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Abstract: Self-sensing actuation of shape memory alloy (SMA) means to sense both mechanical
and thermal properties/variables through the measurement of any internally changing electrical
property such as resistance/inductance/capacitance/phase/frequency of an actuating material under
actuation. The main contribution of this paper is to obtain the stiffness from the measurement of
electrical resistance of a shape memory coil during variable stiffness actuation thereby, simulating its
self-sensing characteristics by developing a Support Vector Machine (SVM) regression and nonlinear
regression model. Experimental evaluation of the stiffness of a passive biased shape memory coil
(SMC) in antagonistic connection, for different electrical (like activation current, excitation frequency,
and duty cycle) and mechanical input conditions (for example, the operating condition pre-stress) is
done in terms of change in electrical resistance through the measurement of the instantaneous value.
The stiffness is then calculated from force and displacement, while by this scheme it is sensed from
the electrical resistance. To fulfill the deficiency of a dedicated physical stiffness sensor, self-sensing
stiffness by a Soft Sensor (equivalently SVM) is a boon for variable stiffness actuation. A simple
and well-proven voltage division method is used for indirect stiffness sensing; wherein, voltages
across the shape memory coil and series resistance provide the electrical resistance. The predicted
stiffness of SVM matches well with the experimental stiffness and this is validated by evaluating the
performances such as root mean squared error (RMSE), the goodness of fit and correlation coefficient.
This self-sensing variable stiffness actuation (SSVSA) provides several advantages in applications of
SMA: sensor-less systems, miniaturized systems, simplified control systems and possible stiffness
feedback control.

Keywords: shape memory coil; joule heating effect; self-sensing actuation; variable stiffness actuation;
electrical resistance; support vector machine regression model; nonlinear regression model

1. Introduction

The shape memory coil (SMC) has a larger change in force and controllable stiffness
to introduce the structural elastic deformation and to be in tune with a structural load. It
provides the actuation to a mechanical structure; actuation with variable load can be sensed
by self-sensing the stiffness in the structure via the Shape Memory Alloy (SMA) coil’s
resistance. This is because of the shape memory effect phenomenon, which is an inherent
property present in the nickel-titanium alloy. This inherent property is due to phase
transformation from martensite to austenite and vice-versa when subjected to temperature
or current. Though the SMA has same chemical composition, atomic weight and mass
number, but it is different structure in the austenite and martensite phase.

Until now, none is dedicated to physical sensor or analytical models to sense the
stiffness of shape memory alloy or SMA with mechanical structure. Nowadays, the sensing
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function of SMA becomes more important because the high technology for the humanoid
robot, industrial automation and medical field is being progressed a lot. It has been found
30 years ago that the electrical resistance of SMA changes during phase transformation of
its material [1]. The modelling of SMA resistance to stiffness as compared to the models
of temperature to stiffness is very rare in literature. A linear equation only is suggested
between stiffness and normalized resistance. Thus, as a need of sensing/measurement and
control of stiffness accurately, it must go into details of the topic. In this case, to attenuate
the surrounding environmental effect, a robust and simple adaptive control is adopted.
The experimental result proved that the stiffness as well as position could be controlled to
achieve the desired displacement. The stiffness of the alloy varies depending on its phase.
The phase of the alloy can be estimated by measuring its electrical resistance. Electrical
resistance is relatively higher in martensite and lower in the austenite phase. Furthermore,
a new scheme of stiffness is implemented by considering two feedback inputs- electrical
resistance and position [1].

This electrical property is useful for sensing of thermal and mechanical properties
like temperature, force and strain of SMA. Since then, many research papers have proved
that resistance change is sufficiently linear to measure and control displacement and
strain [2]. These works intuitively explained about the relationship between displacements
in the SMA wire and its resistance. Another important point is that the SMA actuator
exhibits highly nonlinear behavior. Therefore, a neural network is employed to estimate
the value of displacement in the SMA from its resistance change. The estimated value of
displacement from resistance is used as feedback to control it [2]. The estimation of the state
(contraction/displacement) of the SMA wire actuator is done with the help of its resistance.
The state of the SMA wire model has been developed by using the concept of unscented
Kalman filter (UKF) which uses the measured resistance. The results are compared with
the work of the extended Kalman filter and show good accuracy [3]. Accurate self-sensing
concept to control the flexures by controlling the SMA wire has been also developed. Then
the polynomial model is used to estimate the strain value from measurement of resistance.
In addition, the inaccuracies due to the presence of the hysteresis has been overcome by
pretension force. By considering standard test signals such as step and sinusoidal signals,
performance of the control system has been also tested [4].

The polynomial model accurately enables estimation of the SMA actuator strain by
applying an electrical potential across it. The experimental results have shown that the self-
sensing model can achieves a small transient error and works effectively. The self-sensing
helps to develop to miniaturized devices to perform effectively and efficiently [5] in which
a self-sensing concept for control has been well described by adopting an antagonistic
SMA wire drive. This drive is tested under different conditions such as pre-strain and
duty cycles. Then, the modeling of strain and resistance is derived with the help of a
curve-fitted polynomial. It has been also realized that the accurate control of an actuator
wire by self-sensing feedback with a hysteresis compensator can be done [6].

From the results of this work, it has been realized that the use of neural networks to
characterize the relation between the resistance of SMA wire and its strain is very effective.
The great advantage of this concept is that the single SMA wire performs dual tasks as
both an actuator and a sensor. This has got great importance when the prime objectives are
to reduce the overall weight, size and the cost of the actuator system [7]. Artificial neural
network (ANN) is applicable to accurately establish model to develop the relationship
between the electrical resistance and manipulator positions. Thus, ANN can estimate the
rotary manipulator position accurately. It can be controlled by the variable structure control
technique under different conditions. The effect of surrounding temperature on the ability
of ANN to predict the manipulator position is thoroughly investigated [8].

It exhibits robust performance with a small tolerance and can operate without being
affected by ambient temperature. In the investigation, the authors have suggested an
innovative way to calculate the resistance to determine the change in length of a SMA wire.
By doing this, it is possible to measure both the voltage across the entire NiTi wire and that
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of the fixed-length segment. These two voltages provide direct change in length of the SMA
wire. This kind of sensing is used in the feedback control in unknown ambient and loading
conditions. This technique is called dual measurement for self-sensing of displacement by
resistance change [9]. A self-sensing technique to measure the induced force in SMA wire
is developed to control the length. Therefore, it can replace the traditional load cell by the
SMA wire which can work for dual purposes as actuator and sensor. A modeling technic of
the SMA wire actuator is also investigated for the control of mechanical structures. While
designing a controller for the motion of a mechanical structure, a dynamic model of SMA
actuator may be needed. So, the relationship between resistance and displacement of SMA
that is derived to determine the feasibility of self-sensing in actuator control is investigated
in [10]. The stiffness is related to force and displacement linearly as well as nonlinearly
according to Hooke’s law. This web portal provides information about the basics of
stiffness [11]. The physical, mechanical, electrical, and chemical properties are available on
the web portal of Dynalloy Inc., and the portal is very helpful for calculations [12].

