
SELF-SERVICE CLOUD COMPUTING

BY

SHAKEEL BUTT

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Vinod Ganapathy

and approved by

New Brunswick, New Jersey

January, 2015

c© 2015

SHAKEEL BUTT

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

SELF-SERVICE CLOUD COMPUTING

by SHAKEEL BUTT

Dissertation Director: Vinod Ganapathy

Cloud computing has transformed the IT industry. Clients can acquire computing resources on

demand from the cloud, and can drastically reduce their maintenance, management and startup

cost. Many new companies rely exclusively on the cloud and according to Gartner’s study [23],

by 2015, 90% of government agencies and large companies will be using the cloud. However,

many challenges remain in ensuring wide adoption of the cloud. In this work, we have focused

on two such challenges.

The first challenge is that of security and privacy. When clients choose to use public cloud

infrastructure, the confidentiality and integrity of their code and data can be compromised by

insider attacks (e.g., malicious system administrators). The second challenge is that of inad-

equate flexibility provided to the clients. Clients must typically rely on the cloud provider to

deploy useful services, such as security services (NIDS or Rootkit and Malware detectors) or

deduplication services e.g.,memory or storage deduplication.

In virtualized cloud infrastructures, a Virtual Machine Monitor (VMM) governs the exe-

cution of client virtual machines (VMs). Both the challenges discussed above arise from the

way VMMs assign privilege to client VMs. In this work, we have designed and implemented

Self-service Cloud Computing (SSC), a new cloud computing model that introduces novel ab-

stractions to improve the security and privacy of client code and data, and gives clients more

flexible control over their VMs.

ii

In SSC, the privilege model of a commodity VMM is modified and a new cloud man-

agement platform is designed and implemented, which uses the modified VMM to solve the

security and flexibility problem without affecting the benefits of cloud computing like low

maintenance and management cost. SSC incorporates protocols based on Trusted Platform

Module (TPM) to establish client’s trust on the SSC enabled infrastructure. To demonstrate the

utility of SSC, we have implemented and evaluated multiple security, storage and networking

services.

iii

Acknowledgements

First and foremost I would like to thank my graduate adviser Professor Vinod Ganapathy.

Vinod’s constant support and push has made this dissertation a reality. His vision, passion and

drive have been a constant source of motivation and confidence for me. I am really thankful to

him for believing in me and supporting me wherever I stumbled during my graduate journey.

I also would like to express my gratitude to the rest of my dissertation committee members

Professor Liviu Iftode, Professor Ricardo Bianchini and Dr. Cristian Ungureanu for providing

feedback.

I have also had the good fortune of being able to work on the initial part of this disserta-

tion with Dr. H. Andrés Lagar-Cavilla, my mentor at AT&T Labs Research. His pragmatism

and in-depth knowledge of virtualization has greatly influenced the core ideas underlying this

dissertation. I would also like to thank Dr. Abhinav Srivastava, my mentor during my second

tenure at AT&T Labs Research, for his support and invaluable advise.

I have had the privilege of sharing my time at Rutgers with several excellent colleagues.

I especially thank Mohan Dhawan, Mudassir Shabbir, Liu Yang, Rezwana Karim, Amruta

Gokhale, Liu Yang, Nader Boushehrinejadmoradi, Steve Smaldone, Pravin Shankar, Lu Han

and Chetan Tonde.

I would also like to thank Nabeel Butt and Sharjeel Ahmed Qureshi for providing me feed-

back on the early draft of this dissertation. Last but not the least, I am thankful to my wife,

Saher, for her patience while I was working on this dissertation.

iv

Dedication

To my spirtual leader and murshid, Hazrat Khwaja Moeen-ud-din Chisti Ajmari (R.A).

v

Table of Contents

Abstract . ii
Acknowledgements . iv
Dedication . v

List of Figures . viii

1. Introduction . 1
1.1. Motivation . 1
1.2. Self-service Cloud Computing . 4

1.2.1. SSC Hypervisor . 4
1.2.2. SSC Control Plane . 5

1.3. Benefits of SSC . 5
1.3.1. Services . 6
1.3.2. Mutual Trust . 6

1.4. Threat Model . 7
1.5. Summary of Contributions . 8
1.6. Dissertation Organization . 9
1.7. Statement of Contributions . 10

2. The SSC Hypervisor . 11
2.1. Components . 11
2.2. Bootstrapping . 12
2.3. Building Client Meta-Domains . 15
2.4. SSC Privilege Model . 18
2.5. Virtual I/O . 21
2.6. Regulatory Compliance using MTSDs . 22

3. The SSC Control Plane . 24
3.1. Motivation . 24
3.2. Traditional Control Plane . 25
3.3. SSC’s Control Plane . 26
3.4. Operations of the SSC’s Control Plane . 29
3.5. Specifying Inter-VM Dependencies . 32
3.6. VM Migration . 37

4. Evaluation . 39
4.1. Networked Services . 40

4.1.1. Baseline Overhead . 40
4.1.2. Network Access Control SD . 42

vi

4.1.3. Trustworthy Network Metering . 43
4.1.4. Network Intrusion Detection . 44
4.1.5. VMWall Service . 45

4.2. Storage Services . 46
4.2.1. Encryption Storage Service . 46
4.2.2. Integrity Checking Service . 48

4.3. Memory Introspection Service . 49
4.4. System Call Monitor . 50
4.5. Other Services . 51

4.5.1. VM Checkpointing Service . 51
4.5.2. Memory Deduplication Service . 52

4.6. Evaluating VM Migration . 53
4.6.1. Migrating a Single VM . 54
4.6.2. Migrating a Group of VMs . 54
4.6.3. VM Downtime . 55

5. Related Work . 57
5.1. Security and Privacy of Client VMs . 57
5.2. Extending the Functionality of VMMs . 59
5.3. Cloud Accountability . 60
5.4. Techniques based on Software-defined Networking 61

6. Conclusion . 62
Bibliography . 65

vii

List of Figures

2.1. The design of a self-service cloud (SSC) computing platform. 12

2.2. Summary of new hypercalls introduced to enable SSC. 13

2.3. Protocols used in SSC for the creation of Udom0, UdomUs, SDs and MTSDs. 14

2.4. Actors and operations in the privilege model. 19

2.5. Actors, objects, and operations in the privilege model. 20

3.1. Components of the control plane and their interactions. 27

3.2. Protocol to create a dashboard VM instance. 29

3.3. Language used to specify VM dependencies. 33

3.4. Example inter-VM dependency specification. 33

3.5. Example showing inter-VM dependencies that require certain VMs to be

co-located. 35

3.6. Open vSwitch setup . 36

3.7. Migrating a group of co-located VMs. 38

4.1. Cost of building domains. 40

4.2. The network topologies used to evaluate the baseline overhead of net-

worked services executing atop SSC. 41

4.3. Baseline overhead of networked services. 41

4.4. Network access control service. 43

4.5. Trustworthy network metering service. 44

4.6. Network intrusion detection (Snort) service. 45

4.7. Time to establish a TCP connection in VMWall. 45

4.8. Storage service VM architecture. 47

4.9. Cost incurred by the storage encryption service VM. 47

viii

4.10. Cost incurred by the storage integrity checking service VM. 48

4.11. Cost of the memory introspection service VM 50

4.12. Cost incurred by the system call monitoring service VM 51

4.13. Cost incurred by the checkpointing service VM. 52

4.14. Cost incurred by the memory deduplication service VM. 53

4.15. Total migration time for one virtual machine. 54

4.16. Migrating multiple virtual machines using sequential and parallel migra-

tion policies. 55

4.17. Down time for migrating VMs. 56

ix

1

Chapter 1

Introduction

This dissertation proposes a new cloud computing model, called Self-Service Cloud computing

(SSC). SSC introduces new abstractions that improve the security and privacy of client code

and data and offer clients flexible control over their virtual machines. SSC is evaluated using

a number of case studies that showcase its utility and demonstrate its potential to improve the

state-of-the-art in cloud platform security.

1.1 Motivation

In recent years, cloud computing has gained popularity among many enterprises. A large num-

ber of enterprises have migrated their applications to the cloud. Several startups, such as like

edX and Instagram, exclusively rely on the cloud to provide services to their customers. A

study by Gartner [23] forecasting the future trends of the computer software industry claims

that 90% of government agencies and large enterprises will be using the cloud by 2015.

One reason behind this popularity is the attractive economic incentives cloud computing

has to offer to end-users. Cloud computing frees clients from having to procure computing

infrastructure, thereby reducing the barrier to entry which benefits startups. It reduces the cost

of managing this infrastructure by providing automated management mechanisms and offloads

the maintenance cost to the cloud provider. In addition, cloud computing provides elasticity

in the use of computing resources and allows cloud customers to improve the reliability of

their services via replication and redundant placement of computation across geographically

distributed different data centers.

In this dissertation, we are only interested in public cloud platforms, such as Amazon EC2,

Google Compute Engine and Microsoft Azure. Despite the apparent popularity and benefits of

2

cloud computing, many enterprises hesitate to migrate their applications to the cloud, opting

instead to use private or in-house cloud offerings. Doing so often negates many of the benefits

that public cloud computing has to offer, e.g., in an in-house cloud infrastructure, the enterprise

must have to procure and manage the computing infrastructure.

There are two major reasons why enterprises are often reluctant to use public cloud infras-

tructure. The first reason is security and privacy of client data and computation. Enterprises that

host sensitive or proprietary data (e.g., banks and pharmaceutical industries) want to protect this

data from outsiders. On public cloud, the provider controls and manages the infrastructure run-

ning the customers applications and has privileges to inspect the memory contents and network

traffic of the application. Thus, sensitive client data is vulnerable to attacks by malicious cloud

operators. Cloud Security Alliance has characterized this threat as “Malicious insider working

for cloud provider” and marked it as one of the top security threats to cloud computing [9, 10].

The second reason is the inflexible dependence of customers on the provider for new and

customized infrastructure level services for their applications. Delegating management to the

cloud provider is often a two-edged sword. While doing so can reduce operating costs, it also

has the disadvantage of making the cloud provider exclusively responsible for services that the

enterprise client may wish to avail. These problems arise due to the core technology used to

power the cloud infrastructure i.e.,virtualization. To be more precise, these problems are due to

the way the existing software systems implementing virtualization are designed.

Cloud providers use virtualization to multiplex physical resources among their customers.

Customers are given the abstraction of a physical machine, known as virtual machine (VM).

They can run their applications in these VMs similar to running applications on real physi-

cal machines. Virtualization allows running multiple VMs on a single physical machine and

provides isolation between them. Thus, using virtualization, cloud providers can reduce the in-

frastructure cost without compromising the isolation among the customers. The virtualization

software stack is also known as Virtual Machine Monitors (VMMs).

Virtual machine monitors implement a trusted computing base (TCB) that virtualizes the

underlying hardware (CPU, memory and I/O devices) and manages VMs. In commodity

3

VMMs, such as Xen and Hyper-V, the TCB has two parts—the hypervisor and an adminis-

trative domain. The hypervisor directly controls physical hardware and runs at the highest

processor privilege level. The administrative domain, henceforth called dom0, is a privileged

VM that is used to control and monitor client VMs. Dom0 has privileges to start/stop client

VMs, change client VM configuration, monitor their physical resource utilization, and perform

I/O for virtualized devices. Dom0 also runs device drivers and virtualizes I/O for the VMs.

Endowing dom0 with such privileges leads to the underlying two problems mentioned be-

fore:

• Security and privacy of client VMs.

Dom0 has the privilege to inspect the state of client VMs, e.g., the contents of their vCPU

registers and memory. Dom0 is used by the cloud provider to control and manage the

virtual machines (VM) running on the system. This privilege can be misused by attacks

against the dom0 software stack (e.g., because of vulnerabilities or misconfigurations)

and malicious system administrators or cloud operators. This is a realistic threat [13–17,

22, 28], since dom0 typically executes a full-fledged operating system with supporting

user-level utilities that can be configured in complex ways.

• Inflexible control over client VMs.

Virtualization has the potential to enable novel services, such as security via VM intro-

spection [6, 21], migration [8] and checkpointing. However, the adoption of such ser-

vices in modern cloud infrastructures relies heavily on the willingness of cloud service

providers to deploy them. Clients have little say in the deployment or configuration of

these services. It is also not clear that a “one size fits all” configuration of these services

will be acceptable to client VMs. For example, a simple cloud-based security service

that checks network packets for malicious content using signatures will not be useful to

a client VM that receives encrypted packets. The client VM may require deeper intro-

spection techniques (e.g., to detect rootkits), which it cannot deploy on its own. Even if

the cloud provider offers such an introspection service, the client may be reluctant to use

it because dom0’s ability to inspect its VMs may compromise its privacy.

4

1.2 Self-service Cloud Computing

The main contribution of this dissertation is a new Self-service cloud (SSC) computing model

that simultaneously addresses the problems of malicious insiders and inflexible control. SSC

consists of two components, a commodity hypervisor with modified privilege model, named

SSC hypervisor, and software stack to manage the systems equipped with such hypervisor,

named SSC control plane.

1.2.1 SSC Hypervisor

SSC introduces a novel hypervisor privilege model that partitions the responsibilities tradi-

tionally entrusted with dom0 to two new kinds of administrative domains. Sdom0, short for

System-dom0, manages the resources of the physical platform, schedules VMs for execution,

and manages I/O quotas. Sdom0 also executes the device drivers that control the physical

hardware of the machine. Each physical platform is equipped with one Sdom0 instance.

Each client gets its own Udom0 instance, short for User-dom0, which the client can use

to monitor and control its VMs executing on that physical platform. While Sdom0 holds the

privileges to pause/unpause client VMs, access their read-only state (e.g., number of vCPUs

assigned or their RAM allocation), and manage their virtual I/O operations, the hypervisor

disallows Sdom0 from mapping the memory and vCPU registers of any of the client’s VMs

(i.e., Udom0, UdomUs and SDs, introduced below).

Aside from these administrative domains, each platform also hosts the client’s work VMs,

called UdomUs. Each client’s Udom0 has the privileges to administer that client’s UdomUs.

Although Udom0 has the privileges to perform the aforementioned tasks, SSC’s design aims to

keep Udom0 stateless for the most part. Thus, SSC also supports service domains (SDs), which

can perform these administrative tasks on client VMs. We use the term meta-domain to refer

to the collection of a client’s domains (Udom0, UdomUs and SDs).

The final component of SSC is a platform-wide domain builder (domB). The sole respon-

sibility of domB is to create VMs in response to client requests. Building a VM on a platform

requires accessing the VM’s memory and registers onto the physical platform. Because this task

is privacy-sensitive, it cannot be performed by Sdom0 although it involves mapping the client

5

VM’s state onto the physical platform. The TCB therefore includes domB, which is entrusted

with this responsibility. DomB also interacts with the TPM and hosts the code to virtualize the

TPM for individual clients [4].

1.2.2 SSC Control Plane

SSC control plane is a distributed system for managing physical platforms equipped with a

SSC hypervisor. It facilitates the interaction between hosts in the cloud infrastructure as well

as between the client and the cloud. It presents a unified administrative interface to clients,

and transparently manages all of a client’s VMs running across different hosts on the cloud.

Simultaneously, it also protects clients from the cloud by preserving SSC’s twin objectives of

security/privacy and flexible VM control.

