent on any unused
key ranges. Fourth, those non-optimized key ranges are
automatically in a format that can readily be searched and
optimized later if the query pattern changes.

The described techniques have design goals very simi-
lar to database cracking, namely automatic and adaptive
index selection as well as incremental optimization of in-
dexes focused on key ranges of interest in actual queries.
The fundamental difference between the two approaches is
the reliance on partitioning in database cracking and on
merging in the new techniques. Well-known related algo-
rithms are partitioning as used in quicksort and merging as
used in external merge sort. The primary difference in the
efficiency of the two techniques is that partitioning (using
actual boundary keys of query ranges) is inherently limited
to a partitioning fan-out of 2 or 3 whereas the merge fan-in
is limited only by the available memory and thus can easily
be in the 100s. With the number of partitioning or merging
steps required to transform an initial index into the final,
fully optimized index inversely proportional to the loga-
rithm of the fan-out or fan-in, database cracking might
move each data record 5-10 times more often than adaptive
merging. Thus, adaptive merging requires less overall ef-
fort and adapts to changes in the query pattern much more
rapidly than database cracking. Furthermore, like tradi-
tional B-trees and external merge sort, adaptive merging
applied to partitioned B-trees is well suited to block-access
storage.

Since partitioned B-trees are more similar to traditional
B-trees than they are different, partitioned B-trees includ-
ing adaptive merge strategies apply not only to B-trees with
single-column search keys but also to multi-column “com-

pound” B-trees as well as to B-trees on computed columns,
e.g., B-trees on hash values or on space-filling curves such
as UB-trees [B 97]. It seems that partitioned B-trees and
adaptive merging applies in all cases in which traditional
B-trees can be used.

Our plan for future work includes a more detailed ex-
perimental evaluation and research into incremental space
reclamation by dropping obsolete or unused indexes. We
will also investigate the trade-offs between index tuning
prior to data loading (to save on in-database reorganiza-
tion), traditional index tuning after observing a workload,
and incremental index tuning using database cracking or
adaptive merging. Finally, we recently presented a preview
of this work to the team that developed database cracking
at CWI, and agreed to a joint performance evaluation.

Acknowledgements
Martin Kersten and his research group invented data-

base cracking, and the present research and design were
sparked directly by his keynote at ICDE 2008. We particu-
larly thank Stratos Idreos and Stefan Manegold for review-
ing a draft of this paper, including our understanding of
database cracking. Hans Zeller provided valuable feedback
on our initial thoughts in May 2008. Barb Peters suggested
several improvements in the text.

6 References
[B 97] Rudolf Bayer: The Universal B-tree for multidimen-

sional indexing: general concepts. WWCA 1997: 198-
209.

[BC 07] Bruno, N. and Chaudhuri, S. 2007. Physical design
refinement: The ‘merge-reduce’ approach. ACM
Trans. Database Syst. 32, 4 (Nov. 2007), 28.

[BM 72] Rudolf Bayer, Edward M. McCreight: Organiza-
tion and maintenance of large ordered indices. Acta
Inf. 1: 173-189 (1972).

[BM 93] Jon Louis Bentley, M. Douglas McIlroy: Engi-
neering a sort function. Softw., Pract. Exper. 23(11):
1249-1265 (1993).

[BU 77] Rudolf Bayer, Karl Unterauer: Prefix B-trees.
ACM TODS 2(1): 11-26 (1977).

[CN 07] Surajit Chaudhuri, Vivek R. Narasayya: Self-
tuning database systems: A decade of progress. VLDB
2007: 3-14.

[FST 88] Sheldon J. Finkelstein, Mario Schkolnick, Paolo
Tiberio: Physical database design for relational data-
bases. ACM TODS 13(1): 91-128 (1988).

[G 03] Goetz Graefe: Sorting and indexing with partitioned
B-trees. CIDR 2003.

[G 06] Goetz Graefe: Implementing sorting in database
systems. ACM Comput. Surv. 38(3): (2006).

[G 07] Goetz Graefe: Hierarchical locking in B-tree in-
dexes. BTW 2007: 18-42.

380

[G 07b] Goetz Graefe: The five-minute rule twenty years
later, and how flash memory changes the rules. Da-
MoN 2007: 6.

[H 61] C. A. R. Hoare: Algorithm 64: Quicksort. Comm.
ACM 4(7): 321 (1961).

[H 76] Theo Härder: Selecting an optimal set of secondary
indices. ECI 1976: 146-160.

[IKM 07a] Stratos Idreos, Martin L. Kersten, Stefan Mane-
gold: Database cracking. CIDR 2007: 68-78

[IKM 07b] Stratos Idreos, Martin L. Kersten, Stefan Mane-
gold: Updating a cracked database. SIGMOD 2007:
413-424.

[IKN 08a] Milena Ivanova, Martin L. Kersten, Niels Nes:
Self-organizing strategies for a column-store database.
EDBT 2008: 157-168.

[IKN 08b] Milena Ivanova, Martin L. Kersten, Niels Nes:
Adaptive segmentation for scientific databases. ICDE
2008: 1412-1414.

[KM 05] Martin L. Kersten, Stefan Manegold: Cracking
the database store. CIDR 2005.

[LJB 95] Harry Leslie, Rohit Jain, Dave Birdsall, Hedieh
Yaghmai: Efficient search of multi-dimensional B-
trees. VLDB 1995: 710-719.

[NBC 95] Chris Nyberg, Tom Barclay, Zarka Cvetanovic,
Jim Gray, David B. Lomet: AlphaSort: A Cache-
Sensitive Parallel External Sort VLDB J. 4(4): 603-627
(1995).

[S 74] Michael Stonebraker: The choice of partial inver-
sions and combined indices. International Journal of
Computer and Information Sciences, 3(2), June 1974.

[S 89] Michael Stonebraker: The case for partial indexes.
SIGMOD Record 18(4): 4-11 (1989).

[SS 95] Praveen Seshadri, Arun N. Swami: Generalized
partial indexes. ICDE 1995: 420-427.

381