The sensing of displacement and stiffness without an external sensor is well described
in [13]. The works [13] showed little resistance, martensite fraction, and stiffness, but
not in depth like the effect of current, frequency, and pre-stress on self-sensing of the
stiffness of SMA spring actuator. This enables the sensing of force without a force sensor.
The direct stiffness control of the SMA actuator and sensor-less force sensing experiment
is conducted successfully. Besides, several benefits of this method include simplicity of
mechanism, cleanliness, silent operation, and distributed actuation system i.e., remotability,
sensing ability and low driving voltage. The polynomial model of sensing the stiffness
of SMA is implemented to see the influence of different activation currents and excita-
tion/switching frequencies. It has been also shown that different activation current and
excitation/switching frequencies of power transistors affected to the stiffness resistance
characteristics. These experimental modeling and analyses have proved that stiffness and
resistance have a sufficiently linear relation which can be easily utilized to control stiffness
in a SMA spring actuator and in mechanical structures [14]. The work [14] studied the
stiffness and resistance relationship with only two effects: different activation currents
and switching frequencies but not the duty cycle and pre-stress. The work presented
by [15,16] did not explain about the self-sensing phenomenon/concept of SMA but de-
scribed modeling of stiffness-temperature and displacement with other parameters like
current, temperature, resistance, and force.

A new mathematical function/model of stiffness that shows the hysteresis charac-
teristics between the stiffness and temperature has been developed and its hysteresis
characteristics between the stiffness and temperature is verified by experimental data [15].
It has been found that the hysteresis characteristics are affected by different electrical and
mechanical parameters such as current, frequency, and pre-stress, respectively. The relation
between stiffness and temperature in SMA spring hysteresis is experimentally verified.
The hysteresis characteristics’ width and height can be controlled by current, frequency
and pre-stress.

As the SMA is a highly nonlinear element, its displacement/contraction changes
nonlinearly with temperature. It is affected by many electrical and mechanical parameters.
Hence, the modeling of the displacement in SMA spring actuator is important. The neural
network is the best tool that can easily map one property with others. Therefore, the
displacement of the SMA spring can be modeled by ANN and successfully verified by
experimental data [16]. In this work, a systematic approach for the implementation of curve
fitting models and methods is suggested to achieve an equation that precisely describes the
sensor function [17].

It is known that the Support Vector Regression (SVR) technique is normally applied
to forecast the tangential displacement of cement concrete dam. Thus, in general, it is
tested and verified using Pearson correlation coefficient, mean absolute error (MAE) and
mean squared error (MSE) with experimental data [18]. The implementation of SVR is a
practical and user-friendly method for creating soft sensors for nonlinear systems. The
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development of a dynamic non-linear-Auto Regressive (ARX) model-based soft sensor
employing SVR is suggested as a heuristic method, in which the ideal delay and order
are determined automatically using the input-output data. It is noted here that an Online
Support Vector Regressor (OSVR) model is effective to estimate chemical process variable.
As mentioned earlier, many works investigated the self-sensing technique to relate po-
sition/length/displacement with resistance and its control. The soft sensor developed
using SVR in [18–20] achieved excellent performance checked by statistical performance
parameters such as MAE, MSE and correlation coefficient. The research work [21] gives
the idea about the stiffness of shape memory coil in terms of resistivity and modulus of
elasticity. It suggests the resistivity and shear modulus is the best alternative to existing
self-sensing methods.

In research article [22], the overall stiffness is adjusted by modifying the shape of the
leaf springs. Hence, the geometrical nonlinearity can be used to change global stiffness.
The paper [23] method suggested in adapting stiffness in variable stiffness actuator by con-
figuring the fluid circuits, while the humanoid robot is investigated in [24]. It has various
interesting features and is a difficult mechatronics structure. Due to the close interdepen-
dence of the technological factors, it is challenging to conduct research in a specific direction.
A parallel type SMA wire variable stiffness actuator with a synergistically constructed
configuration that offers a small size and a wide range of stiffness adjustments in compliant
structures is also studied [25]. Additionally, it provides sufficient displacement and force,
making it appropriate for applications requiring peculiar soft robotic requirements. The
research work [26] proposes a new type of pneumatic variable stiffness actuator (PVSA). It
provides expected actuation performance with effective remote stiffness adjustment capa-
bility. A novel variable stiffness mechanism is also designed by using specially designed
SMA S-spring with different thickness [27]. The actuator stiffness is discretely adjusted
by changing the state combination of SMA S-spring with different thickness. The [28]
work is self- sensing unique design of sandwich structure comprising active graphene
coated glass fabric piezoresistive face sheets bonded to a Nomex™ honeycomb core. The
research article [29] explains the design of SMA spring and how to improve the frequency
of actuation. The research [30] demonstrates the ability to significantly improve the way a
gripper interacts with things that are being handled and offers a path toward developing
anthropomorphic grippers. The soft finger’s built-in sensor may convey passive proprio-
ceptive feelings of stiffness and curvature. While not altering the mechanics of the robotic
movement, it also served as an active jamming element to adjust finger stiffness.

As evident from the literature survey, the self-sensing during actuation of SMA spring
is very useful to understand the relationship between the stiffness change and force, dis-
placement, and strain corresponding change in the electrical resistance during the phase
transformation. However, so far, a comprehensive study considering several effects such
as actuation current, excitation frequencies and duty cycles has not been reported yet.
Consequently, the technical novelties of this study are summarized as follows: (a) achieve-
ment of the self-sensing behaviour of SMA spring during variable stiffness actuation by
experimentation, (b) development of a data driven model of self-sensing variable stiffness
actuation based on Support Vector Machine (SVM) regression and nonlinear regression
methods, by availing the experimental data, (c) investigation the effect of different excita-
tion/activation currents, switching/excitation frequencies and duty cycle, (d) evaluation
of the cycles and pre-stresses on the stiffness-resistance characteristics during the heating
cycle of SMA spring by employing SVM algorithm as a soft sensor. From the aspects of the
technical novelties, several new characteristics which are significant for the development of
self-sensing are found. Some of new findings are given as follows: (i) it is identified that
the characteristics of the self-sensing actuation (SSA) are influenced by activation currents,
switching/excitation frequencies, duty cycles and pre-stresses, (ii) both SVM regression
and nonlinear regression models are acceptable to measure the self-sensing stiffness in
SMC actuator during variable stiffness actuation which is experimentally validated with its
significance, (iii) it is found that the electrical resistance for all factors is almost in linear
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relation with the stiffness of SMC during the heating cycle with a meagre hysteresis, (iv) the
resistance of SMC is low under the austenite and high under the martensite phases. It
is noted here that compact design of a self-sensing SMA spring/wire actuator device is
feasible with the aid of the results achieved in this work.