The control plane has three components, a cloud controller, a node controller and a dash-

board. Cloud controller has a global view of the provider’s infrastructure, and is tasked with

allocating resources to clients elastically, provisioning and scheduling virtual machines. In

SSC, the Sdom0 on each physical platform runs an instance of node controller, which is tasked

to monitor the resource utilization on the host and control VM scheduling. Dashboard acts as

a communication layer between the client and the cloud.

SSC enables new services for the clients VMs, which introduces dependencies among the

VMs. The control plane provides the ability to specify such relationships among VMs. Clients

can use the dashboard to provide VM specifications along with inter-VM relationship specifi-

cations and the cloud controller produces a VM placement satisfying these specifications. The

cloud controller is also responsible for cloud wide maintenance operations such as VM migra-

tions. SSC’s control plane also incorporates new VM migration protocols for migrating VMs

having dependencies.

1.3 Benefits of SSC

This section presents additional potential benefits of SSC to the cloud providers and their cus-

tomers.

6

1.3.1 Services

Virtualization, the underlying technology powering cloud computing, enables many new ser-

vices, like VM introspection, checkpointing, I/O manipulation and deduplication, for the cus-

tomers of the cloud providers. While virtualization enables these services, their availability

on modern cloud infrastructures depends on the willingness of providers to deploy them. For

example, Amazon’s EC2 does not expose a checkpointing API to its clients. Likewise, cloud

services do not currently allow clients to independently deploy “security domains” to monitor

their VMs. The extent of protection of client VMs is limited to that provided by user-space

anti-virus tools that can execute within VMs (in addition to firewalls or intrusion detection sys-

tems employed by the provider). Such tools are incapable of deeper introspection, as would be

needed to detect kernel-level malware such as rootkits.

Even if cloud providers were to offer services such as the above, their implementation will

likely conflict with client security and privacy. Services such as VM introspection, checkpoint-

ing and memory deduplication are privileged because they must access client state, such as its

VM memory pages, virtual registers and configuration parameters. These services are therefore

implemented in dom0. A malicious cloud administrator would be able to misuse these services

and gain access to a trove of sensitive client data.

SSC gives clients the freedom to administer their own VMs, and deploy services that today

require provider support. SSC provides clients with unprecedented flexibility to deploy cus-

tomized cloud-based services and allows clients to administer their own VMs. However, this

does not necessarily mean that clients need to have increased technical know-how or manpower

to leverage the benefits of SSC. Clients can use services developed by third party vendors [55].

1.3.2 Mutual Trust

Cloud computing allows even small enterprises access to vast amounts of computing power.

Procuring and maintaining tens of thousands of servers would be difficult for most organiza-

tions but renting servers on-demand from a cloud computing provides much more affordable

alternative. However, this conveniently available computing power can be abused by malicious

7

attackers to stage distributed denial of service attacks, serve malwares or distribute illegal con-

tents. Cloud Security Alliance has identified abuse of cloud services as one of top threats to

cloud computing [9]. Indeed, there were real cases of distributed denial of service attacks and

spamming attacks using Amazon EC2 infrastructure and recently Nvidia’s try grid service was

misused by miners to mine virtual currencies like Bitcoin [48].

Cloud providers usually mitigate such abuse by inspecting the client VMs but such accesses

may conflict with the client’s privacy goals. There is often such a tension between the client’s

privacy policies and the cloud provider’s need to retain control over client VMs executing on its

platform. SSC introduces notion of mutual trust to resolve the tension between client’s privacy

policies and provider’s need to retain control over the software executing on its platform.

SSC introduces mutually-trusted service domains (MTSDs), mutually trusted by the clients

and the provider. The cloud provider and the client agree upon policies and mechanisms that

the provider will use to control the client’s VMs. The cloud provider implements its code

in a MTSD, which runs similar to a SD, and can therefore inspect a client’s VMs. Clients can

leverage trusted computing technology [4,25,29] to verify that a MTSD only runs code that was

mutually agreed-upon with the cloud provider. Clients that have verified the trustworthiness

of the platform and the MTSD can rest assured that their privacy will not be compromised.

Likewise, the cloud provider can ensure liveness of MTSDs for regulatory compliance.

1.4 Threat Model

SSC’s threat model is similar to those used in recent work on protecting client VMs in the

cloud [31, 51, 68], and differentiates between cloud service providers and cloud system admin-

istrators. Cloud providers, such as Amazon EC2 and Microsoft Azure, have a vested interest

in protecting their reputations. On the other hand, cloud system administrators are individuals

entrusted with performing system-level tasks and maintaining the cloud infrastructure. To do

so, they need access to dom0 and the privileges that it entails.

We assume that cloud system administrators are adversarial (or could make mistakes),

and by extension, that the administrative domain is untrusted. Administrators have both the

technical means and the monetary motivation to misuse dom0’s privileges to snoop client data

8

at will. Even if system administrators are benign, attacks on client data can be launched via

exploits directed against dom0. Such attacks are increasing in number [13–17, 28] because on

commodity VMMs, dom0 often runs a full-fledged operating system with a complex software

stack. Likewise, misconfigured services in dom0 can also pose a threat to the security and

privacy of client data.

SSC protects clients from threats posed by exploits against Sdom0 and cloud administrators

who misuse Sdom0’s privileges. SSC prevents Sdom0 from accessing the memory contents of

client VMs and the state of their virtual processors (vCPUs). This protects all of the client’s

in-memory data, including any encryption keys stored therein. SSC’s core mechanisms by

themselves do not prevent administrators from snooping on network traffic or persistent storage.

Security-conscious clients can employ end-to-end encryption to protect data on the network and

storage.

SSC assumes that the cloud service provider is trusted. The provider must supply a TCB

running an SSC-compliant VMM. We assume that the physical hardware is equipped with an

IOMMU and a Trusted Platform Module (TPM) chip. Using TPM clients can obtain cryp-

tographic guarantees about the software stack executing on the machine. The cloud provider

must also implement procedural controls (security guards, cameras, auditing procedures) to

ensure the physical security of the cloud infrastructure in the data center. This is essential to

prevent hardware-based attacks, such as cold-boot attacks, against which SSC cannot defend.

SSC does not attempt to defend against denial-of-service attacks. Such attacks are trivial to

launch in a cloud environment, e.g., a malicious administrator can simply configure Sdom0 so

that a client’s VMs is never scheduled for execution, or power off the server running the VMs.

Clients can ameliorate the impact of such attacks via off-site replication. Finally, SSC does not

aim to defend against subpoenas and other judicial instruments served to the cloud provider to

monitor specific clients.

1.5 Summary of Contributions

The thesis this dissertation supports is:

9

It is possible to improve the level of security, privacy and control that cloud clients have
over their code and data by modifying the hypervisor’s privilege model.

This dissertation supports the above thesis statement by presenting one such model i.e.,Self-

Service Cloud computing. We demonstrate its utility via a number of case studies and develop

the supporting infrastructure to make SSC a viable alternative to today’s cloud platforms.

The following list iterates the contributions of this dissertation in more detail:

• The SSC hypervisor. We have designed and implemented a new hypervisor privilege

model that allows clients to administer their own VMs, while disallowing the cloud’s

administrative domain from inspecting client VM state. It enables clients to deploy new

and customized services for their VMs and protects clients VMs from malicious cloud

operators.

• The SSC control plane. We have designed and implemented software stack to manage

systems equipped with SSC hypervisors. The novel features of the control plane include

giving clients the ability to specify inter-VM dependencies and new VM migration pro-

tocols.

• Mutually-trusted service domains. SSC introduces the notion of mutual trust between

clients and providers. We have implemented mutually trusted service domains that check

regulatory compliance in a manner that is mutually agreed upon between the cloud

provider and the client.

• Service domains. We have demonstrated the benefits of SSC by implementing and eval-

uating several VM services as SDs, which were traditionally implemented in dom0.

1.6 Dissertation Organization

This dissertation is organized as follows. Chapter 2 presents the design and implementation

of the SSC privilege model while Chapter 3 presents SSC control plane in detail. The VM

services we implemented to show the benefits of SSC are described in detail in Chapter 4 along

with their evaluations. In the same chapter, we also included the VM migration evaluations as

10

well. Chapter 5 overviews the related work and finally, Chapter 6 concludes the dissertation

and discusses possible future directions.

1.7 Statement of Contributions

The SSC project is the result of joint collaboration between Rutgers University and AT&T Labs

Research. From Rutgers, my dissertation adviser Professor Vinod Ganapathy and from AT&T

Labs, my mentors, Dr. H. Andrés Lagar-Cavilla and Dr. Abhinav Srivastava contributed in the

design, implementation and evaluation of the SSC project. Specifically Dr. Lagar-Cavilla pro-

vided the source code for Patagonix [35] and implemented the memory deduplication service

while Dr. Srivastava provided the source code for VMWall [56].

11

Chapter 2

The SSC Hypervisor

This chapter describes the design and implementation of the SSC hypervisor, focusing on the

new abstractions, their operations, and the privilege model.

2.1 Components

As Figure 2.1 shows, an SSC platform has a single system-wide administrative domain

(Sdom0) and a domain-building domain (domB). Each client has its own administrative do-

main (Udom0), which is the focal point of privilege and authority for a client’s VMs. Udom0

orchestrates the creation of UdomUs to perform client computations, and SDs, to which it

delegates specific privileges over UdomUs. SSC hypervisor prevents Sdom0 from inspecting

the contents of client meta-domains. The implementation of SSC hypervisor is based on Xen.

More specifically SSC hypervisor is Xen with modified privilege model.

One of the main contributions of the SSC model is that it splits the TCB of the cloud

infrastructure in two parts, a system-level TCB, which consists of the hypervisor, domB, BIOS

and the bootloader, and is controlled by the cloud provider, and a client-level TCB, which

consists of the client’s Udom0, SDs, and MTSDs. Clients can verify the integrity of the system-

level TCB using trusted hardware. They are responsible for the integrity of their client-level

TCBs. Any compromise of a client-level TCB only affects that client.

Sdom0 runs all device drivers that perform actual I/O and wields authority over scheduling

and allocation decisions. Although these privileges allow Sdom0 to perform denial-of-service

attacks, such attacks are not in our threat model (Section 1.4); consequently, Sdom0 is not part

of the TCB.

12

Hardware

Hypervisor

UDomUUDom0SDom0 Domain
Builder

User
Domain

Service
Domain

Client's Meta-Domain

Security
service

Regulatory
Compliance

MTSD

Figure 2.1: The design of a self-service cloud (SSC) computing platform. SSC splits the
TCB of the system (indicated using the shaded components) into a system-level TCB, with the
hardware, the SSC hypervisor, and the domain builder, and a client-level TCB, with the Udom0
and service domains.

The components of SSC must be able to communicate with each other for tasks such as do-

main creation and delegating privileges. In our prototype, VMs communicate using traditional

TCP/IP sockets. However, domB receives directives for domain creation through hypervisor-

forwarded hypercalls (see Figure 2.2 and Figure 2.3). Images of domains to be created are

passed by attaching storage volumes containing this information.

2.2 Bootstrapping

Hosts in the cloud infrastructure are assumed to be equipped with TPM and IOMMU hard-

ware, which is available on most modern chipsets. DomB, a part of TCB, interacts with the

hardware TPM and also contains the components to virtualize TPM. The protocols described

in this section assume client interaction with a vTPM instance. We use the vTPM protocols as

described in the original paper [4], although it may also be possible to use recently-proposed

variants [18].

During system boot, the BIOS passes control to a bootloader, and initializes the hardware

TPM’s measurement. In turn, the bootloader loads our modified version of the Xen hypervisor,

Sdom0’s kernel and ramdisk, and domB’s kernel and ramdisk. It also adds entries for the

13

• CREATE UDOM0 (BACKEND ID, NONCE, ENC PARAMS, SIGCLIENT)
Description: This hypercall is issued by Sdom0 to initiate a client meta-domain by cre-
ating a Udom0. The BACKEND ID argument is a handle to a block device provided by
Sdom0 to the client to pass Udom0 kernel image, ramdisk and configuration to domB. The
NONCE supplied by the client is combined with the vTPM’s measurement list, which is
returned to the client for verification following domain creation. ENC PARAMS denotes a
set of parameters that are encrypted under the vTPM’s AIK public key. SIGCLIENT is the
client’s digital signature of key parameters to the CREATE UDOM0 call. These parameters
are used by the protocol in Figure 2.3(a) to bootstrap a secure communication channel with
the client after Udom0 creation.

• CREATE USERDOMAIN (BACKEND ID, NONCE)
Description: Issued by Udom0 to provide VM images of SDs or UdomUs to domB. The
parameters BACKEND ID and NONCE are as described above.

• CREATE MTSD (CLIENT ID, BACKEND ID, NONCE PROVIDER, NONCE CLIENT, PRIV-
ILEGE LIST)
Description: Sdom0 uses this hypercall to start an MTSD within a client’s meta-domain.
The configuration parameters, which are included in the block device specified by BACK-
END ID, contain the command-line arguments used to initiate the service provided by the
MTSD. MTSDs are also assigned specific privileges over UdomUs in the client meta-
domain. This hypercall returns an identifier for the newly-created MTSD. It also returns
two signed vTPM measurements, each appended with the nonces of the provider and the
client.

• GRANT PRIVILEGE (SD ID, UDOMU ID, PRIVILEGE LIST)
Description: This hypercall is used by Udom0s to delegate specific privileges to a SD
over an UdomU. Udom0s can issue this hypercall only on SDs and UdomUs within their
own meta-domain.

Figure 2.2: Summary of new hypercalls introduced to enable SSC. Figure 2.3 shows their
usage.

hypervisor and domB to the measurement stored in the TPM’s PCR registers. The hypervisor

then builds Sdom0 and domB. Finally, it programs the IOMMU to restrict Sdom0’s access

to only the pages that Sdom0 owns. Following bootstrap and initialization, the hypervisor

unpauses Sdom0 and schedules it for execution. Sdom0 then unpauses domB, which awaits

client requests to initialize meta-domains. SSC forbids Sdom0 from directly interacting with

the TPM; all TPM operations (both with the hardware TPM and vTPM instances) happen via

domB.

Sdom0 starts the XenStore service, which is a database used traditionally by Xen to main-

tain information about virtual device configuration. Each user VM on the system is assigned

its own subtree in XenStore with its virtual device configurations.

14

(a) Protocol for Udom0 creation (initializing a new meta-domain) and
bootstrapping an SSL communication channel

1. client→ Sdom0 : nTPM, Udom0 image, EncAIK(freshSym||nSSL||
: hash(Udom0 image)), Sigclient

2. Sdom0→ domB : CREATE UDOM0(Udom0 image, nTPM, EncAIK(freshSym||
: nSSL||hash(Udom0 image)), Sigclient)→ IDclient

3. domB→ client : IDclient, TPMSign(nTPM||PCR), ML
4. domB→ Sdom0 : Unpause Udom0 (denoted by IDclient) and schedule it for

: execution
5. Udom0→ client : nSSL
6. client→ Udom0 : EncfreshSym(SSLpriv)
Notes: In step 1, Udom0 image is passed via a block device provided by Sdom0 to
the client. The key AIK denotes the public part of the vTPM’s AIK (attestation iden-
tity key), freshSym is a fresh symmetric key chosen by the client, and Sigclient is
the digital signature, under the client’s private key, of freshSym||nSSL||hash(Udom0 -
image)||nTPM. In step 2, when domB executes CREATE UDOM0, it requests the vTPM to
decrypt EncAIK(. . .), checks the hash of Udom0 image, verifies the client’s digital signa-
ture Sigclient, and places freshSym and nSSL into Udom0’s memory. In step 3, ML denotes
the measurement list, while PCR denotes the content of the vTPM’s platform control reg-
ister (storing the measurements); TPMSign(. . .) denotes that the corresponding content is
signed with the private part of the vTPM’s AIK key. IDclient is a unique identifier assigned
to the newly created Udom0 (and meta-domain). In steps 5 and 6, Udom0 interacts with
the client, who sends it the SSL private key (denoted by SSLpriv) encrypted under fresh-
Sym. Udom0 decrypts this to obtain SSLpriv, which is then used for all future SSL-based
communication with the client.