This paper is organized as follows. After clearly describing the research motivation,
literature survey and the technical contributions of this study, an experimental facility
and measurement method are presented in Section 2. Section 3 provides the information
about SVM regression and nonlinear regression models focusing on the usability, and the
basic mathematical relations used to find the resistance and stiffness which are undertaken
at various different conditions of activation/excitation current, switching/excitation fre-
quency, duty cycle and pre-stress are given in Section 4. The detailed characteristics on
the results regarding to the stiffness response, resistance response and stiffness-resistance
characteristic is fully discussed in Section 5 with the brief information about application of
nonlinear regression modeling, followed by conclusion in Section 6 where some of benefits
achieved form this work such as robust model, cost effectiveness and reliability for compact
design of self-sensing actuator.

2. Experimental Set Up
2.1. Facility

The study to self-sense the stiffness of the SMA spring during variable stiffness
actuation from resistance measurement is highly significant with respect to the quality
of device (in terms of accuracy, precision, sensitivity and linearity etc., compactness and
cost effectiveness). This experimental study is used to validate Support Vector Machine
Regression and Nonlinear Regression model and realized by MATLAB 2020b software.
A set-up to run the tests is designed and fabricated and shown in Figure 1 with the help
of the photograph. It has following sections: (a) Mechanical Actuation System—It has
two guide rods, with two linear bearings on them to actuate the SMA spring biased with
an antagonistic tensile passive steel spring. This helps obstacle free movement which
is measured with the help of a flap placed between two springs and Keyence—made
contactless laser displacement sensor. A force sensor is also connected between the fixed
frame and the SMA spring. The complete assembly is fixed in an acrylic frame. (b) Electronic
Actuation System—This system consists of on Metal-Oxide-Semiconductor Field-Effect
Transistor (MOSFET, TIP-122 ST Microelectronics) with gate resistance (1.5 kΩ and 1⁄4 watt)
to limit the base current; a source with a rheostat (4 Ω and 8.5 A) and drain is connected
to the ground. The SMA spring is connected between the rheostat and the source of
power transistor. The current sensor is connected between the ammeter and the rheostat
so that it can display the current flowing through the SMA spring. (c) Power Supply—
Different power supply systems are required for working of different auxiliary devices
and the complete actuation systems. (i) DC regulated power supply—this is required for
relay circuit, excitations for current sensor, transistor circuit, and as an input signal to op
amp circuits. (ii) Dual Power Supply—Dual power supply provides +/− 15 V and 0.5 A
current. This is important for op amp-based amplification circuits to boost physical signals
like temperature signal and displacement signal. (iii) AC Power supply is required for
bigger auxiliary devices. (d) Instrumentation and Data Acquisition (DAQ) System—These
includes current sensor, temperature sensor, miniature force sensor, laser displacement
sensor, voltages across SMA spring and rheostat.

Voltage signals from different sensors are converted into proper level (0 to 10 V)
through signal conditioning, so that it is compatible with the data acquisition system and
stored in the personal computer’s memory. Figure 1 also shows the DAQ card used for data
acquisition and forwarding it to the computer memory. (e) Shape memory alloy spring and
passive steel spring—The SMA spring is manufactured by Dynalloy Inc. (1562 Reynolds
Avenue (949) 502-8548 office, Irvine, CA 92614 USA) and their technical specifications are
given in Table 1. Other details of the passive steel spring are shown in Table 2. During
activation/heating of the SMA spring, the biased tensile spring expands and stores the
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mechanical energy. During deactivation/cooling, the bias spring will use the stored energy
to pull the SMA spring back to its pre-stress/deform state.
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Table 1. Technical specifications of the passive steel spring.

Physical Properties Value

Hardness (max.) 220 HV
Yield stress (min.) 290 MN/m2

Tensile strength 640 MN/m2

Spring rate (Stiffness constant) 130 N/m

2.2. Experimentation

The experimental modeling and analysis of self-sensing of the stiffness in the Shape
Memory Coil during variable stiffness actuation is performed in the following ways. In
the first set of experiments, activation currents (0.8 A, 1.0 A and 1.2 A) are varied by D.C.
regulated power supply and by keeping voltage constant. Then different sensor voltages,
the voltage across rheostat and voltage across the Shape Memory Coil are recorded in
the memory of personal computer via DAQ card through repetitive cycle of switching of
the power transistor. This procedure is repeated for aforementioned activation currents
by keeping the switching frequency, duty cycle and pre-stress constant. The recorded
information is used to predict stiffness by nonlinear regression modeling and validation. It
is presented in detail in Section 4.

The recorded instantaneous value is used to determine the resistance and stiffness
properties of SMC by use of Equations (6) and (7) for the aforementioned activation currents.
In the second set of experiments, the switching frequency of the power transistor is changed
e.g., 10 mHz, 20 mHz and 30 mHz by ensuring that all other parameters such as activation
current, pre-stress on the SMC and duty cycle of the switching frequency are constant. The
instantaneous values of the SMA spring’s properties in terms of voltages is continuously
recorded in the memory of personal computer via DAQ card. These recorded voltages
are converted into proper units of the properties of SMC such as force, displacement,
temperature, resistance, and stiffness.

Also, the experimental modeling and validations are explained in detail in Section 4.
In the third set of experiments, the pre-stress (100 g, 150 g and 200 g) on SMC is varied by
applying more tension with the help of a tensile passive steel spring. All other parameters
are kept constant mentioned in the earlier set of experimentation. Similarly, the properties
of SMC in terms of voltages are recorded by different sensors and described in detail in
Section 4. Some of the properties of SMC e.g., stiffness and resistance are derived with
help of Equations (6) and (7), respectively. In the fourth set of experiments, the duty
cycle (40%, 50%, and 60%) of switching frequency is varied by adjusting the knob of the
function generator such that activation and deactivation of SMC occur smoothly with
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help of passive bias tensile spring and explained in detail in Section 4. Basically, SMA
works in three different modes of operations as actuators: (i) Free recovery mode means
a constant force and variable contraction of SMC. (ii) Constraint recovery mode means
a variable force and fixed contraction of SMC. (iii) Work production mode means both
force and contraction of SMC changing. The work production mode is the most popular
and applicable to practical engineering applications. It is a controllable actuator where
both force and displacement vary. The first mode of operation is free recovery where
force is constant, and stiffness is a function of displacement and varies. In the second
mode, displacement is constant in which stiffness is a function of force and varies [15]. The
inferior vena cava filter and eyeglass frame are designed in the free recovery mode of SMA
operation. Fasteners, connectors, and hydraulic coupling uses constrained recovery mode
in the SMA operation. Circuit breakers, heat engine and actuators are a few applications
of the work production mode in the SMA operation [15]. In the experiment, the variable
stiffness actuation of the SMA coil is controlled by using currents of 0.8 A, 1.0 A, and 1.2 A,
and the corresponding forces, displacements, currents, and voltages are monitored. The
data are displayed to investigate the system characteristics after preprocessing.