(b) Protocol for UdomU and SD creation
1. client→ Udom0 : nclient, VM image (this message is sent via SSL)
2. Udom0→ domB : CREATE USERDOMAIN(VM image, nclient)→ IDV M

3. domB→ Udom0 : IDV M , TPMSign(nclient||PCR), ML
4. Udom0 : GRANT PRIVILEGE(IDV M , IDUdomU , SD privileges)

: (this step is necessary only for VMs that are SDs)
5. domB→ Sdom0 : Unpause IDV M and schedule it for execution

(c) Protocol for MTSD creation
1. Udom0→ Sdom0 : nclient, identifier of the MTSD to be installed

: (VM image resides with provider)
2. Sdom0→ domB : CREATE MTSD(IDclient, MTSD image, nprovider, nclient,

: MTSD privileges)→ IDMT SD

3. domB→ Sdom0 : IDMT SD, TPMSign(nprovider||PCR), ML
4. domB→ Udom0 : IDMT SD, TPMSign(nclient||PCR), ML
5. domB→ Sdom0 : Unpause IDMT SD and schedule it for execution
Notes: In step 2, IDclient is the meta-domain identifier obtained during
Udom0 creation.

Figure 2.3: Protocols used in SSC for the creation of Udom0, UdomUs, SDs and MTSDs.

15

2.3 Building Client Meta-Domains

In SSC, domB receives and processes all requests to create new domains, including Udom0s,

UdomUs, SDs, and MTSDs. Client requests to start new meta-domains are forwarded to domB

from Sdom0. In response, domB creates a Udom0, which handles creation of the rest of the

meta-domain by itself sending more requests to domB (e.g., to create SDs and UdomUs). To

allow clients to verify that their domains were built properly, domB integrates domain building

with standard vTPM-based attestation protocols developed in prior work [4, 50].

Udom0

Upon receiving a client request to create a new meta-domain, Sdom0 issues the CREATE -

UDOM0 hypercall containing a handle to the new domain’s bootstrap modules (kernel image,

ramdisk, etc). DomB builds the domain and returns to the client an identifier of the newly-

created meta-domain. In more detail, the construction of a new meta-domain follows the pro-

tocol shown in Figure 2.3(a). This protocol achieves two security goals:

1. Verified boot of Udom0. At the end of the protocol, the client can verify that the Udom0

booted by the SSC platform corresponds to the image supplied in step 1 of Figure 2.3(a).

To achieve this goal, in step 1, the client supplies a challenge (nTPM) and also provides

hash(Udom0 image), encrypted under the vTPM’s public key (AIK). These arguments

are passed to domB, as part of the CREATE UDOM0 hypercall in step 2. In turn, DomB

requests the vTPM to decrypt the content enciphered under its public key, thereby obtain-

ing hash(Udom0 image). DomB then creates the domain after verifying the integrity of

the VM image (using hash(Udom0 image) and Sigclient), thereby ensuring that Sdom0

has not maliciously altered the VM image supplied by the client. It then returns to the

client an identifier of the newly-created meta-domain, a digitally-signed measurement

from the vTPM (containing the contents of the vTPM’s PCR registers and the client’s

challenge) and the measurement list. The client can use this to verify that the domain

booted with the expected configuration parameters.

2. Bootstrapping SSL channel with client. In SSC, the network driver is controlled by

16

Sdom0, which is untrusted, and can eavesdrop on any cleartext messages transmitted

over the network. Therefore, the protocol in Figure 2.3(a) also interacts with the client to

install an SSL private key within the newly-created Udom0. This SSL private key is used

to authenticate Udom0 during the SSL handshake with the client, and helps bootstrap an

encrypted channel that will then be used for all further communication with the client.

Installation of the SSL private key proceeds as follows. In step 1, the client supplies a

fresh symmetric key (freshSym), and a nonce (nSSL), both encrypted under the vTPM’s

public key. In step 2, domB creates Udom0 after checking the integrity of the Udom0

image (using Sigclient). When domB creates Udom0, it requests the vTPM to decrypt

this content, and places freshSym and nSSL in Udom0’s memory, where SSC’s privilege

model prevents them from being accessed by Sdom0. Recall from Section 2.2 that Sdom0

cannot directly access the TPM or vTPM (only domB can do so), and therefore cannot

obtain the value of freshSym. In step 5, Udom0 sends nSSL to the client, which responds

in step 6 with the SSL private key encrypted under freshSym. Udom0 can now decrypt

this message to obtain the SSL private key. Assuming that both freshSym and nSSL are

random and generated afresh, the protocol allows the client to detect replay attempts.

This protocol significantly restricts the power of evil twin attacks launched by a malicious

Sdom0. In such an attack, Sdom0 would coerce domB to create a malicious Udom0 domain,

and trick the client into installing its SSL private key within this domain. This malicious domain

would then transfer the SSL private key to Sdom0, thereby compromising client confidentiality.

In our protocol, domB checks the integrity of Udom0 image before booting the domain, thereby

ensuring that the only “evil” twin that Sdom0 can create will have the same VM image as

supplied by the client. Sdom0 therefore cannot include arbitrary malicious functionality in the

evil twin (e.g., code to transmit secret keys to it) without being detected by the client. Further,

SSC’s privilege model prevents Sdom0 from directly inspecting the memory of the twin VM,

thereby protecting the the value of freshSym that is installed in it during creation. Finally,

steps 5 and 6 of the protocol detect replay attempts, thereby ensuring that even if a twin VM is

created, exactly one of the twins can interact with the client to obtain its SSL private key. This

twin VM then becomes the Udom0 of the client’s meta-domain, while the other twin can no

17

longer interact with the client.

UdomUs and SDs

Udom0 accepts and processes client requests to start UdomUs and SDs. Clients establish an

SSL connection with Udom0, and transmit the kernel and ramdisk images of the new domain

to Udom0. Udom0 forwards this request to domB, which then builds the domain. See Fig-

ure 2.3(b).

We aim for Udom0s and SDs to be stateless. They perform specialized tasks, and do not

need persistent state for these tasks. The lack of persistent state eases the clients’ task of

verifying the integrity of these domains (e.g., via inspection of their code), thereby minimizing

risk even if they are compromised via attacks directed against them. The lack of state also

allows easy recovery upon compromise; they can simply be restarted [11]. In our design, we do

not assign persistent storage to SDs. They are neither extensible nor are they allowed to load

kernel modules or extensions outside of the initial configuration. All relevant configuration

values are passed via command line parameters. This design does require greater management

effort on the part of clients, but is to be expected in SSC, because it shifts control from the

provider to clients.

We have implemented SDs and Udom0s in our prototype using a carefully-configured par-

avirtualized Linux kernel; they only use ramdisks. The file system contains binaries, static

configuration and temporary storage. SSC elides any unnecessary functionality in SDs and

Udom0s to minimize their attack surface. Udom0s in our prototype integrates a replica of the

libxl to provide an administrative interface. It may be possible to reduce the size of the

client-level TCB using a simpler software stack (e.g., based on Mini-OS, which is part of the

Xen distribution). However, we have not done so in our current prototype.

MTSDs

Like SDs, each MTSD belongs to a client meta-domain. MTSDs can be given specific privi-

leges (via the CREATE MTSD hypercall) to map the state of client VMs, checkpoint, finger-

print, or introspect them. This allows the cloud provider to inspect client domains for regulatory

18

compliance. Section 2.6 discusses regulatory compliance with MTSDs in further detail.

Both the cloud provider and client cooperate to start the MTSD, as shown in the protocol in

Figure 2.3(c). The client initiates the protocol after it has agreed to start the MTSD in its meta-

domain. DomB creates the MTSD, and both the provider and the client can each ensure that the

MTSD was initialized properly using signed measurements from the vTPM. The provider or

the client can terminate the protocol at this point if they find that the MTSD has been tampered

with.

2.4 SSC Privilege Model

At the heart of SSC, there is a new privilege model enforced by the hypervisor. This model

enables clients to administer their own VMs securely, without allowing cloud administrators

to eavesdrop on their data. For purposes of exposition, we broadly categorize the privileged

operations performed by a VMM into six groups.

1. VM control operations include pausing/unpausing, scheduling, and destroying VMs.

2. Privacy-sensitive operations allow the mapping of memory and virtual CPU registers of

a VM.

3. Read-only operations expose non-private information of a VM to a requester, including

the number of vCPUs and RAM allocation of a VM, and the physical parameters of the

host.

4. Build-only operations include privacy-sensitive operations and certain operations that

are only used during VM initialization.

5. Virtual I/O operations set up event channels and grant tables to share memory and noti-

fications in a controlled way for I/O.

6. Platform configurations manage the physical host. Examples of these operations include

programming the interrupt controller or clock sources.

19

Sdom0 domB Udom0 SD/MTSD
VM control (C) X X X
Privacy-sensitive (P) X X
Read-only (R) X X X
Build-only (B) X
Virtual I/O (I) X X X
Platform config. (L) X

Figure 2.4: Actors and operations in the privilege model. Each X in the table denotes that
the actor can perform the corresponding operation.

In addition to these operations, VMMs also perform hardware device administration that as-

signs PCI devices and interrupts to different VMs. We expect that hardware device admin-

istration may rarely be used in a dynamic cloud environment, where VM checkpointing and

migration are commonplace, and leave for future work the inclusion of such operations in the

SSC privilege model.

In SSC, Sdom0 has the privileges to perform VM control, read-only, virtual I/O and plat-

form operations. VM control operations allow VMs to be provisioned for execution on physical

hardware, and it is unreasonable to prevent Sdom0 from performing these tasks. A malicious

system administrator can misuse VM control operations to launch denial-of-service attacks,

but we exclude such attacks from our threat model. Sdom0 retains the privileges to access

read-only data of client VMs for elementary management operations, e.g., listing the set of

VMs executing in a client meta-domain. Sdom0 executes backend drivers for virtual devices

and must therefore retain the privileges to perform virtual I/O operations for all domains on

the system. As discussed earlier, SSC also admits the notion of driver domains, where device

drivers execute within separate VMs [34]. In such cases, only the driver domains need to retain

privileges to perform virtual I/O. Finally, Sdom0 must be able to control and configure physical

hardware, and therefore retains privileges to perform platform operations.

The domain builder (domB) performs build-only operations. Building domains necessarily

involves some operations that are categorized as privacy-sensitive, and therefore includes them.

However, when domB issues a hypercall on a target domain, the hypervisor first checks that the

domain has not yet accrued a single cycle (i.e., it is still being built), and allows the hypercall

to succeed only if that is the case. This prevents domB from performing privacy-sensitive

20

Sdom0 domB Udom0 SD MTSD
Hardware L

Sdom0
domB C,R,I I

Udom0 C,R,I B

SD C,R,I B C,P,R,I C,P,R,I C,P,R,I
MTSD C,R,I B R,I R,I R,I
UdomU C,R,I B C,P,R,I C,P,R,I C,P,R,I

Figure 2.5: Actors, objects, and operations in the privilege model. Each column denotes an
actor that performs an operation, while each row denotes the object upon which the operation
is performed. Operations are abbreviated as shown in Figure 2.4.

operations on client VMs after they have been built.

Udom0 can perform privacy-sensitive and read-only operations on VMs in its meta-domain.

It can also perform limited VM control and virtual I/O operations. Udom0 can pause/unpause

and destroy VMs in its meta-domain, but cannot control scheduling (this privilege rests with

Sdom0). Udom0 can perform virtual I/O operations for UdomUs in its meta-domain. Udom0

can delegate specific privileges to SDs and MTSDs as per their requirements. A key aspect of

our privilege model is that it groups VMs by meta-domain. Operations performed by Udom0,

SDs and MTSDs are restricted to their meta-domain. While Udom0 has privileges to per-

form the above operations on VMs in its meta-domain, it cannot perform VM control, privacy-

sensitive, and virtual I/O operations on MTSDs executing in its meta-domain. This is because

such operations will allow Udom0 to breach its contract with the cloud provider (e.g., by paus-

ing, modifying or terminating an MTSD that the Udom0 has agreed to execute). Figure 2.4 and

Figure 2.5 summarize the privilege model of SSC.

We implemented this privilege model in our prototype using the Xen Security Modules

(XSM) framework [49]. XSM places a set of hooks in the Xen hypervisor, and is a generic

framework that can be used to implement a wide variety of security policies. Security policies

can be specified as modules that are invoked when a hook is encountered at runtime. For exam-

ple, XSM served as basis for IBM’s sHype project, which extended Xen to enforce mandatory

access control policies [49]. We implemented the privilege described in this section as an XSM

policy module.

21

Although the privilege model described above suffices to implement a variety of services,

it can possibly be refined to make it more fine-grained. For example, our privilege model can

currently be used to allow or disallow an SD from inspecting UdomU memory. Once given the

privilege to do so, the SD can inspect arbitrary memory pages. However, it may also be useful

to restrict the SD to view/modify specific memory pages, e.g., on a per-process granularity, or

view kernel memory pages alone. We plan to explore such extensions to the privilege model in

future work.

2.5 Virtual I/O

In our SSC prototype, device drivers execute within Sdom0, thereby requiring clients to depend

on Sdom0 to perform I/O on their behalf. Naı̈vely entrusting Sdom0 with I/O compromises

client privacy. Our prototype protects clients via modifications to XenStore.

In Xen, domUs discover virtual devices during bootstrap using a service called XenStore,

which runs as a daemon in dom0. Each domU on the system has a subtree in XenStore con-

taining its virtual device configurations. Dom0 owns XenStore and has full access to it, while

domUs only have access to their own subtrees.

In SSC, we modified XenStore allowing domB to create subtrees for newly-created VMs,

and give each Udom0 access to the subtrees of all VMs in its meta-domain. Udom0 uses

this privilege to customize the virtual devices for its UdomUs. For instance, it can configure a

UdomU to use Sdom0 as the backend for virtual I/O. Alternatively, it can configure the UdomU

to use an SD as a backend; the SD could modify the I/O stream (e.g., a storage SD; see Fig-

ure 4.8). An SD can have Sdom0 as the backend, thereby ultimately directing I/O to physical

hardware, or can itself have an SD as a backend, thereby allowing multiple SDs to be chained

on the path from a UdomU to the I/O device. We also modified XenStore to allow Sdom0 and

Udom0 to insert block devices into domB. This is used to transfer kernel and ramdisk images

during domain building.

Xen traditionally uses a mechanism called grant tables for fine-grained control on virtual

I/O. Grant tables are used when domUs communicate with the backend drivers in dom0. DomU

uses grant tables to share a single page of its memory with dom0, which redeems the grant

22

to access the page. The hypervisor enforces any access restrictions specified by domU, and

does not even disclose the actual page number to dom0. SSC benefits from the grant tables

mechanism in allowing meta-domains to ultimately connect to and communicate I/O payloads

to their backend drivers in Sdom0. As long as these payloads are encrypted (e.g., using an SD

within the meta-domain), client privacy is protected.

Ultimately, Sdom0 is responsible for I/O operations by communicating with physical hard-

ware. Malicious Sdom0s can misuse this privilege to enable a number of attacks. For example,

a client’s Udom0 attaches a virtual device via a handshake with Sdom0. Sdom0 can launch

attacks by corrupting this handshake or firing spurious virtual interrupts. As long as client

payloads are encrypted, none of these attacks will breach client privacy; they merely result in

denial-of-service attacks.

A final possibility for attack is XenStore itself. In our prototype, XenStore resides within

Sdom0, which can possibly leverage this fact implement a variety of denial of service attacks.

(Note that even if XenStore is abused to connect client VMs to the wrong backend, grant tables

prevent client payloads from being leaked to Sdom0). Techniques for XenStore protection

have recently been developed in the Xoar project [11], and work by factoring XenStore into

a separate domain (akin to domB). SSC can employ similar techniques, although we have not

done so in our prototype.

2.6 Regulatory Compliance using MTSDs

As previously discussed, an MTSD executes within a client meta-domain. The MTSD can

request specific privileges over client’s VMs in this meta domain (via a manifest) to perform

regulatory compliance checks. These privileges include access to a VM’s memory pages, vCPU

registers and I/O stream. For example, an MTSD to ensure that a client VM is not executing

malicious code may request read access to the VM’s memory and registers. The client can

inspect the manifest to decide whether the requested privileges are acceptable to it, and then

start the MTSD. The privileges requested in the manifest are directly translated into parameters

for the CREATE MTSD hypercall. Both the client and the provider can verify that the MTSD

was started with the privileges specified in the manifest.

23

Clients may wish to ensure that the MTSD’s functionality does not compromise their pri-

vacy. For example, the client may want to check that an MTSD that reads its VM memory

pages does not inadvertently leak the contents of these pages. One way to achieve this goal

is to inspect the code of the MTSD to ensure the absence of such undesirable functionality.

However, we cannot reasonably expect most cloud clients to have the economic resources to

conduct thorough and high-quality security evaluations of MTSDs.

In this dissertation, we took a more practical and pragmatic approach. We propose to out-

source the verification of MTSDs to mutually trusted third party. The cloud provider can pro-

vide the source code of MTSDs to the third party to verify the absence of data leakage and

maliciousness and will get the signed certificate. The clients of the provider will just need to

check the validity of the MTSDs certificates. This process is similar to SSL certifications ex-

cept that the data leakage detection is more complex and error prone. As part of future work we

are planning to develop tools for easing the verification process. Another approach the cloud

providers can take is to use the standard tools developed by third parties instead of developing

MTSDs themselves. For example there are different malware detection products developed by

Symantec and McAfee. The provider can deploy such products as MTSDs.

24

Chapter 3

The SSC Control Plane

This chapter presents the design and implementation of SSC’s control plane. We present the

motivation behind SSC’s control plane, its components and their operations.

3.1 Motivation

The control plane of traditional cloud platforms is responsible for monitoring resource usage

of individual hosts, and suitably placing or migrating client VMs using the cloud provider’s

load balancing policies. It is also responsible for deciding where any client-chosen services

offered by the cloud provider (e.g., an intrusion detection service) will be placed on the network.

Examples of such software include VMWare’s vCloud, Amazon Web Services, OpenStack,

OpenNebula, CloudStack, and Eucalyptus.

The control plane of an SSC-based cloud platform must have two key features:

1. Allowing clients to specify inter-VM dependencies. By introducing per-client admin-

istrative domains (Udom0s), SSC gives clients the ability to create SDs that can have

specific administrative privileges over UdomUs, and the ability to interpose on their I/O

paths. Thus, clients must be able to specify how the VMs that they propose to create are

inter-related. For example, a client may wish to specify that an SD that he creates has the

privileges to map the memory of one of its UdomUs. A consequence of this dependency

is that these two VMs, i.e., the SD and the UdomU, must reside on the same physical

host. Likewise, the client can specify that an SD is to serve as the network middlebox

for a collection of UdomUs. The control plane must respect this dependency in placing

VMs, ensuring that all outgoing and incoming network connections to any UdomU in

that collection will first traverse the SD. This invariant must be maintained even if any of

25

the UdomUs or the SD itself are migrated.

While traditional control planes do support middleboxes, the key difference is that these

middleboxes are offered as services by the cloud provider. Both client-defined middle-

boxes and privileged SDs are unique to the SSC platform. The control plane of an SSC

platform must be aware of and enforce these dependencies during execution.

2. Presenting a unified administrative interface to the client. On SSC, each platform that

hosts a client VM must also have a Udom0 instance executing on it. This is because the

Udom0 hosts the client’s SSL private keys, which are required for the SSL handshake

with the client, as described in Section 2.3.

Naı̈vely using traditional control plane software with such a setup can lead to security

holes. For example, a client may strategically create VMs in a manner that forces the

cloud provider to place them on different physical hosts e.g., by creating a large number

of VMs that place large resource demands on individual hosts. The client could leverage

the fact that there is a Udom0 instance on each physical platform that executes at least

one of the client’s VMs to estimate the number of physical hosts in the cloud, or to map

the cloud provider’s network topology.

SSC’s control plane must provide the illusion of a single administrative interface to the

client, while hiding the presence of individual Udom0 instances. The control plane must

suitably relay administrative operations from this interface to the corresponding Udom0

instances. It is also responsible for transparently handling VM migrations across hosts.

3.2 Traditional Control Plane

The control plane of most traditional cloud platforms has three key components. First is a

platform-wide cloud controller. This component has a global view of the provider’s infrastruc-

ture, and is tasked with allocating resources to clients elastically, provisioning and scheduling

virtual machines. Cloud providers may choose to partition their infrastructure into multiple

zones for fault tolerance and scalability, and execute multiple instances of cloud controllers in

26

each zone. Second is a per-host node controller. This component typically executes as a dae-

mon within dom0, and interacts with the hypervisor on the platform to monitor local resource

consumption, and reports these statistics to the cloud controller. The third is a dashboard,

which is the interface via which clients interact with the cloud. Each client’s dashboard in-

stance reports the state of the client’s slice of the cloud, e.g., the number of VMs executing, the

resources consumed, and the current bill.

3.3 SSC’s Control Plane

SSC’s control plane functionally enhances each of the components discussed in previous sec-

tion and introduces new protocols for inter-component communication. It introduces new

client-centric features, such as the ability to specify relationships among VMs and manage

client-deployed middleboxes. From the cloud provider’s perspective, the new features include

VM migration protocols, and the ability to provision resources while respecting client VM de-

pendencies. Figure 3.1 summarizes the components of the control plane, and their interactions.

1. Cloud Controller. SSC allows clients to specify inter-VM dependencies (discussed in

more detail in Section 3.5). These dependencies may imply that certain VMs must be co-

located on the same physical host. They may also specify how the I/O path of a client’s

work VM must be routed through the cloud. For example, an SD that serves as the back-

end for a UdomU must lie on the I/O path of that UdomU, irrespective of the machines

on which the SD and UdomU are scheduled for execution.

The cloud controller must accept these specifications from the client (via the dashboard)

and produce a VM placement satisfying these specifications. In doing so, it has to ac-

count for the current load on various hosts on the network and the resource requirements

of the client’s VMs. The cloud controller’s scheduler therefore solves a constraint sat-

isfaction problem, and produces a placement decision that is then communicated back

to the dashboard. The dashboard interacts with individual hosts to schedule VMs for

execution.

The cloud controller initiates VM migrations. Based upon the resource usage information

received from node controllers, the cloud controller may decide that a client’s VMs need

27

(1) Clients interact with the dashboard frontend to specify VM dependencies and to pro-
vide VM images to the cloud. All client communication with the dashboard happens over
SSL.
(2) The dashboard frontend communicates with the Cloud Controller and provides it with
inter-VM dependencies and the VM configurations requested by the client.
(3) The Cloud Controller communicates with the dashboard backend to provide VM place-
ments. This may be in response to client requests to create VMs or to initiate VM migration
for load balancing.
(4) The Node Controller periodically communicates with the Cloud Controller to provide
diagnostic information about individual cloud nodes.
(5) The dashboard backend communicates with the Sdom0s of individual hosts to create
client meta-domains on the host (i.e., the Udom0), as well as to initiate VM migration.
(6) Once a Udom0 is created on a host, the client communicates with it via the dashboard
frontend. This happens via SSL, and is used to create new UdomUs and SDs as well as to
configure and operate them. The client remains oblivious to the number of physical hosts
used to execute its VMs, and is presented with the illusion of communicating with a single
administrative interface. The dashboard routes requests to Udom0s of relevant hosts.

Figure 3.1: Components of the control plane and their interactions. Communications la-
beled with shaded circles are secured by SSL.

to be migrated for load balancing. It produces a new VM placement and communicates

this to the dashboard. The dashboard then communicates with the source and target hosts

to initiate the actual migration of the VMs.

The client never directly interacts with the cloud controller, nor does the cloud controller

28

interact with the client’s VMs. It simply produces VM placement decisions and commu-

nicates them with the dashboard. The client only trusts the cloud controller to produce

a fair VM placement decision. Violation of this trust can potentially lead to denial of

service attacks, which are outside SSC’s threat model.

2. Node Controller. A node controller executes as a daemon within an individual platform’s

Sdom0. It can therefore monitor the resource utilization on the host and control VM

scheduling, but cannot create user VMs (done by domB) or read/modify individual client

VMs.

The client never interacts directly with the node controller. In fact, as an entity that

executes within the Sdom0, it is untrusted. The node controller cannot compromise the

security of client VMs in any manner besides launching denial of service attacks by

failing to schedule the VM for execution, or by reporting false resource utilization to the

cloud controller, thereby triggering frequent VM migrations.

3. Dashboard. In SSC, the dashboard serves as the layer between the client and the cloud

platform and has two responsibilities: to interact with the client, and to interface with

various components of the cloud platform. Accordingly, we logically split the dashboard

into a frontend and a backend, as shown in Figure 3.1.

The dashboard frontend is an interface presented to the client via which it can enter VM

images to be booted, and specify inter-VM dependencies. The frontend communicates

any inter-VM dependencies specified by the client to the cloud controller, which uses

this information to create a placement decision. However, the contents of the VM images

itself are never passed to the cloud controller. The dashboard directly passes these images

to the end hosts via an SSL channel (whose setup we discuss in Section 3.4).

The dashboard backend orchestrates all communication between components of the

cloud platform on behalf of the client. It obtains placement decisions from the cloud

controller and transmits the client’s VM images to the hosts on which they must be cre-

ated. All communication between the dashboard and the end hosts is secured by the

aforementioned SSL channel to protect it from any network snooping attacks launched

29

1. client→ Sdom0 : nTPM, EncAIK(freshSym||nSSL), Sigclient

2. Sdom0→ domB : CREATE DASHBOARD(nTPM,
EncAIK(freshSym||nSSL), Sigclient)

3. domB→ client : TPMSign(nTPM||PCR), ML
4. domB→ Sdom0 : Schedule the dashboard for execution
5. DashVM→ client : nSSL
6. client→ DashVM : EncfreshSym(SSLpriv)
7. client↔ DashVM : SSL handshake

Figure 3.2: Protocol to create a dashboard VM instance.

by malicious cloud operators.

Because the dashboard handles sensitive information (client VM images), it is part of

the TCB. While it is possible to implement the dashboard in any manner that allows the

client to trust it, we chose to implement the dashboard itself as a VM that executes atop an

SSC hypervisor. We assume that the cloud provider will dedicate a set of physical hosts

simply to execute dashboard VMs for its clients. We call this machine the dashboard

host. Each new client gets a dashboard VM instance that executes as a Udom0 on the

SSC hypervisor. This ensures that even the cloud operator on these physical hosts cannot

tamper with the execution of the client’s dashboard VM instance.

3.4 Operations of the SSC’s Control Plane

A client begins its interaction with an SSC platform by first requesting a dashboard VM in-

stance. During the creation of this VM instance, the client configures it so that the client can

communicate with with the dashboard VM via SSL. It then provides VM images to this dash-

board instance over the SSL channel, which then starts the VMs on physical cloud hosts on

behalf of the client. In this section, we present and analyze the protocols that are used for these

steps.

Dashboard Creation and Operation.

A client creates a dashboard VM instance using the protocol shown in Figure 3.2. It com-

municates with the “cloud provider,” in this case the Sdom0 VM of the dashboard host. The

first message of the protocol consists of a nonce (nTPM), together with a piece of ciphertext

30

(freshSym||nSSL) encrypted using the AIK public key of the TPM of the dashboard host.1

Here freshSym is a fresh symmetric key produced by the client, while nSSL is a nonce; we ex-

plain their roles below. The client also digitally signs the entire message (denoted in Figure 3.2

as Sigclient).

The Sdom0 of the dashboard host communicates these parameters to its domB via the CRE-

ATE DASHBOARD command, which is a new hypercall to the underlying hypervisor. This

command instructs domB to use the VM image used by the cloud provider for dashboard VMs,

and create an instance of the VM for the client. DomB does so after verifying the client’s

digital signature. In this step, domB also communicates with the TPM to decrypt the mes-

sage encrypted under its AIK public key, and places freshSym and nSSL in the newly-created

dashboard VM instance. Because the dashboard host executes an SSC hypervisor, the con-

tents of this dashboard VM instance are not accessible to Sdom0, which therefore cannot read

freshSym and nSSL.

At this point, the client can verify that the dashboard VM has been created correctly. DomB

sends a digitally-signed measurement from the TPM, containing the contents of its PCR reg-

isters and nTPM, together with the measurement list (as is standard in TPM-based attestation

protocols [4, 50]). We assume that cloud provider will make the measurements of dashboard

VM instances publicly-available. This is a reasonable assumption because the dashboard VM

does not contain any proprietary code or data. All information proprietary to the cloud provider

is in other components of the platform, such as the cloud controller. The dashboard VM sim-

ply encodes the protocols to interact with the client as well as with components of the cloud’s

control plane. Thus, the cloud provider can even make the code of the dashboard VM available

for public audit.

In the last two steps of the protocol, the dashboard VM instance interacts with the client to

obtain the private key portion of the client’s SSL key pair (SSLPriv). This key is used in the

SSL handshake between the client and the dashboard VM, thereby allowing the establishment

of an SSL channel between the two. The dashboard VM sends the nonce nSSL to the client,

1We assume that the TPM is virtualized [4], and that the corresponding vTPM drivers execute in the dashboard
host’s domB. Thus, the AIK public key used in this message is that of the virtual TPM instance allocated to this
client. We assume that the client interacts with the cloud out of band to obtain this AIK public key.

31

who sends in turn SSLPriv encrypted under freshSym, which is known only to the dashboard

VM. This allows the dashboard VM to retrieve SSLPriv.