Table 2. Specifications of the SMC.

Physical Properties Range/Value

Melting point 1310 ◦C

Electrical resistivity 76 × 10−5 Ω m

Modulus of elasticity 28–41 GPa

Latent heat of transformation 5.78 kCal/kg

Thermal conductivity 18.0 W/m ◦C

Thermal expansion coefficient Martensite 6.6 × 10−6/◦C Austenite 11.0 × 10−6/◦C

Poisson ratio 0.33

Electrical resistivity Martensite 80 × 10−8 Ω cm
Austenite 100 × 10−8 Ω cm

Specific heat, Cp 1.84 J or 0.44 kCal/kg ◦C

Convective heat transfer coefficient, h 54.50

Transformation temperatures:

Ingot austenite finish (Af) 75 ◦C to 110 ◦C

Finished product Af 50 ◦C to 80 ◦C

Mechanical properties

Ultimate tensile strength ≥1070 MPa

Total elongation ≥10%

Loading plateau stress @ 3% ≥100 MPa

Shape memory strain ≤8.0%

Geometrical parameters

Wire diameter 5.0 × 10−4 m

No. of coils 45

Coil diameter 3.0 × 10−3 m
Volume 81.67 × 10−8 m2
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3. Facility and Experimentation
3.1. Principle of Self Sensing of Variable Stiffness Actuation by Support Vector Machine Regression

The regression is statistical tool to model and analyze the relation between one or
more than one independent variable and a dependent variable to produce a particular
outcome. In other words, the basic idea is to approximate the functional relation between
set of independent variable and dependent variable by minimizing risk function which
will use prediction error. Kernel: A lower dimensional data set is mapped into a higher
dimensional data set using the Kernel function. In essence, a hyperplane is a line that will
enable us to estimate a continuous value or aim. Boundary Line: In SVM, a margin is
created by two lines other than the hyperplane. The Support Vectors may be on or outside
the boundary lines. The experimental data recorded for resistance and stiffness of shape
memory coil are denoted as Xi and Yi.

{ (X1, Y1), (X2, Y2), (X3, Y3), . . . . . . . . . (Xn, Yn)} ∈ RN × R (1)

where, i is varying from 0 to n and n is number of training data points. The goal is to find
the function which map the relation between Xi and Yi. The Support Vector Regressor
algorithm approximate the function as,

f (x) = < w, ϕ(x) >+ b and w ∈ RN , b ∈ R (2)

The one dimensional and multidimensional SVR problem is defined as

f (x) =
M

∑
j=1

wj ∗ xj + b and w ∈ RM, b ∈ R (3)

f (x) =
(

w
b

)(
x
1

)
= wT x + b; x,w∈ RM+1 (4)

where, w is weight vector, b is bias and ϕ(x) is high dimensional data space. The weight
vector and bias can be determined from risk function and as,

R(C) =
1
2
| w | 2 + C

1
2

n

∑
i=1

Lε( f (Xi), Yi) (5)

The 1
2 | w |2 control the function capacity and C 1

2 ∑n
i=1 Lε( f (Xi), Yi) is the error. C is

regularization constant. The insensitive loss function is defined as,

Lε( f (Xi), Yi) =

{
| f (Xi),−Yi | −ε. when | f (Xi),−Yi |≥ ε

0 , and otherwise
(6)

where, ε is the boundary line [18].

f (Xi),=ϕ(xi)
Tw + b (7)

ϕ(x) is high dimensional data space.

3.2. Principle of Self-Sensing of Variable Stiffness Actuation by Nonlinear Regression

Most self-sensing actuation model literature have related SMA in terms of the dis-
placement/strain with self-sensed electrical resistance. To represent the stiffness of SMA
in terms of its electrical resistance, there is a need to establish an appropriate and reliable
stiffness-resistance model. To find the appropriate mathematical model that expresses the
relationship between dependent variable (stiffness) and the independent variable (resis-
tance), a data driven model is used; it is a parallel to mathematical model with self-sensing
characteristics i.e., sensing under actuation. So, the data driven model is a function of
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the independent variable involving one or more coefficients. The nonlinear regression
model with continuous one-to-one mapping is efficient to describe the relation between
the dependent variable (stiffness) and independent variable (resistance). The Nonlinear
Regression model is preferred as the modeling of the self-sensing actuation phenomenon
(the relation of change in electrical resistance to the change in stiffness during the nonlinear
thermo-mechanical phase transformation) is not as complex as that of modeling the basic
phenomenon of SMA, the thermo-mechanical phase transformation. Also, the Nonlinear
Regression model can be used to approximate complex nonlinear phenomena and then the
relationship is curvilinear. The jth order polynomial model in one variable is given by,

k = β0 + β1Rsma + β2Rsma
2 + . . . + β jRsma

j + ε (8)

where, Rsma is resistance of SMA spring, β0, β1, β2,..., βi, and Rsma Rsma2 Rsma3 . . . Rsma . . .
Rsmai, i = 1, 2, 3, . . . , j are the effect parameters and ε an error.

The nonlinear regression of sufficiently high degree can always be found that pro-
vides a good fit for data. A good strategy should be used to choose the order of an
approximate polynomial; keep the order increasing until t-test for the highest order term is
non-significant. It is called the forward selection procedure to fit the model with experi-
mental data. Also, goodness of fit statistics is used to find the best polynomial. MATLAB
function “polyfit” is used to obtain coefficients of the polynomials [3]. Data from the
measurement of the force, displacement and voltage sensors is saved in an Excel.csv file
and used whenever required for training and testing the model. In the first step, charac-
teristics must be represented as predicted data, response data, and weights. In the second
step, nature i.e., shape and specificity of the self-sensing characteristic of the appropriate
parameter polynomial model is selected. After fitting the data into a model, its goodness of
fit is determined by adopting any of the following two ways: (i) Graphical (ii) Numerical.
The plotting residuals and prediction bound aid visual interpretation. Graphical measures
allow viewing the entire data set at once, and they easily display a wide range of rela-
tionships between the model and data. Numerical measures are more narrowly focused
on a particular aspect of the data and often try to compress that information into a single
number. In practice, to find the best fit of the sensor’s characteristics, the above-mentioned
methods are used on extensive experimental data and analyzed [17]. Figure 2 shows the
trial-and-error procedure to find the correct polynomial model in comparison with the
experimental sensor’s characteristics; it can be seen that the third-order and above models
match the experimental data.
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4. Result and Discussion of Self-Sensing Variable Stiffness Actuation