The protocol is designed to prevent attacks whereby a malicious cloud operator attempts to

impersonate the client to start a dashboard VM instance as the client. The use of freshSym

in the protocol ensures that the dashboard VM that is created has a secret value known only

to the client. Two key features of SSC prevent the cloud operator from learning the value of

freshSym: (a) the fact that the ciphertext sent in the first message can only be decrypted by

the TPM (via domB), and (b) the fact that Sdom0 cannot obtain values stored in the memory

of a dashboard VM instance. These features together allow the client to bootstrap the SSL

handshake in a secure fashion. Finally, the nonces nTPM and nSSL prevent attempts by a

malicious cloud provider to replay the protocol.

Creation and Operation of Client VMs.

Once the dashboard VM is set up using the protocol discussed above, the client can create its

VMs. It provides these VM images via the SSL channel to the dashboard. However, to boot

these VMs on a physical host, the dashboard VM must still communicate with the Sdom0 on

that host, which is untrusted.

To protect client VMs, which may contain sensitive code and data, from untrusted Sdom0s,

we require that the first client VM that is booted on a physical platform be its Udom0. This

is also the case during cloud controller-initiated VM migration, where client VM instances are

moved from a source host to a target host that does not have any of the client’s VMs. As

discussed in chapter 2, Udom0 is a stateless administrative interface for the client. It could

therefore run a standard OS distribution, and not contain any sensitive client code or data. As

a result, its image can be provided to the Sdom0 on the physical host. The dashboard does so

on behalf of the client. The Udom0 can then accept VM images from the dashboard to create

UdomUs and SDs on the physical host.

Note that the client never interacts directly with the Udom0. Rather, the dashboard VM

serves as a trusted intermediary. The dashboard presents the client with the illusion of a unified

administrative interface, regardless of the number of Udom0 instances executing on various

32

physical hosts. The dashboard interfaces with each of the physical hosts to start VMs and

verifies TPM measurements after the VMs boot. The only virtual TPM key that is exposed to

the client is the AIK public key of the dashboard host.

3.5 Specifying Inter-VM Dependencies

Clients on an SSC platform can use SDs to implement middleboxes offering novel security and

system services. These middleboxes can either hold specific privileges over the client’s VMs,

or serve as their I/O backends. SDs can also serve as I/O backends for other SDs, allowing

services to be composed flexibly (Figure 3.5 presents an example).

SSC’s control plane provides a language (Figure 3.3) for clients to specify such inter-VM

dependencies. The client specifies these dependencies via the dashboard, which forwards it to

the cloud controller. SSC’s control plane allows two kinds of inter-VM dependencies:

1. GRANT PRIVILEGE dependencies. This rule allows the client to specify that an SD

must have specific privileges over a UdomU. These privileges may include mapping the

user- or kernel-level memory of the UdomU, or reading vCPU registers. In the example

program shown in Figure 3.4, memscan vm is given the privileges to map the kernel

memory of webserver vm, e.g., to detect rootkit infections.

This dependency implicitly places a co-location constraint. The SD and the UdomU

must be started on the same physical node. This is required because the operations to

assign privilege (e.g., mapping memory) are local to a node’s hypervisor and can only be

performed when both the SD and the UdomU run atop the same hypervisor.

2. SET BACKEND dependencies. This rule specifies that one VM must serve as the I/O

backend for another VM for a specific device type (we currently support storage and

network devices). It also allows the client to specify whether the two VMs must be co-

located (MUST COLOCATE), or whether the cloud controller can possibly place them on

different physical hosts (MAY COLOCATE).

For example, a network back-end SD that runs an encryption/decryption service for a

client’s UdomU must ideally be colocated on the same physical host as the UdomU. This

33

Program := (Decl;)∗ (Init;)∗ (VMDep;)∗
Decl := VM vm // vm is a variable, VM is a keyword

Init := vm.name = String; vm.image = VM image
VMDep := GrantRule | BackRule

GrantRule := GRANT PRIVILEGE(sd, udomu, PrivType)
BackRule := SET BACKEND(backvm, frontvm, Device, Location)
PrivType := USER MEM | KERN MEM | VCPU | FULL

Device := STORAGE | NETWORK | . . .
Location := MUST COLOCATE | MAY COLOCATE

Figure 3.3: Language used to specify VM dependencies.

VM webserver vm; // Client’s Web server
VM empDB vm; // Client’s employee database
VM memscan vm; // Memory introspection SD
VM enc vm; // SSL proxy for the employee DB
VM Snort vm; // SD running the Snort NIDS

webserver vm.name = “MyWebServer”;
webserver vm.image = ApacheVM.img;
empDB vm.name = . . .; empDB vm.image = . . .;
memscan vm.name = . . .; memscan vm.image = . . .;
enc vm.name = . . .; enc vm.image = . . .;
Snort vm.name = . . .; Snort vm.image = . . .;

GRANT PRIVILEGE(memscan vm, webserver vm, KERN MEM);
SET BACKEND(Snort vm, webserver vm, NETWORK, MAY COLOCATE);
SET BACKEND(enc vm, empDB vm, NETWORK, MUST COLOCATE);

Figure 3.4: Example inter-VM dependency specification.

is necessary to protect the secrecy of the client’s data before it reaches the device drivers

hosted in Sdom0. If on the other hand, the client is not concerned about the secrecy

of his network traffic, but wishes only to check for intrusions, the SD that performs

network intrusion detection can potentially be placed on another machine, provided that

all inbound traffic traverses the SD first before being routed to the UdomU.

Figure 3.4 presents an example of such a scenario. The client specifies that the network

traffic to webserver vm must be checked using Snort. The client does not consider the traffic to

and from the Web server to be sensitive, so it may potentially be exposed to the cloud provider.

However, any interactions with its employee records database empDB vm must happen over

SSL. The enc vm SD serves as the network I/O backend for the empDB vm database, encrypting

34

all outgoing traffic and decrypting all incoming traffic, while residing on the same host as

empDB vm.

Note that on traditional cloud platforms, customers usually do not control how their VMs

are placed. Rather, the cloud controller determines VM placements based upon the global state

of the cloud platform, the configurations requested by the client, and the cloud provider’s load

balancing policies. However, SSC’s control plane gives clients some control over how their

VMs are placed. For example, a client can specify that a rootkit detection SD that inspects the

memory of its UdomUs must be placed on the same physical host as the UdomUs.

The cloud controller’s scheduling algorithm uses these requests as additional constraints. It

processes the entire program specified by the client to determine VM placements. For example,

consider the dependencies shown in Figure 3.5. The client has a webserver vm that receives

data over an encrypted channel. The client dedicates the enc vm VM to handle encryption and

decryption, while memscan vm scans the kernel memory of webserver vm. Additionally, the

client has specified that all packet headers destined for the webserver vm must be inspected by

firewall vm. These rules imply that memscan vm, webserver vm and enc vm must be colocated

on the same machine. However, firewall vm, which only inspects packet headers and is set as

the backend for enc vm, can be located on a different host.

In general, it is possible to depict these dependencies as a VM dependency graph, as shown

in Figure 3.5. In this graph, an edge vm1→vm2 depicts that vm1 either serves as the backend

for vm2 or that vm1 has privileges over vm2. Edges are also annotated with MUST COLOCATE

or MAY COLOCATE to denote co-location constraints.

In some cases, it may not be possible to resolve the client’s VM dependencies, given hard-

ware constraints or the current load on the cloud infrastructure. In such cases, the client is

suitably notified, so that it can modify the dependencies. The dashboard also performs certain

sanity checks on the program input by the client. For example, it checks to determine that the

VM dependency graph implied by the program is acyclic (the acyclic property is required to

make migration decisions, as discussed in Section 3.6). In such cases, the dashboard raises a

warning, akin to a compile-time error, so that the client can correct the program.

Once the specifications are accepted, and the cloud controller produces a placement, the

35

GRANT PRIVILEGE(memscan vm, webserver vm, KERN MEM);
SET BACKEND(enc vm, webserver vm, NETWORK, MUST COLOCATE);
SET BACKEND(firewall vm, enc vm, NETWORK, MAY COLOCATE);

Figure 3.5: Example showing inter-VM dependencies that require certain VMs to be co-
located.We have elided VM declarations and initializations for brevity. Also shown is the VM
dependency graph for this example.

dashboard orchestrates the actual setup of the VMs. For a pair of dependent VMs vm1→vm2

that are located on the same physical host, enforcing the dependencies is relatively straight-

forward. In case they are dependent via a GRANT PRIVILEGE, the dashboard simply instructs

the Udom0 to assign suitable privileges over vm2 to vm1. Likewise, the dashboard can instruct

Udom0 to set vm1 as the device backend for vm2 in case of a SET BACKEND dependency.

However, vm1 and vm2 could be located on different physical hosts (S and T , respectively)

if they related via a SET BACKEND(vm1, vm2, . . ., MAY COLOCATE). In this case, the dash-

board configures switches on the network to route traffic destined for vm2 via vm1. More

concretely, SSC uses the Open vSwitch [44] software switch for this purpose. In this case, the

dashboard instructs the Udom0s on S and T to create SDs on these hosts running the Open

vSwitch software. On S, traffic from vm1 is sent to the Open vSwitch SD running on that

host, which routes it to the Open vSwitch SD on T via a Generic Routing Encapsulation (GRE)

tunnel. On T , this Open vSwitch SD is configured to be the backend of vm2, thereby routing

traffic to vm2. Outbound traffic from vm2 is routed via vm1 in a similar fashion. Figure 3.6

illustrates the setup using the VMs for Figure 3.5 as an example.

The co-location constraints implied by SSC’s inter-VM dependencies can possibly be

miused by malicious clients to infer proprietary information about the cloud platform using

probe-response attacks. In such attacks, the client provides a program with a sequence of

36

Figure 3.6: Open vSwitch setup showing the path followed by inbound network traffic to the
web server example from Figure 3.5. Outbound network traffic follows the reverse path. The
Udom0 instances and the memscan vm instance on Host B are not shown.

GRANT PRIVILEGE dependencies, requiring a certain number of VMs (say, n VMs) to be co-

located on the same physical host. The client could repeatedly probe the cloud with programs

that successively increase the value of n. When the cloud controller is no longer able to ac-

commodate the client’s requests, the client can use this failed request to gain insight into the

limitations of the hardware configurations of the cloud platform’s hosts or into the current load

on the cloud.

Such threats are definitely a possibility, and we view them as the cost of giving honest

clients the flexibility to control VM placements to enable useful services. Nevertheless, there

are defenses that the cloud provider could use to offset the impact of such threats. For example,

the provider could pre-designate a cluster of machines to be used for clients with larger-than-

usual VM co-location constraints, and try to satisfy the client’s requests on this cluster. This

would ensure that the effects of any probe-response attacks that give the client insight into the

provider’s proprietary details are constrained to that cluster alone.

Finally, recent work in cloud security has focused on the possibility of attacks enabled

by VM co-location, enabling a variety of malicious goals (e.g., [47, 61]). These results are

not directly applicable in our setting, because SSC allows a client to specify VM co-location

constraints for its own VMs. In contrast, the works cited above require co-location of a victim

VM with the attacker’s VM. Does allowing malicious clients to co-locate their own VMs on a

host ease the possibility of launching attacks on other VMs co-located on that host? We do not

know the answer to this question, but it would be prudent to acknowledge that such attacks may

37

be possible. Exploring the full extent of such attacks is beyond the scope of this dissertation.

3.6 VM Migration

Most cloud platforms employ live migration [12] to minimize VM downtimes during migration.

Live migration typically involves an iterative push phase and a stop-and-copy phase. When the

cloud controller initiates the migration of a VM, the source host commences the iterative push

phase, copying pages of the VM over to the target host, even as the VM continues to deliver

service from the source. This phase has several iterations, each of which pushes VM pages

that have been dirtied since the previous iteration. When the number of dirty pages falls below

a threshold, a stop-and-copy phase pauses the VM on the source, copies over any remaining

dirty pages of the VM, and resumes the VM on the target. Because the number of dirty pages is

significantly smaller than the size of the VM itself, live migration usually has small downtimes

(sub-second in several cases).

In SSC, the decision to migrate is made by the cloud controller, which produces a new VM

placement and communicates it to the dashboard. The dashboard coordinates with the source

and target hosts to actually perform the migration. The decision to migrate a client VM can

also result in the migration of other VMs that are related to it. When a UdomU is migrated,

all the SDs that service the UdomU and must be co-located with it must also be migrated. The

cloud controller uses the dependencies supplied by the client when producing a new placement

decision after migration.

Dependency specifications also implicitly dictate the order in which VMs must be migrated.

Consider the example in Figure 3.5. Both memscan vm and enc vm must be colocated when

webserver vm is migrated. However, because memscan vm and enc vm service webserver vm,

they must both continue to work as long as webserver vm does. During the stop-and-copy phase

of live migration, webserver vm must be paused before memscan vm and enc vm are paused.

Likewise, on the target host, memscan vm and enc vm must be resumed before webserver vm.

In general, the order in which VMs must be paused and resumed can be inferred using the VM

dependency graph, which must be acyclic. All of a VM’s children in the graph must be paused

before it is paused (and the opposite order for resumption).

38

(1) Cloud controller decides to migrate a group of MUST COLOCATE VMs (vm1, vm2, . . .,
vmn) from source S to target T .

(2) Dashboard uses VM dependency graph to determine the order in which VMs must be
paused on S and resumed at T .

(3) Dashboard checks whether client has a Udom0 instance running on T . If not, starts it as
described in Section 3.4, and specifies order in which VMs received must be started.

(4) Dashboard requests Udom0 on S to initiate migration to T , and specifies the order in which
to pause the VMs.

(5) Udom0 on S establishes an encrypted channel to communicate with Udom0 on T
(6) Udom0 on S iteratively pushes VM pages to T .
(7) Udom0 on S pauses VMs (stop-and-copy phase) and sends VM pages to Udom0 on T .
(8) Dashboard obtains TPM measurements from domB on S, containing hashes of paused

VMs.
(9) Dashboard identifies any May Colocate VM backends with dependencies on (vm1, vm2,

. . ., vmn), and instructs switches to update network routes from these backends to T in-
stead of S.

(10) Udom0 on T resumes the VMs, and forwards TPM measurements obtained from domB
on T to dashboard.

(11) Dashboard checks the TPM measurements obtained from S and T for equality. If not
equal, raises security alert.

(12) Dashboard determines whether there are any remaining client VM instances on S. If not,
it initiates a shutdown of the Udom0 on S.

Figure 3.7: Migrating a group of co-located VMs.

Figure 3.7 summarizes the steps followed during migration. The dashboard orchestrates

migration and checks TPM attestations when VMs resume after being migrated. It also parses

the VM dependency graph and identifies the order in which VMs must be migrated and paused.

The actual task of copying VM pages is carried out by the Udom0 of the source host. When

a set of co-located VMs with MUST COLOCATE dependencies is migrated from a source to a

target, there may be VMs with MAY COLOCATE dependencies that must be suitably updated.

For example, switches on the cloud must be updated so that traffic to and from firewall vm are

routed to the target machine to which the VMs webserver vm, enc vm and memscan vm are

migrated. In SSC, this is accomplished by suitably modifying the configurations of the Open

vSwitch SDs running on the machines that host these four VMs after migration.

39

Chapter 4

Evaluation

The main goals in evaluating SSC were the following:

1. To demonstrate the flexibility of the SSC model in enabling various virtualization-based

services as SDs.

2. To compare the performance of these SD-based services against their traditional, dom0-

based counterparts.

3. To understand the performance overhead introduced by the components of SSC’s control

plane.