The influence of different factors such as activation current, excitation frequency, duty
cycle, and pre-stress on self-sensing characteristics are observed and presented in this
section. The influence of different factors such as activation current, excitation frequency,
duty cycle, and pre-stress on self-sensing characteristics are observed and presented in
this section. The SMA’s electrical resistance is sensitive to compositions, transformation
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path and heat treatment [1]. During phase transformation, the crystallographic structure of
SMA changes due to heating and cooling. As a result, SMA’s electrical resistance changes.
This resistance change is useful to measure SMA’s stiffness without any physical sensor.
Furthermore, it is possible to measure stiffness of the SMA based structure. Table 3 has
useful information about SMA material. It is provided by the manufacturer and that the
resistance of the SMA wire depends on its length and diameter. It also says that resistance
per meter decreases with an increase in wire diameter. The basic relation used to calculate
resistance [3,5] and stiffness of the SMC actuator are as follows.

RSMA =
VSMA

Vs−VSMA
∗ R (9)

k =
d4G

8 n D3 (10)

where, RSMA is the resistance of the SMA spring (Ω), VSMA is the voltage of the SMA spring
(V), R is the known resistance (Ω), VS is the bias voltage of the MOSFET (V),

k is the instantaneous stiffness of the SMA spring (N/m), G is the instantaneous
shear modulus of the SMC (N/m2), d is the wire diameter of the SMC (m), and D is the
coil diameter of the SMC (m). The instantaneous value of G is calculated from force and
displacement measurements using transducers.

The first step in the design process is to choose the smallest wire diameter, or “d”.
The force-displacement relationship and cooling performance associated to the actuation
frequency are most sensitively influenced by the wire diameter “d”, which is a dominant
design parameter of the SMA coil spring actuator. The SMA coil spring actuator has the
smallest material mass and the quickest cooling time when the wire diameter is the smallest.

Iterative calculations are used to determine the coil diameter “D”. When the shear
strain reaches the predetermined value, which is adjusted to be slightly greater than the
wire diameter “d”, the force is calculated. If “D” is tiny, the shear stain does not reach
its maximum value before the force surpasses the intended value. If so, the calculation
is redone with a larger “D” The iteration ends and the “D” value at the last step is the
maximum coil diameter if the force reaches the required value at the maximum shear strain
while “D” is growing. With the desired stroke and the single coil stroke at the necessary
loading condition, the coil number “n” is calculated. The displacement gap between the
martensite and austenite models is used to determine the single coil stroke. The desired
actuation stroke value divided by the single coil stroke yields the coil number “n”.

Table 3. General properties of SMA [1].

Wire Diameter (µm) 100 125 200
Linear Resistance (Ω/m) 126 75 29
Maximum allowable force (N) 4.601 7.220 18.247
Nominal force (N) 0.275 0.422 1.079

So, the initial value of displacement of SMC is assumed to be zero and it is set to
zero in the transducers and recorded in the personal computer. This modeling is aimed
at the self-sensing phenomenon when the SMA is under variable stiffness actuation i.e.,
not particularly on the modeling of the basic actuation or shape memory effect or phase
transformation of SMA. Moreover, the study is based on the SMA being activated by
joule heating, whereby it is controlled by different electrical parameters such as current,
frequency and duty cycle and, pre-stress. The change in resistance corresponding to the
change in stiffness is determined during the heating phase, and the relation is extracted as
a nonlinear regression model and validated by different metrics through experimentation.
The model is valid for the joule heating current of 0.7 A to 1.2 A. Figure 3 shows the stiffness
characteristics at 0.8 A, 1.0 A and 1.2 A which is when the phase change starts before which
the SMA does not display any linear response. But then after 1.5 A, the response is more



Sensors 2023, 23, 2442 11 of 24

linear in characteristic as seen in Figure 3 and also at a current 1.0 A and 1.2 A, respectively.
The model and experimental response are compared in the heating cycle when work is
completed, specifically between 0.7 A and 1.2 A also, wherein a large change in stiffness
and resistance is revealed.
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4.1. The Effect of Different Activation Currents

In the first set of experiments, the SMA spring is electrically heated by a 1/100 Hz
square wave signal with a constant duty cycle and constant pre-stress. The current of the
heating signal is varied, and the data recorded. The current/electrical power affects both
the stiffness and resistance of the SMA spring actuator. The effect of changing current is
clearly seen in Figure 3. Stiffness-resistance heating characteristics are modeled by the
SVR and Nonlinear regression. Figure 3 reveal, that as electrical current increases, the
slope of the curve increases, and the experimental characteristics overlap the modeled
characteristics. The implementation of both models is done in MATLAB by “polyfit”,
“polyval” and other built-in functions.

The mathematical Nonlinear regression model between stiffness and resistance during
the austenite phase is estimated from the experimental data.

k = −1.6446 ∗ RSMA
3 + 2.7072 ∗ RSMA

2 − 2.0349 ∗ RSMA + 0.9655 (11)

k = −0.5627 ∗ RSMA
3 − 0.0684 ∗ RSMA

2 − 0.3944 ∗ RSMA + 1.0032 (12)

k = 1.1301 ∗ RSMA
3 − 0.0543 ∗ RSMA

2 − 1.9872 ∗ RSMA + 1.0067 (13)

where, k is the instantaneous stiffness in N/m and “RSMA” is the resistance in ohm
of the SMA spring actuator. Three cases are considered to present the data uniformly
corresponding to each effect in parameter variations like current, frequency, duty cycle
and pre-stress. The Nonlinear Regression model is used to represent self-sensing actuation
in particular to relate stiffness with electrical resistance. The big and unusual coefficient
of the nonlinear regression model can be reduced by normalizing stiffness and resistance
data. The modeled and experimental self-sensing of stiffness of the Shape Memory Coil
during variable stiffness actuation agree in terms of quality as Figure 3 has performance
metrics such as goodness factor, mean squared error, correlation matrix and root mean
square error within the specified range. The root mean square error (RMSE) should be less
than 0.80. The goodness factor is out of range in Figure 3 as nonlinearity is present for the
phase conversion which has not yet started.
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The values of metrics of the model comparison for Figure 3 is mentioned in Table 4;
there is large difference in stiffness for the three (maximum values are 75, 145 and 1500 N/m)
cases. Table 5 gives the Correlation matrix which displays the correlation coefficients for
matching the stiffness (model and experimental) at different independent variables, and
the activation current. The matrix depicts the correlation between the possible pairs of
values in the table; this tool helps to summarize the dataset, to identify and visualize the
match of patterns in the data. From the matrix tables it is observed that, the characteris-
tics at 0.8 A do not match as they are more non-linear than that for the other two higher
activation currents.

Table 4. Metrics of inferential models at different currents.

Metrics
Current (A) Type of Inferential

Model 0.8 A 1.0 A 1.2A

MSE

Polynomial Model

8.8421 × 10−5 1.5728 × 10−4 0.0043

RMSE 0.0094 0.0125 0.0657

Goodness of Fit
(R-squared) (%) 99.8991 99.8731 94.9956

MSE

Support Vector
Regression

0.0025 0.0012 0.0051

RMSE 0.0500 0.0345 0.0717

Goodness of Fit
(R-squared) (%) 97.1421 99.0424 94.0439

Table 5. Correlation Coefficient between observed and predicted stiffness at different currents.

Activation Current (A) 0.8 1.0 1.2

Correlation Coefficient of
Polynomial Model

1.0000 0.9995 1.0000 0.9994 1.0000 0.9747

0.9995 1.0000 0.9994 1.0000 0.9747 1.0000

Correlation Coefficient of
Support Vector Regression

1.0000 0.9865 1.0000 0.9961 1.0000 0.9731

0.9865 1.0000 0.9961 1.0000 0.9731 1.0000

4.2. The Effect of Different Excitation Frequencies

In the second set of experiments, the Shape Memory Coil is electrically heated over a
fixed current of 1.2 A of different frequencies (10 mHz, 20 mHz, and 30 mHz) of square
wave signal with fixed duty cycle and pre-stress (pre-tension). The self-sensing of stiffness
is modeled during the heating cycle only. Both the curves almost agree with each other
(modeled and experimental). Figure 4 show the characteristics modeled and experimental
plots at different frequencies. The effect of frequencies on stiffness is inversely proportional
i.e., stiffness decreases when resistance increase with an increase in frequency. The quadratic
mathematical models of stiffness at different frequencies are as follows:

k = 1.1074 ∗ RSMA
2 − 1.9230 ∗ RSMA + 0.8835 (14)

k = 1.5465 ∗ RSMA
2 − 2.4596 ∗ RSMA + 0.9701 (15)

k = −0.5693 ∗ RSMA
2 − 0.2908 ∗ RSMA + 0.9574 (16)

The experimental results validated the self-sensing of stiffness of the SMC actuator by
measurement of resistance during the heating cycle (austenite phase). Figure 4 reveals the
linear relationship between these two properties of the SMA. Also, the resistance change of
the SMA spring actuator is higher at a lower frequency and lower at higher frequency over
0 to 1.2 A of electrical power.
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Figure 4. Comparison of models of self-sensing stiffness characteristics with experimental result at
different excitation frequencies.

The modeled and experimental self-sensing of stiffness of the SMC during variable
stiffness actuation agree in terms of quality because Figure 4 has the performance metrics
such as goodness factor, standard deviation, correlation matrix and root mean square error
within the specified range, as seen from Table 6. Also, Table 7 provides the correlation
matrix which validates the match for the range of frequency (10 mHz to 30 mHz) though
the study is conducted until 0.6 Hz.

Table 6. Metrics of inferential models at different frequencies.

Metrics
Frequency (mHz) Type of

Inferential Model
10 mHz 20 mHz 30 mHz

MSE

Polynomial Model

0.0012 5.2667 × 10−4 0.0026

RMSE 0.0340 0.0229 0.0508

Goodness of Fit
(R-squared) (%) 98.6401 99.3929 96.9936

MSE

Support Vector
Regression

0.0025 0.0022 0.0033

RMSE 0.0496 0.0471 0.9699

Goodness of Fit
(R-squared) (%) 97.1139 97.4384 96.1031

Table 7. Correlation Coefficient between observed and predicted stiffness at different frequencies.

Frequency (mHz) 10 20 30

Correlation Coefficient of
Polynomial Model

1.0000 0.9932 1.0000 0.9970 1.0000 0.9849

0.9932 1.0000 0.9970 1.0000 0.9849 1.0000

Correlation Coefficient of
Support Vector Regression

1.0000 0.9868 1.0000 0.9894 1.0000 0.9818

0.9868 1.0000 0.9894 1.0000 0.9818 1.0000

4.3. The Effect of Different Duty Cycles

An SVR and Nonlinear regression model is developed to understand the effect of
duty cycle on stiffness-resistance characteristics. The comparison of experimental and
curve-fitted model is simulated by the MATLAB® program, the characteristics for different
duty cycles (40%, 50% and 60%), at a constant current of 1.5 A and constant frequency of
20 mHz showed that they almost agree with each other. The nonlinear regression model
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of stiffness at different duty cycles with resistance change as independent variable are
as follows:

k = 0.5778 ∗ RSMA
2 − 1.5332 ∗ RSMA + 0.9982 (17)

k = 0.3808 ∗ RSMA
2 − 1.3471 ∗ RSMA + 1.0264 (18)

k = −0.2699 ∗ RSMA
2 − 0.7399 ∗ RSMA + 1.0239 (19)

The effect of duty cycle on stiffness-resistance characteristics are linear and useful in
controlling stiffness effectively. The comparison between the experimental and modeled
characteristics at different duty cycles are presented in Figure 5 and mathematically repre-
sented by quadratic (second-order polynomial) Equations (17)–(19). The modeled and the
experimental self-sensing of stiffness of the SMC during variable stiffness actuation agree
in terms of quality as Figure 5 contains performance metrics such as goodness factor, mean
squared error, correlation matrix and root mean square error within the specified range, as
seen in Table 8. Table 9 also gives the correlation matrix which validates the match for a
range of duty cycle (40% to 60%), though the study is conducted from 20% to 80%.
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Figure 5. Comparison of models of self-sensing stiffness characteristics with experimental results at
different duty cycles.

Table 8. Metrics of Inferential models at different duty cycles.

Metrics
Duty Cycle (%) Type of

Inferential Model
40 (%) 50 (%) 60 (%)

MSE

Polynomial Model

0.0052 0.0066 1.5130 × 10−4

RMSE 0.0722 0.0811 0.0123

Goodness of Fit
(R-squared) (%) 94.4167 92.4220 99.8835

MSE

Support Vector Regression

0.0053 0.0067 0.0016

RMSE 0.0731 0.0067 0.0396

Goodness of Fit
(R-squared) (%) 94.2709 92.2769 98.7947
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Table 9. Correlation coefficient at different duty cycles.