To achieve these goals, we implemented ten different services and conducted experiments

to measure overhead of running these services as SDs rather than within dom0. To measure the

overhead of SSC’s control plane, we conducted VM migration experiments under SSC control

plane and report VM downtimes for various configurations of the migration algorithm.

Our experiments were performed on a Dell Poweredge R610 system equipped with 24GB

RAM, eight 2.3GHz Xeon cores with dual threads (16 concurrent executions), Fusion-MPT

SAS drives, and a Broadcom NetXtreme II gigabit NIC. All virtual machines started in our

experiments (dom0, domU, Sdom0, Udom0, UdomU, SDs and domB) were configured to have

2GB RAM and 2 virtual CPUs. The experimental numbers reported in this section are averaged

over five executions; we also report standard deviations.

In SSC, all VM creation requests are communicated to domB. DomB neither has any per-

sistent state nor does it require a file system. During startup, domB prepares XenStore devices

that are necessary for block interface communication between domB and other control VMs;

it does not require any other I/O devices. Kernel images and the initial ramdisk along with the

40

Platform Time (seconds)
Traditional Xen 2.131±0.011
SSC 2.144±0.012 (0%)

Figure 4.1: Cost of building domains.

configuration of the VM to be created are presented to domB as a virtual disk via the block

device interface. Figure 4.1 compares the cost of building VMs on a traditional Xen VMM and

on an SSC platform. As these numbers demonstrate, the costs of building domains on these

platforms is near-identical. We now illustrate the utility of SSC by using it to build several SDs

that implement common utilities.

4.1 Networked Services

In SSC, the network SDs can be co-located with UdomUs. We conducted experiments for both

deployment scenarios i.e.,SDs co-located with the corresponding UdomUs and SDs running

on hosts different from the hosts running UdomUs. We compare the overheads of network

services running as SDs in SSC against the same network services implemented in traditional

setup (i.e., within dom0 executing on an unmodified Xen hypervisor).

4.1.1 Baseline Overhead

Our first experiment aims to evaluate the baseline overhead of running networked services atop

the SSC infrastructure. For this experiment, we create a network SD netsd VM and set it as

the backend of a work VM udomu using SET BACKEND(netsd, udomu, NETWORK, MAY -

COLOCATE). The SD netsd does no additional processing on the packets that it receives, and

simply forwards them to udomu. (The remainder of this section talks about network SDs to

achieve various goals, and their overhead must be compared against this baseline, which reports

the best performance achievable for a networked service implemented as an SD). Under this

setup, netsd may either be co-located on the same host as udomu, or be located on a different

host, depending on the placement decision of the cloud controller. Each setup results in a

different network topology, as illustrated in Figure 4.2. We evaluate both setups, and use the

41

Figure 4.2: The network topologies used to evaluate the baseline overhead of networked
services executing atop SSC.We only show the inbound network path. The outbound path is
symmetric.

Setup Throughput (Mbps) RTT (ms)
SAMEHOST configuration

Traditional 925.4±0.5 0.38±0
SSC 924.0±1.2 (0%) 0.62±0 (1.6×)

DIFFHOST configuration
Traditional 848.4±11.2 0.69±0

SSC 425.8±5.5 (49.8%) 1.6±0 (2.3×)

Figure 4.3: Baseline overhead of networked services.

keywords SAMEHOST and DIFFHOST to differentiate the cases when netsd and udomu are co-

located or not. We compare these against a traditional setup, where the networked service

executes within dom0, either on the same host or on a different host.

We dedicated a separate measurement host in the same local network as our experimental

infrastructure to transmit and receive network packets to the udomu. We measured the network

throughput to udomu using the iperf3 [27] tool, and used ping to measure the round-trip time

(RTT) of network traffic to and from the udomu. Our results report average over five executions

along with the standard deviations.

Figure 4.3 presents the results of our experiment. If netsd is co-located with udomu, the

42

throughput remains unaffected. However, the RTT drops as a result of having to traverse an-

other element (netsd) on the path to the udomu. When netsd and udomu are on different hosts,

the RTT overhead increases to (2.7×) as a result of new network elements encountered in the

path to udomu. However, we observed that the throughput also reduces to nearly 50% com-

pared to the traditional non-SSC-based setup. Upon further investigation, we found that the

reason for this is that the way Xen currently implements support for backend network drivers

prevents concurrent bidirectional network transmission.

On Xen, dom0 executes the network driver (called netback) that serves as the backend for

all domU network communication. Xen uses only one kthread in netback to process domU’s

transmit and receive queues [67]. The SSC hypervisor inherits this limitation, and uses only

one kthread in the netback drivers of SDs that serve as backends for UdomUs. Thus, if we

consider the DIFFHOST configuration on a traditional Xen-based platform, where the function-

ality of netsd executes within dom0, the network driver simply receives inbound traffic from the

measurement host, and forwards it to the dom0 of the machine that hosts udomu. In contrast,

on an SSC-based platform, the netback driver within the Open vSwitch SD receives inbound

traffic from the measurement host, forwards it to netsd, receives traffic from netsd, and forwards

this to the Open vSwitch SD of the machine that hosts udomu (as shown using the arrows in

Figure 4.2). As a result, even though the network hardware used in our experiments supports

concurrent bidirectional network bandwidth of 1Gbps, the inability of the netback drivers to

support concurrent bidirectional transmission cuts the throughput by approximately half.1

4.1.2 Network Access Control SD

Network access control services (e.g., firewalls) are often the first layer of defense in any op-

erational network. Traditional network access control services in the cloud, such as security

groups, allow clients to specify rules on network packets. However, security groups are quite

restrictive and only filter incoming packets. Our network access control SD is implemented as

a middlebox that can be customized by clients. In our implementation, we used a set of rules

1The throughput gap between the SAMEHOST case and the DIFFHOST case in SSC allows a malicious client to
infer whether netsd and udomu are co-located. However, an enhanced implementation of the netback driver in
Xen, with separate kthreads to process transmit and receive queues will address this attack (and improve network
throughput in the DIFFHOST case!)

43

Setup Throughput (Mbps)
SAMEHOST configuration

Traditional 925.1±0.7
SSC 923.2±1.6 (0%)

DIFFHOST configuration
Traditional 846.7±17.2

SSC 425.2±7.2 (49.7%)

Figure 4.4: Network access control service.

that included a list of IP addresses and open ports for which packets should be accepted. The

SD has a MAY COLOCATE dependency on the VM(s) it protects.

Figure 4.4 presents the performance of this SD, implemented both in the traditional setting

within dom0, and atop SSC. The numbers here report overheads very similar to the baseline,

thereby showing that the extra CPU processing overhead imposed by the SD is minimal. (RTT

numbers were also similar to the baseline numbers).

4.1.3 Trustworthy Network Metering

On traditional cloud platforms, clients trust the cloud provider to correctly charge them based

upon the resources that they consume. If a client has reason to believe that a cloud provider

is charging it for more than its share of resources consumed, it cannot prove that the cloud

provider is cheating. Therefore what is needed is a trustworthy service that performs resource

accounting. Both the cloud provider and the client must be able to access the service and verify

that the charges correspond to the resource utilization of the client. Unfortunately, it is impos-

sible to design such a service on today’s cloud platforms. Recent work [5] has investigated the

possibility of using nested virtualization to implement such a service.

SSC allows the creation of such trustworthy resource accounting services. The key mecha-

nism to do so is mutually-trusted service domains (MTSDs), supported by SSC. MTSDs resem-

ble SDs in all aspects but two. First, unlike SDs, which are started and stopped by the client,

the cloud provider and the client collaborate to start or stop an MTSD. Second, although an

MTSD executes within a client’s meta-domain with privileges to access other client VMs, a

client cannot tamper with or modify an MTSD once it has started.

MTSDs can be used to implement trustworthy network metering as follows. The client and

44

Setup Throughput (Mbps)
SAMEHOST configuration

Traditional 924.8±1.1
SSC 924.1±0.4 (0%)

DIFFHOST configuration
Traditional 845.4±11.1

SSC 424.3±3.1 (49.8%)

Figure 4.5: Trustworthy network metering service.

cloud provider agree upon the software that will be used to account for the client’s network

bandwidth utilization. This metering software executes as an MTSD and serves as the network

backend for all of the client’s network-facing VMs. The client and cloud provider can both

verify that the MTSD was started correctly (using TPM attestations), and the SSC hypervisor

ensures that neither the cloud provider nor the client can tamper with the MTSD once it has

started execution. Thus, both the cloud provider and the client can trust the network bandwidth

utilization reported by the MTSD.

Our network metering MTSD captures packets using the libpcap [58] library, simply counts

the number of packets captured, and reports this number when queried. Because it measures

network bandwidth utilization for all the client’s VMs, it must have a MAY COLOCATE de-

pendency with all of them. Figure 4.5 shows the impact of network metering service on the

network throughput of a single work VM (setup similar to Figure 4.2). As before, the addi-

tional overhead imposed over the baseline is minimal.

4.1.4 Network Intrusion Detection

SSC allows clients to deploy and configure customized network intrusion detection systems

as middleboxes. On traditional cloud platforms, this is not possible. Rather, they are forced to

accept the offerings that the cloud provider has. Moreover, they cannot configure the placement

of these middleboxes and must rely on the cloud provider to do so.

As an example, we used Snort to set up an intrusion detection system as a middlebox before

our work VMs. Snort uses libpcap [58] to capture network traffic. Our setup uses the Stream5

preprocessor that performs TCP reassembly and handles both TCP and UDP sessions. We used

the latest snapshot of signatures available from the Snort website in our setup. The Snort SD

45

Setup IDS
SAMEHOST configuration

Traditional 922.8±1.1
SSC 920.9±1.9 (0%)
DIFFHOST configuration

Traditional 841.2±14.2
SSC 422.6±7.1(49.7%)

Figure 4.6: Network intrusion detection (Snort) service.

Setup Time (µsec)
Traditional 1014±6

SSC 1688±31 (66%)

Figure 4.7: Time to establish a TCP connection in VMWall.

has a May Colocate dependency on the UdomU(s) it monitors. Figure 4.6 presents the results

of our experiments and shows that the overhead imposed by an SD implementation of Snort is

minimal.

4.1.5 VMWall Service

VMWall [53] is a virtualized application-level firewall. In the traditional setting, VMWall

operates as a daemon within dom0, and intercepts network packets originating from the VM

that it monitors. It then performs memory introspection of the VM to identify the process that

is bound to the network connection. VMWall permits the flow only if the process belongs to a

whitelist. Implemented as an SD, VMWall serves as the network backend for the UdomU that

it monitors. It must also have the privileges to inspect the memory of the UdomU, so that it can

identify the process from which the flow originates.

It is created with the following dependency rules, which imply that it must be co-located

with the UdomU.

GRANT PRIVILEGE(vmwall vm, udomu, KERN MEM);

SET BACKEND(vmwall vm, udomu, NETWORK, MUST COLOCATE);

Our re-implementation of VMWall uses libvmi [42, 62] for memory introspection. Fig-

ure 4.7 presents the results of our experimental evaluation of VMWall. We measured the TCP

connection setup time using a simple client/server setup. Compared to the traditional setup,

46

establishing a TCP connection with the VMWall SD incurs an overhead of 66%. The main

reason for this overhead is the latency introduced by routing all the traffic through VMWall-SD

along with the three-way handshake of TCP connection creation. Also this is a one-time cost

at the setup phase and will be amortized across the duration of connection.

4.2 Storage Services

Cloud providers supply clients with persistent storage. Because the actual storage hardware

is no longer under the physical control of clients, they must treat it as untrusted. They must

therefore have mechanisms to protect the confidentiality and integrity of data that resides on

cloud storage. Such mechanisms can possibly be implemented within the client’s VMs itself

(e.g., within a custom file system). However, virtual machine technology allows such services

to be conveniently located outside the VM, where they can also be combined flexibly. It also

isolates these services from potential attacks against client VMs. Because all I/O from client

VMs is virtualized, storage encryption and integrity checking can easily be implemented as

cloud-based services offered by the provider.

Cloud providers would normally implement such services as daemons within dom0. How-

ever, this approach entails clients to trust dom0, and hence cloud administrators. SSC provides

clients the ability to implement a variety of storage services as SDs (storageSD) without trust-

ing cloud administrators. We describe two such SDs below, one for integrity checking and

another for encryption. Our implementation of both SDs is set up as illustrated in Figure 4.8.

Each SD executes as a VM. The SD is set as the backend of the work VM udomu using SET -

BACKEND(storageSD, udomu, STORAGE, MUST COLOCATE).

4.2.1 Encryption Storage Service

Storage encryption protects the confidentiality of client data by enciphering it before storing

it on disk. Using SSC, clients can deploy their own storage encryption SD that enciphers

their data before it is transmitted to Sdom0, which stores it on disk (or further processes the

encrypted data, e.g., to implement replication). Conversely, Sdom0 reads encrypted data from

disk, and passes it to the SD, which decrypts it and passes it to the client. SSC ensures that

47

Figure 4.8: Storage service VM architecture.

Platform Unencrypted (MB/s) Encrypted (MB/s)
Traditional 81.72±0.15 71.90±0.19
SSC 75.88±0.15 (7.1%) 70.64±0.32 (1.5%)

Figure 4.9: Cost incurred by the storage encryption service VM.For the first experiment, the
SD runs a loopback device that performs no encryption. For the second, the SD runs a crypto
loopback device with 128-bit AES encryption.

Sdom0 cannot access the encryption keys, which are stored in SD memory, thereby protecting

client data.

Udom0 initiates the storage encryption SD using a key passed as a kernel parameter. The

SD encrypts client data before it reaches Sdom0, and decrypts enciphered disk blocks fetched

by Sdom0. Data is never presented in the clear to the cloud provider, and the encryption key

is never exposed to Sdom0. In our implementation, we uses crypto loopback device for the

encryption and configured the loopback device to use AES 128-bit encryption.

We evaluated the cost of our SD using two experiments. In the first experiment, we sim-

ply used a loopback device (rather than a crypto loopback device) as the backend within our

SD, and compared the achieved disk throughput against traditional I/O on Xen where domU

communicates with a backend driver in dom0 (i.e., data is stored in the clear). This experiment

allows us to measure the baseline overhead of introducing a level of indirection in the I/O path

(i.e., the SD itself). In the second experiment, we used the crypto loopback device as the back-

end and measured the overhead of encryption. In our experiments, we emptied buffer caches

48

Platform Throughput (MB/s)
Xen (dom0) 71.7±0.1
SSC (SD) 66.6±0.3 (7.1%)

Figure 4.10: Cost incurred by the storage integrity checking service VM.

so that each disk operation results in a disk access, thereby traversing the entire I/O path and

emulating the worst-case scenario for storage encryption.

We used the Linux dd utility to perform a large read operation of size 2GB. Figure 4.9

presents the results of our experiments. These experiments show that the reduction in disk

throughput introduced by the extra level of indirection is about 7%. With encryption enabled,

the raw disk throughput reduces in both cases, thereby reducing the overhead of SSC-based

encryption to about 1%.

4.2.2 Integrity Checking Service

Our integrity checking SD offers a service similar to the one proposed by Payne et al. [42].

The SD implements a loopback device, which runs as a kernel module. This device receives

disk access requests from UdomUs at the block level, enforces the specified integrity policy,

and forwards the requests to/from disk.

In our prototype SD, users specify important system files and directories to protect. The

SD intercepts all disk operations to these targets, and checks that the SHA256 hashes of these

disk blocks appear in a database of whitelisted hashes. Since all operations are intercepted at

the block level, the SD needs to understand the high-level semantics of the file system. We use

an offline process to extract known-good hashes at the block level from the client VM’s file

system, and populate the hash database, which the SD consults at runtime to check integrity.

We evaluated the cost of the integrity checking SD using the same workload as for the

encryption SD. We checked the integrity of disk blocks against a whitelist database of 3000

hashes. Figure 4.10 compares the throughput achieved when this service is implemented as

an SD versus as a daemon in dom0. The SD service incurs an overhead of about 7%, mainly

because of the extra level of indirection.

49

4.3 Memory Introspection Service

Memory introspection tools, such as rootkit detectors (e.g., [1, 35, 43, 53]), rely on the ability

to fetch and inspect raw memory pages from target VMs. In commodity cloud infrastructures,

memory introspection must be offered by the provider, and cannot be deployed independently

by clients, who face the unsavory option of using the service but placing their privacy at risk.

Using SSC, clients can deploy memory introspection tools as SDs. We illustrate such an

SD by implementing an approach developed in the Patagonix project [35]. Patagonix aims to

detect the presence of covertly-executing malicious binaries in a target VM by monitoring that

VM’s page tables. As originally described, the Patagonix daemon runs in dom0, maps all the

memory pages of the target VM, and marks all pages as non-executable when the VM starts.

When the target VM attempts to execute a page for the first time, Patagonix receives a fault.

Patagonix handles this fault by hashing the contents of the page (i.e., an md5sum) requested for

execution, and comparing it against a database of hashes of code authorized to execute on the

system (e.g., the database may store hashes of code pages of an entire Linux distribution). If

the hash does not exist in the database, Patagonix raises an alarm and suspends the VM.

We implemented Patagonix as an SD. Each Patagonix SD monitors a target UdomU, a ref-

erence to which is passed to the SD when the UdomU boots up. Udom0 delegates to Patagonix

SD the privileges to map the UdomU’s pages using GRANT PRIVILEGE (PatagonixSD, udomu,

FULL). Patagonix SD marks UdomU’s pages as non-executable. The SD receives and handles

faults as the UdomU executes new code pages. Our Patagonix SD can detect maliciously-

executing binaries with the same effectiveness as described in the original paper [35]. To

measure this SD’s performance, we measured the boot time of a monitored UdomU. The SD

validates all code pages that execute during boot time by checking each of them against the

hash database. We compared the time taken by this SD to a traditional setup where the Patag-

onix daemon executed within dom0. Figure 4.11 presents the results of our experiment, again

showing that using an SD imposes minimal overhead.

50

Platform Time (seconds)
Traditional 6.471±0.067
SSC 6.487±0.064 (0%)

Figure 4.11: Cost of the memory introspection service VM, measured as the time to boot a
Linux-based domain.

4.4 System Call Monitor

There is a large body of work on system call-based anomaly detection tools. While we will not

attempt to summarize that work here (see Giffin’s thesis [24] for a good overview), these tech-

niques typically work by intercepting process system calls and their arguments, and ensuring

that the sequence of calls conforms to a security policy. The anomaly detector executes in a

separate VM (dom0), and capture system call traps and arguments from a user VM for analysis.

Using SSC, clients can implement their own system call anomaly detectors as SDs. The SD

simply intercepts all system calls and arguments from a target UdomU and checks them against

a target policy.

On a paravirtualized platform, capturing system calls and their arguments is straightfor-

ward. Each trap from a UdomU transfers control to the hypervisor, which forwards the trap to

the SD if it is from a user-space process within the UdomU. The SD captures the trap address

and its arguments (passed via registers). However, the situation is more complex on an HVM

platform. On such a platform, traps are directly forwarded to the kernel of the HVM by the

hardware without the involvement of the hypervisor. Fortunately, it is still possible to capture

traps, albeit differently on AMD and Intel hardware. AMD supports control flags that can be set

to trigger VMExits on system calls. On the Intel platform, traps can be intercepted by placing

dummy values in the MSR (model-specific register) corresponding to the syscall instruction

to raise a page fault on a system call. On a page fault, the hypervisor determines the source of

the fault; if due to a system call, it can forward the trap address and registers to the SD.

We evaluated the cost of this approach by simply building an syscall monitor SD to capture

system calls and their arguments (i.e., our SD only includes the system call capture tool; we

do not check the captured calls against any policies). We used the syscall microbenchmark of

the UnixBench benchmark suite [59] as the workload within the target UdomU to evaluate the

51

Platform System calls/second
Traditional 275K ±0.95
SSC 272K ±0.78 (1%)

Figure 4.12: Cost incurred by the system call monitoring service VM, measured using the
UnixBench syscall microbenchmark.

overhead of this SD. The syscall microbenchmark runs mix of close, getpid, getuid and umask

system calls and outputs the number of system calls executed in a fixed amount of time. In our

experiments we compared the number of system calls executed by the syscall microbenchmark

when the system call capture tool runs as SD to the traditional scenario where the system call

capture tool runs in dom0. Figure 4.12 presents the result of the experiment and shows that

running system call monitor as an SD incurs negligible overhead.

4.5 Other Services

So far, we have illustrated several security services implemented as SDs. However, the utility

of SDs is not limited to security alone, and a number of other services can be implemented as

SDs. We illustrate two such examples in this section.

4.5.1 VM Checkpointing Service

It is commonplace for cloud service providers to checkpoint client VMs for various purposes,

such as live migration, load balancing and debugging. On commodity cloud architectures,

checkpointing is implemented as a user daemon within dom0, which copies client VM mem-

ory pages and stores them unencrypted within dom0. If dom0 is untrusted, as is usually the

case, it is challenging to create trustworthy checkpoints [54]. SSC simplifies checkpointing by

allowing it to be implemented as an SD. The SD maps the client’s memory pages, and check-

points them akin to the dom0 checkpointing daemon (in fact, we reused the same code-base to

implement the SD). Clients can chain the storage encryption SD with the checkpointing SD to

ensure that the checkpoint stores encrypted data.

We implemented a checkpointing SD and grant it privileges using GRANT PRIVI-

LEGE(CheckpointSD, udomu, FULL). We evaluated checkpointing SD by checkpointing VMs

52

Platform VM size (MB) No encryption (seconds) With encryption (seconds)
Traditional 512 0.764±0.001 5.571±0.004
SSC 512 0.803±0.006 (5.1%) 5.559±0.005 (-0.2%)
Traditional 1024 1.840±0.005 11.419 ±0.008
SSC 1024 1.936±0.001 (5.2%) 11.329 ±0.073 (-0.8%)

Figure 4.13: Cost incurred by the checkpointing service VM.

with two memory footprints: 512MB and 1024MB. We also conducted an experiment where

we chained this SD with storage encryption SD using SET BACKEND(ESSD, CheckpointSD,

STORAGE, MUST COLOCATE); the checkpoint file is therefore encrypted in this case. To mask

the effects of disk writes, we saved the checkpoint files on a memory-backed filesystem. Fig-

ure 4.13 presents the results of our experiments, comparing the costs of our checkpointing SD

against a checkpointing service implemented in dom0. Our results show that the costs of im-

plementing checkpointing within an SD are within 5% of implementing it within dom0. In fact,

we even observed minor speedups in the case where we chained checkpointing with encryp-

tion. SSC therefore offers both security and flexibility to customers while imposing mimimal

overhead.

4.5.2 Memory Deduplication Service

When multiple VMs have memory pages with identical content, one way to conserve physical

memory using a mechanism where VMs share memory pages [63]. Such a mechanism benefits

cloud providers, who are always on the lookout for new techniques to improve the elasticity of

their services. It can also benefit cloud clients who may have multiple VMs on the cloud and

may be billed for the memory consumed by these VMs. Identifying and exploiting memory

sharing opportunities among VMs allows clients to judiciously purchase resources, thereby

reducing their overall cost of using the cloud. In commodity cloud computing environments,

providers implement memory deduplication to consolidate physical resources, but such services

are not exposed to clients, thereby limiting their applicability.

SSC allows clients to deploy memory deduplication on their own VMs without involving

the cloud provider. To illustrate this, we implemented a memory deduplication SD. This SD

accepts as input a list of domains (UdomUs) in the same meta-domain, and identifies pages with

53

Platform VM size (MB) Time (seconds)
Traditional 512 6.948±0.187
SSC 512 6.941±0.045 (0%)
Traditional 1024 15.607±0.841
SSC 1024 15.788±0.659 (1.1%)

Figure 4.14: Cost incurred by the memory deduplication service VM.

identical content (using their md5 hashes). For each such page, the SD instructs the hypervisor

to keep just one copy of the page, and free the remaining copies by modifying the page tables of

the domains. The hypervisor marks the shared pages as belonging to special “shared memory”

domain. When a domain attempts to write to the shared page, the hypervisor uses copy-on-

write to create a copy of that page local to the domain that attempted the write, and makes it

unshared in that domain.

We evaluated the performance of the memory deduplication SD by measuring the time

taken to identify candidate pages for sharing, and marking them as shared. We conducted

this experiment with a pair of VMs with memory footprints of 512MB and 1024MB each. As

before, we compared the performance of the SD with that of a service running in dom0 on stock

Xen. Table 4.14 presents the results, and shows that the performance of the SD is comparable

to the traditional approach.

4.6 Evaluating VM Migration

We measure the performance of VM migration using two metrics: VM down time and overall

migration time. Recall from Section 3.6 that migration happens in two phases, an iterative push

phase, and a stop-and-copy phase. The VM down time metric measures the time taken by the

stop-and-copy phase, while the overall migration time measures the time from the initialization

of VM migration to its completion.

We perform three sets of experiments to evaluate VM migration. In the first experiment, we

migrate a single VM in SSC and compare it against migration on a traditional Xen platform.

In our second experiment, we consider the case in SSC where a group of co-located VMs

must be migrated together. In this experiment, we evaluate the performance implications of

two migration policies. Third, we evaluate how the length of a dependency chain in the VM

54

Setup Time (seconds)
Traditional 23.27±0.11

SSC 23.81±0.03 (2%)

Figure 4.15: Total migration time for one virtual machine.

dependency graph affects the performance of migration. The first two experiments report the

overall migration time only, while the third experiment explores VM down time in detail. For

all the experiments reported in this section, we assume that the VMs to be migrated are 1GB in

size, and are configured with 1 virtual CPU. The setup is otherwise identical to the one used in

all other SD experiments except when otherwise mentioned.

4.6.1 Migrating a Single VM

Figure 4.15 reports the time to migrate a single VM from one host to another in a traditional

setting and on an SSC platform. The small overhead (2%) in the SSC setting can be attributed

to the extra steps involved in migrating a VM in SSC, in particular, setting up a Udom0 at the

target host. Note that because migration is live, the VM is still operational on the source as it is

being migrated to the target. The down time in this case is approximately 100ms (as discussed

in more detail in Section 4.6.3).

4.6.2 Migrating a Group of VMs

When a group of dependent co-located VMs (vm1, vm2, . . ., vmn) is live migrated from one

host to another, there are two options to implement iterative push. The first is to iteratively

push vm1, vm2, . . ., vmn sequentially. The second option is to iteratively push all n VMs

using the available parallelism in the underlying physical platform. The tradeoff is that while

parallel migration approach can lead to lower migration times, it can saturate the network link

and increase CPU utilization.

Figure 4.16(a) presents the overall time required to migrate a group of 2 VMs and 4 VMs,

respectively, using the sequential and parallel migration policies. Naturally, the overall time

to migrate using the parallel policy is smaller than for the sequential policy. We also used the

iftop utility to measure the peak network utilization during VM migration. We found that with

55

of VMs Sequential (seconds) Parallel (seconds)
2 47.29±0.18 27.91±0.16
4 128.89±0.76 57.78±0.49
(a) Udom0 configured to have 2 virtual CPUs.

of VMs Sequential (seconds) Parallel (seconds)
2 47.41±0.29 28.01±0.26
4 103.96±0.20 39.21±0.50

(b) Udom0 configured to have 4 virtual CPUs.

Figure 4.16: Migrating multiple virtual machines using sequential and parallel migration
policies.

the sequential policy network utilization never exceeded 40%, while for the parallel migration

policy, peak network utilization never exceeded 70%, even when four VMs are migrated in

parallel. For this experiment, the Udom0 (which performs migration) is configured to have 2

virtual CPUs and 2GB RAM, as discussed before.

To determine whether increasing the number of virtual CPUs assigned to the Udom0 can

increase network utilization (and thereby reduce overall VM migration time), we repeated the

experiments with the Udom0 configured to have 4 virtual CPUs and 2 GB RAM. Figure 4.16(b)

shows that in this case, the time to migrate 2 VMs remains relatively unchanged and so does

the network utilization (at 40%). When 4 VMs are migrated, the Udom0 is able to exploit the

underlying parallelism in the host to complete migration faster. However, this comes at a cost,

and the network utilization of the host shoots to 100%.

4.6.3 VM Downtime

Recall from Section 3.6 that dependent co-located VMs are migrated in the order specified by

the VM dependency graph, i.e., all children of a VM must be paused before it is paused, and

vice versa for resumption. Typically, this means that a client’s UdomUs that are serviced by

several SDs (which may themselves be serviced by other SDs) must be paused before the SDs,

and must be resumed on the target host only after all the SDs have been resumed. Thus, the

length of a dependency chain in this graph affects the performance of the stop-and-copy phase.

To evaluate the down time of a UdomU serviced by several SDs, we created depen-

dency chains of varying length using the SET BACKEND rule, i.e., we created a chain of SDs

sd1→sd2→. . .→sdn→udomu each of which was the backend for another. We migrated these

56

Chain length Down time (ms)
1 97±4
2 308±3
3 528±8
4 778±7

Figure 4.17: Down time for migrating VMs.

VMs from one host to another, and measured the down time of the udomu. We only used the

parallel migration policy for this experiment. Figure 4.17 presents the result of this experiment,

showing the number of VMs in the dependency chain. As expected, the result shows that the

down time increases with the length of this chain, adding ∼200ms for each VM in the chain.

57

Chapter 5

Related Work

This chapter compares SSC with prior work in related areas: security and privacy of client VMs

in the cloud, extending the functionality of the cloud, accountability in the cloud and related

techniques in software-defined networking.

5.1 Security and Privacy of Client VMs

Popular cloud services, such as Amazon’s EC2 and Microsoft’s Azure rely on hypervisor-based

VMMs (Xen [2] and Hyper-V [37], respectively). In such VMMs, the TCB consists of the

hypervisor and an administrative domain. Prior attempts to secure the TCB have focused on

both these entities, as discussed below.

Historically, hypervisors have been considered to be a small layer of software. Prior work

has argued that the architecture of hypervisors resembles that of microkernels [26]. The rel-

atively small code size of research hypervisors [36, 52, 57], combined with the recent break-

through in formally verifying the L4 microkernel [32], raises hope for similar verification of

hypervisors. However, commodity hypervisors often contain several thousand lines of code

(e.g., 150K LoC in Xen 4.1) and are not yet within the realm of formal verification. Conse-

quently, researchers have proposed architectures that completely eliminate the hypervisor [31].