Duty Cycle (%) 40 50 60

Correlation Coefficient of
Polynomial Model

1.0000 0.9717 1.0000 0.9614 1.0000 0.9994

0.9717 1.0000 0.9614 1.0000 0.9994 1.0000

Correlation Coefficient of
Support Vector Regression

1.0000 0.9718 1.0000 0.9632 1.0000 0.9980

0.9718 1.0000 0.9632 1.0000 0.9980 1.0000

4.4. The Effect of Different Pre-Stresses (Pre-Tension)

The effect of pre-stress on stiffness-resistance characteristics is developed as mathe-
matical models for different pre-stresses (100 g, 150 g and 200 g) at a constant current of
1.2 A and constant frequency of 10 mHz. The nonlinear regression model of stiffness at
different duty cycles with resistance change as independent variable are as follows:

k = −2.9194 ∗ RSMA
3 + 5.3974 ∗ RSMA

2 − 3.3947 ∗ RSMA + 0.8517 (20)

k = −2.4860 ∗ RSMA
3 + 4.6766 ∗ RSMA

2 − 3.0950 ∗ RSMA + 0.8585 (21)

k = −0.9385 ∗ RSMA
3 + 1.5918 ∗ RSMA

2 − 1.5918 ∗ RSMA + 1.0084 (22)

The comparison between experimental and modeled characteristics at different pre-
stresses found in Figure 6 and mathematically represented by third order polynomial
Equations (20)–(22). The effect of pre-stress on stiffness-resistance characteristics is highly
nonlinear and difficult to model in comparison with those on the effect of current, frequency
and duty cycle. Figure 6 reveals this and it is found from the correlation matrix that
stiffness and resistance of the SMA spring at different stresses do not have strong statistical
correlation. Table 10 validates the two models, compares the two models with each other
and gives the information about the accuracy of prediction by using experimental and
predicted data with the help of different metrics. There is a perfect correlation of each
variable with itself as seen from Table 11.
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Table 10. Metrics of inferential models at different pre-stresses.

Metrics
Pre-Stress (g) Type of

Inferential Model
100 g 150 g 200 g

MSE

Polynomial Model

0.0022 0.0018 0.0025

RMSE 0.0464 0.0421 0.0501

Goodness of Fit
(R-squared) (%) 97.4866 97.9452 97.0727

MSE

Support Vector
Regression

0.0100 0.0093 0.0040

RMSE 0.0998 0.0966 0.0634

Goodness of Fit
(R-squared) (%) 88.3812 89.1636 95.3135

Table 11. Correlation coefficient at different pre-stresses.

Pre-Stress 100 g 150 g 200 g

Correlation Coefficient of
Polynomial Model

1.0000 0.9874 1.0000 0.9897 1.0000 0.9583

0.9874 1.0000 0.9897 1.0000 0.9583 1.0000

Correlation Coefficient of
Support Vector Regression

1.0000 0.9532 1.0000 0.9583 1.0000 0.9791

0.9532 1.0000 0.9583 1.0000 0.9791 1.0000

5. Investigation of Stiffness Characteristics of the SMC Actuator
5.1. Effect of Current on Stiffness-Resistance Characteristics

With the help of four sets of experiments, the stiffness-resistance characteristics of the
SMC actuator are analyzed to explore its self-sensing capability. Data recorded from the
first set of experiments are used to plot and analyze. Resistance response to the heating
cycle is plotted for 50 s; it found that as activation current increased, resistance decreased
and that the change of resistance decreased over a period of time as shown in Figure 7.
Stiffness response to different activation currents found that at 1.2 A, stiffness increased
very rapidly in comparison to the other two activation currents. Excitation frequency
is chosen as 10 mHz, as enough time is available to relax/deform the SMA spring and
avoid residual strain. As excitation frequency increased, the time to complete the cycle
is reduced e.g., two heating-cooling cycles occurred at 10 mHz and 6 cycles at 50 mHz.
Data of force, displacement, the voltage across fixed resistance and the SMA spring are
recorded for 3 min and are also saved in computer memory via 1408FS plus DAQ card
with a sampling frequency of 2 Hz. At 0.8 A stiffness is less in value, compared to the other
two activation currents (1.0 A and 1.2 A) as the SMA spring does not completely transform
from martensite phase to the austenite phase. Corresponding resistance (Ω) is recorded in
terms of its voltage and plotted in Figure 7; at 0.8 A. It is observed that resistance change is
larger than that at 1.2 A. Responses for the three different currents are plotted and shown
in Figures 8 and 9. Figure 8 shows stiffness variations at different currents (0.8 A, 1.0 A and
1.2 A). Figure 9 shows a linear relation between stiffness and resistance. The minimum and
maximum values of resistance at these activation currents and their respective stiffness
values are shown in Table 12.
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Table 12. Resistance and Stiffness at different currents.

Current
(A)

Resistance Change (Ω) Stiffness Change
(N/m) Number

of Cycles
Min. Max. Min. Max.

0.8 2.4426 2.5461 21.7310 62.8684 02
1.0 2.1310 2.2530 21.7521 156.2679 02
1.2 1.9454 2.0446 23.4013 2130.4059 02

5.2. Effect of Frequency on Stiffness—Resistance Characteristics

Data recorded from the second set of experiments are used to plot and analyze.
Self-sensing actuation characteristics of the SMA spring actuator is obtained for varied
frequencies from 10 mHz to 30 mHz keeping activation current constant at 1.2 A; Stiffness is
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determined and plotted as shown in Figures 10–12. When the excitation frequency of PWM
signal is increased beyond 50 mHz, the number of cycles is reduced to less than one, also
the heating and cooling cycle frequency (mechanical cycle) did not match the excitation
frequency (electrical cycle), subsequently, the SMA spring would not completely contract
or deform. Some significant observations are arrived at from these plots: (i) The excitation
frequency has a significant effect on stiffness and resistance of Shape memory Spring: At
a higher frequency, resistance change is higher and at a lower frequency, the resistance
change is lower. (ii) The effect of frequency on stiffness change of the SMA spring actuator
is converse to resistance change. (iii) Overall linear relationship exists between resistance
and stiffness. (iv) The Resistance and Stiffness change from minimum to maximum values
at different frequencies is in Table 13.
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Table 13. Stiffness and resistance at different frequencies.

Frequency
(mHz)

Resistance Change in (Ω) Stiffness Change in (N/m) Number of
CyclesMin. Max. Min. Max.

10 1.94 2.04 23.25 2130.90 02
20 1.83 2.12 22.12 144.44 04
30 1.89 2.11 21.91 79.45 06

5.3. Effect of Pre-Stress on Stiffness—Resistance Characteristics

At a constant current (1.2 A) passing through the SMA spring and constant frequency
(10 mHz) of excitation current, stiffness is determined for pre-stress which is varied from
100 g to 200 g. An increase in pre-stress beyond 200 g would not allow complete contraction
(bias force is higher) and would not completely deform below 100 g for the requirement of
restraining/pulling force [15]. It is learnt from Figures 13 and 14 that stiffness increased,
and resistance decreased with an increase in pre-stress. Figure 15 provides information
about the stiffness sensing characteristics at different pre-stresses, which reveal a large
change in stiffness at a lower value of resistance of the SMA spring actuator.
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5.4. Effect of Duty Cycle on Stiffness—Resistance Characteristics

Similarly, for different duty cycles (40%, 50%, and 60%) at 1.5 A and 20 mHz, the
resistance response, stiffness response and stiffness—Resistance characteristics of the SMA
spring actuator are obtained and presented in Figures 16–18 respectively. Resistance values
are smaller in comparison to the effect of current, frequency and pre-stress. The change
in resistance is higher for higher duty cycles and lower for lower-duty cycles. Change in
stiffness is also higher for a higher duty cycle and lower for a lower duty cycle; stiffness
is higher in comparison with a lower duty cycle due to the availability of minimal time
to completely heat the SMA spring. Figure 16 presents the resistance variation due to
changes in duty cycles and Figure 17 corresponds to the stiffness variations. As the duty
cycle increased, stiffness also increased some extent. Figure 18 shows the characteristics
at different duty cycles, indicating a large change in stiffness with a large change in the
resistance of the SMA spring actuator at a higher duty cycle. It also, proved that at higher
stiffness, resistance is also higher but within the specified limit of duty cycle. Table 14
summarizes stiffness and resistances at different pre-stresses and their effect. Table 15
depicts the effect of duty cycle on stiffness and resistance, which is more on stiffness and
less on resistance.
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Table 14. Resistance and Stiffness Values at different Pre−Stresses.

Pre-Stress (g)
Resistance (Ω) Stiffness

(N/m) Number of
Cycles

Min. Max. Min. Max.

100 2.80 3.15 24.24 2248.97 02
150 2.76 3.12 31.66 2912.84 02
200 2.70 3.05 30.79 3251.99 02

Table 15. Resistance and Stiffness at different Duty Cycles.

Duty Cycle (%) Resistance (Ω) Stiffness (N/m) Number of
CyclesMin. Max. Min. Max.

40 0.55 0.56 16.90 423.99 03
50 0.55 0.57 19.71 574.25 03
60 0.55 0.57 16.79 495.21 03

Experimental data is collected for repeated cycles (3 consecutive cycles), and the
responses are similar/not with much deviation. One set of data is used for the plotting and
analysis of the stiffness-resistance characteristics, the usable form of the data is through
the use of an average function and normalization; the other set of data are used for the
validation. The highest change in resistance corresponding to the change of stiffness with
regard to the effect of the influencing factors like activation current, excitation frequency,
pre-stress and duty cycle are presented in Table 16. It is observed that a change in resistance
of the SMA spring in the configuration switches is the highest (0.3516 Ω) during the change
in pre-stress and stayed the lowest (0.0160 Ω) during the change in duty cycle. The purpose
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of this study is to use the suggested technique during control of actuation in the SMA
spring by using an appropriate controller. The polynomial models are appropriate to the
relevance to the factor of consideration and are able to accurately predict the stiffness
equivalent to that obtained through experimentation by the measurement of change in
electrical resistance. The level of predictability is high for the factor’s activation current,
excitation frequency and duty cycle but low for pre-stress and low value of current (0.8 A)
due to nonlinear characteristics of self-sensing of the SMA spring; the statistical analysis is
presented in Tables 4–11. Table 17 attests that the polynomial model, predicted accurately
at different activation currents, excitation frequencies and duty cycle but at the pre-stress.

Table 16. Resistance and stiffness values at different Influencing factors.

Parameters
Properties Shape Memory Coil Resistance

Change (Ω)
Shape Memory Coil Stiffness

Change (N/m)
Activation Current (A) 0.12 134.51
Excitation Frequency (Hz) 0.29 122.32
Pre-stress (g) 0.35 3220.20
Duty Cycle (%) 0.01 478.42

Table 17. Performance of SVR and nonlinear regression model prediction.

Parameter
Metrics Average Goodness of Fit (SVM

Regression)
Average Goodness of Fit
(Nonlinear Regression)

Different Activation Currents 96.74 98.25
Different Excitation Frequencies 96.88 98.34
Different Duty Cycles 95.11 95.57
Different Pre-stress 90.95 97.50

6. Conclusions

In this work, an experimental facility is developed to determine the electrical resistance
of the Shape Memory Coil (SMC) actuator that is biased by a tensile steel spring under
self-sensing variable stiffness actuation. The SVM regression model is constructed based
on experimental data (Expert Knowledge) and provided excellent performances. The
performance of the SVM regressor model is verified by a correlation coefficient, mean
square error (MSE), root mean square error (RMSE) and goodness of fit (R2). The developed
SVM model showed an excellent result of prediction in comparison with the nonlinear
regression model and experimental data. The experimental analysis has proved that the
stiffness of the SMA is sensed from its resistance change. While the stiffness is changed
due to different activation currents/joule heating, excitation frequencies, pre-stresses and
duty cycles, the stiffness of the SMC is successfully determined as the variable stiffness
actuator. Among many new findings from this work, the most interesting result is that
the stiffness of the SMA spring can be measured without knowing the activation current
and initial geometry or configurations of the SMC. This is possible from the realization of
both SVR and nonlinear regression models of the stiffness using the electrical resistance
of the SMC during austenite phase transformation. The responses achieved from two
models are compared to the experimental response showing both models would harness
the self-sensing capability of the SMC actuator. In addition, it has found from this work
that the effect of frequency and duty cycle is more linear when compared to the other two
parameters of current and pre-stresses. It has been concluded from this work that from
the practical view of point, the self-sensing of stiffness of SMC can reduce the number
of sensors for making application systems associated with shape memory alloys. For
example, one stiffness sensor can use for two sensors of force and displacement. Therefore,
it is self-explanatory justifying that the self-sensing technique gives birth to sensor-less
control systems which are relatively cost effective, and hence the overall system becomes
compact in comparison with traditional control systems having dedicated many sensors.
Therefore, it is expected that the proposed self-sensing variable stiffness actuation method
can be applicable to many control systems including the grasping force of robot grippers,
surgical SMA wire of biomedical sciences, vibration and dynamic motion control of flexible
structures in aeronautical fields such as morphing control and health monitoring control
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system using SMA wires Associated magnetic coils. It is finally remarked that some benefits
achieved from this work will be demonstrated by applying to robot gripper systems in
near future.
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