The main problem with these techniques (i.e., small hypervisors and hypervisor-free archi-

tectures) is that they often do not support the rich functionality that is needed in cloud comput-

ing. Production hypervisors today need to support different virtualization modes, guest quirks,

hardware features, and software features like memory deduplication and migration. In SSC,

we work with a commodity hypervisor-based VMM (Xen), but assume that the hypervisor is

part of the TCB. While this exposes an SSC-based VMM to attacks directed against hypervisor

58

vulnerabilities, it also allows the SSC model to largely resemble commodity cloud computing.

Recent advances to strengthen hypervisors against certain classes of attacks [64] can also be

applied to SSC, thereby improving the overall security of the platform.

In comparison to hypervisors, the administrative domain is large and complex. It typically

executes a complete OS kernel with device drivers and a user-space control toolstack. The

hypervisor gives the administrative domain privileges to control and manipulate client VMs.

The complexity of the administrative domain has made it the target of a number of attacks [13–

17, 28],

To address threats against the administrative domain, the research community has focused

on adopting the principle of separation of privilege, an approach that we also adopted in SSC.

Murray et al. [38] disaggregated the administrative domain by isolating in a separate VM the

functionality that builds new VMs. This domain builder has highly-specific functionality and

a correspondingly small code-base. This feature, augmented with the use of a library OS en-

hances the robustness of that code. Murray et al.’s design directly inspired the use of domB

in SSC. Disaggregation is also advocated by Nova [57]. The Xoar project [11] extends this

approach by “sharding” different parts of the administrative toolstack into a set of domains.

Previous work has also considered separate domains to isolate device drivers [34], which are

more defect-prone than the rest of the kernel.

SSC is similar to these lines of research because it also aims to reduce the privilege of

Sdom0, which can no longer inspect the code, data and computation of client VMs. However,

SSC is unique in delegating administrative privileges to clients (via Udom0). It is this very

feature that enables clients to deploy custom services to monitor and control their own VMs.

The CloudVisor project [68] leverages recent advances in nested virtualization technology

to protect the security and privacy of client VMs from the administrative domain. In CloudVi-

sor, a commodity hypervisor such as Xen executes atop a small, trusted, bare-metal hypervisor.

This trusted hypervisor intercepts privileged operations from Xen, and cryptographically pro-

tects the state of client VMs executing within Xen from its dom0 VM, e.g., dom0 only has an

encrypted view of a client VM’s memory.

59

The main advantage of CloudVisor over SSC is that its TCB only includes the small, bare-

metal hypervisor, comprising about 5.5KLOC, whereas SSC’s system-wide TCB includes the

entire commodity hypervisor and domB. Moreover, the use of cryptography allows CloudVisor

to provide strong guarantees on client VM security and privacy. However, SSC offers three

concrete advantages over CloudVisor. First, SSC offers clients more flexible control over their

own VMs than CloudVisor. For example, because CloudVisor only presents an encrypted view

of a client’s VM to dom0, many security introspection tools (e.g., memory introspection, as in

Section 4.3) cannot be implemented within dom0. Second, unlike CloudVisor, SSC does not

rely on nested virtualization. Nesting fundamentally imposes overheads on client VMs because

privileged operations must be handled by both the bare-metal and nested hypervisors, which

can slow down I/O intensive client applications, as reported in the CloudVisor paper. Third,

SSC’s MTSDs allow the cloud provider and clients to execute mutually-trusted services for

regulatory compliance. It is unclear whether the CloudVisor model can achieve mutual trust of

shared services.

Finally, the Excalibur system [51] operates under the same threat model as SSC, and aims

to prevent malicious cloud system administrators from accessing client data. It introduces

a new abstraction, called policy-sealed data, which allows encrypted client data to only be

decrypted on nodes that satisfy a client-specified policy, e.g., only those running the CloudVisor

hypervisor, or those located in a particular geographic region. However, Excalibur’s threat

model excludes certain classes of attacks via the dom0 management interface, e.g., attacks via

direct memory inspection, that SSC explicitly addresses.

5.2 Extending the Functionality of VMMs

There has been nearly a decade of research on novel services enabled by virtualization, starting

with Chen and Noble’s seminal paper [6]. These include new techniques to detect security in-

fections in client VMs (e.g., [1,7,20]), arbitrary rollback [19], and VM migration [8]. However,

most of these techniques are implemented within the hypervisor or the administrative domain.

On current cloud infrastructures, deploying these techniques requires the cooperation of the

60

cloud provider, which greatly limits their impact. SSC enables clients to deploy their own priv-

ileged services without requiring the cloud provider to do so. The primary advantage of such

an approach is that clients need no longer expose their code and data to the cloud provider.

The xCloud project [65,66] also considers the problem of providing clients flexible control

over their VMs. The original position paper [65] advocated several approaches to this problem,

including by extending hypervisors, which may weaken hypervisor security. The full paper [66]

describes XenBlanket, which realizes the vision of the xCloud project using nested virtualiza-

tion. XenBlanket implements a “blanket” layer that allows clients to execute paravirtualized

VMMs atop commodity cloud infrastructures. The key benefit of XenBlanket over SSC is that

it provides clients the same level of control over their VMs as does SSC but without modifying

the hypervisor of the cloud infrastructure. However, unlike SSC, XenBlanket does not address

the problem of protecting the security and privacy of client VMs from cloud administrators.

It may be possible to achieve the goals of both CloudVisor and XenBlanket using two levels

of nesting. However, research has shown that the overheads of nesting grow exponentially with

the number of nested levels [30].

5.3 Cloud Accountability

There is a line of work that targets cloud provider accountability, which concerns the correct-

ness of the services that the cloud provides and accounting for the resources consumed. Most

prior work in this area concerns accounting the usage of particular kinds of resources (such as

memory or CPU) or correctness of a specific service provided by the provider.

ALIBI [5] aims to provide verifiable resource accounting for cloud clients by using nested

virtualization. It places a trusted hypervisor below providers commodity hypervisor to monitor

the CPU and memory usage of the clients virtual machines. SSC allows clients to trust resource

usage billing by enabling trusted resource metering through MTSDs.

CloudProof [45] provides cloud storage to the customer in which violation of integrity,

write-serializability and freshness can detected and also provide mechanism to prove the viola-

tion if occurred. Hourglass Schemes [60] aim to detect if the provider has advertised encrypted

storage service but does not really encrypt it. SSC solves these problems by giving control to

61

the clients over their data and computation through SDs and allowing them to implement such

services themselves.

5.4 Techniques based on Software-defined Networking

SDN technologies allow programmatic control over the network’s control elements. Clients im-

plement policies using a high-level language, and SDN configures individual network elements

to enforce these policies. The SDN-based effort most closely related to SSC is CloudNaaS [3],

which develops techniques allow clients to flexibly introduce middleboxes. Recent work on

SIMPLE [46] enhances this basic model to allow composition of middleboxes.

We view this line of work as being complementary to SSC. SSC enables a number of new

features that cannot be implemented using SDN alone—protecting client VMs from cloud op-

erators, endowing SDs with specific privileges over client VMs via GRANT PRIVILEGE, spec-

ifying rich inter-VM dependencies, and offering VM dependency-aware migration policies.

SSC currently uses Open vSwitch-based VMs to suitably route traffic to client VMs that have

a network middlebox hosted on a different physical machine. It may be possible to leverage

SDN technology to enable such routing.

62

Chapter 6

Conclusion

The objective of this dissertation is to solve two key issues faced by the organizations that wish

to adopt cloud computing. First, the security and privacy of their data in the public cloud and

second, relinquishing their control over their computation. This dissertation presented a new

cloud computing model, SSC, that improves client security and privacy, and gives clients the

flexibility to deploy privileged services for their own VMs. SSC introduces new abstractions,

a supporting privilege model and an infrastructure to achieve these goals. We integrated SSC

with a commodity hypervisor (Xen), and presented case studies showing SSC’s benefits.

SSC provides clients with unprecedented flexibility to deploy customized cloud-based ser-

vices and holds clients responsible for administering their own VMs. However, this does not

necessarily mean that clients need to have increased technical knowhow or manpower to lever-

age the benefits of SSC, e.g., to implement their own services as SDs. Cloud providers can

ease the deployment path for SSC by following an SD app store [55] model akin to mobile

application markets. Both cloud providers as well as third-party developers can contribute SDs

to such an app store, from where they can be downloaded and used by clients.

One of the main advertised benefits of cloud computing is that it frees clients from having to

administer their own VMs. By allowing clients to administer their own VMs, SSC apparently

diminishes this benefit. We feel that this is a fundamental tradeoff, and the price that clients

need to pay for increased security, privacy, and control over their VMs. One of the conse-

quences of this tradeoff is that clients without the appropriate technical knowhow may commit

administrative errors, e.g., giving a UdomU or an SD more privileges than it needs. Neverthe-

less, SSC ensures that the effects of such mistakes are confined to the client’s meta-domain,

and do not affect the operation of other clients on the same platform.

63

Finally, SSC restricts some virtualization features for the cloud provider like memory shar-

ing between VMs of different clients. Cloud providers can use VM memory sharing to reduce

cost but SSC by design restricts this functionality among VMs of different clients. Thus poten-

tially increasing the cost for the cloud provider. This is a fundamental tradeoff for providing

more security and isolation to the cloud clients.

Below we present a few future directions for extending and improving SSC:

• VM placement and load balancing: The current SSC prototype implements a very

basic VM placement policy. Upon receiving the specifications from the client, SSC’s

cloud controller generates a VM placement plan taking into account for the current load

on various hosts. This VM placement is static in nature and SSC prototype lacks dynamic

load balancing.

One of the main advantage SSC’s cloud controller has over traditional controllers is the

availability of inter-VM dependencies. This information can be used for better VM place-

ment but current prototype does not avail this opportunity. Further investigation is needed

regarding how inter-VM dependencies can help in the VM placement decisions and also

how load balancing should be implemented in SSC.

• Mutually trusted service domain (MTSD) verification: Currently a third party, mutu-

ally trusted by provider and the client, is assigned for the verification of MTSDs. This

third party has to verify and attest that the privacy and integrity of client’s data and com-

putation is not being compromised by MTSDs.

In this dissertation we have not explored the verification process of the MTSDs. For

better usability and adoption of SSC, tools are needed for easing the process of MTSD

verification. Further techniques should be explored to establish trust on MTSDs like

proof-carrying code [40,41] or using formally verified micro-kernels for MTSDs [33,39].

• Real world deployment: The other area we have not investigated in this dissertation

is the real world deployment of SSC, used by real users. All the evaluations in this

dissertation are done on a couple of physical machines. The production scale evaluation

of SSC is needed to enable it for such environment. Also to improve SSC’s usability,

64

user study is needed to measure SSC’s effects on the user experience in the production

environment.

65

Bibliography

[1] A. Baliga, V. Ganapathy, and L. Iftode. Detecting kernel-level rootkits using data struc-
ture invariants. IEEE TDSC, 8(5), 2011.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In ACM SOSP, 2003.

[3] Theophilus Benson, Aditya Akella, Anees Shaikh, and Sambit Sahu. Cloudnaas: a cloud
networking platform for enterprise applications. In SoCC, page 8, 2011.

[4] S. Berger, R. Caceres, K. Goldman, R. Perez, R. Sailer, and L. van Door. vTPM: Virtual-
izing the Trusted Platform Module. In USENIX Security, 2006.

[5] Chen Chen, Petros Maniatis, Adrian Perrig, Amit Vasudevan, and Vyas Sekar. Towards
verifiable resource accounting for outsourced computation. In VEE, pages 167–178,
2013.

[6] P. M. Chen and B. Noble. When virtual is better than real. In HotOS, 2001.

[7] M. Christodorescu, R. Sailer, D. Schales, D. Sgandurra, and D. Zamboni. Cloud Security
Is Not (Just) Virtualization Security. In ACM Cloud Computing Security Workshop, 2009.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield.
Live Migration of Virtual Machines. In USENIX NSDI, 2005.

[9] Cloud Security Alliance. The Notorious Nine: Cloud Computing
Top Threats in 2013. https://cloudsecurityalliance.org/
the-notorious-nine-cloud-computing-top-threats-in-2013/.

[10] Cloud Security Alliance. Top Threats to Cloud Computing, Version 1.0. https://
cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf.

[11] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, P. Loscocco, and
A. Warfield. Breaking Up is Hard to Do: Security and Functionality in a Commodity
Hypervisor . In ACM SOSP, 2011.

[12] Brendan Cully, Geoffrey Lefebvre, Dutch T. Meyer, Mike Feeley, Norman C. Hutchin-
son, and Andrew Warfield. Remus: High availability via asynchronous virtual machine
replication. In NSDI, 2008.

[13] CVE-2007-4993. Xen guest root escapes to dom0 via pygrub.

[14] CVE-2007-5497. Integer overflows in libext2fs in e2fsprogs.

[15] CVE-2008-0923. Directory traversal vulnerability in the shared folders feature for
VMWare.

https://cloudsecurityalliance.org/the-notorious-nine-cloud-computing-top-threats-in-2013/
https://cloudsecurityalliance.org/the-notorious-nine-cloud-computing-top-threats-in-2013/
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

66

[16] CVE-2008-1943. Buffer overflow in the backend of XenSource Xen paravirtualized
frame buffer.

[17] CVE-2008-2100. VMWare buffer overflows in VIX API let local users execute arbitrary
code in host OS.

[18] B. Danev, R. Masti, G. Karame, and S. Capkun. Enabling secure VM-vTPM migration in
private clouds. In ACSAC, 2011.

[19] G. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. Chen. ReVirt: Enabling Intrusion
Analysis through Virtual-Machine Logging and Replay. In USENIX/ACM OSDI, 2002.

[20] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-
based platform for trusted computing. In ACM SOSP, 2003.

[21] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture for
intrusion detection. In NDSS, 2003.

[22] Gartner. Assesing the Security Risks of Cloud Computing. http://www.gartner.
com/DisplayDocument?id=685308.

[23] Gartner. Market Trends: Application Development Software, Worldwide, 2012-2016.
http://www.gartner.com/DisplayDocument?id=2098416.

[24] J. T. Giffin. Model Based Intrusion Detection System Design and Evaluation. PhD thesis,
University of Wisconsin-Madison, 2006.

[25] Trusted Computing Group. TPM main spec., l2 v1.2 r116. http://www.
trustedcomputinggroup.org/resources/tpm_main_specification.

[26] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, and D. Magenheimer. Are VMMs Micro-
kernels Done Right? In HotOS, 2005.

[27] iperf3. http://code.google.com/p/iperf/.

[28] K. Kortchinsky. Hacking 3D (and breaking out of VMWare). In BlackHat USA, 2009.

[29] B. Kauer. OSLO: Improving the Security of Trusted Computing. In USENIX Security,
2007.

[30] B. Kauer, P. Verissimo, and A. Bessani. Recursive virtual machines for advanced security
mechanisms. In 1st International Workshop on Dependability of Clouds, Data Centers
and Virtual Computing Environments, 2011.

[31] E. Keller, J. Szefer, J. Rexford, and R. Lee. Eliminating the hypervisor attack surface for
a more secure cloud. In ACM CCS, 2011.

[32] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal Verification of an OS Kernel. In ACM SOSP, 2009.

[33] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. sel4: formal verification of an os kernel. In
SOSP, pages 207–220, 2009.

http://www.gartner.com/DisplayDocument?id=685308
http://www.gartner.com/DisplayDocument?id=685308
http://www.gartner.com/DisplayDocument?id=2098416
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://code.google.com/p/iperf/

67

[34] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Unmodified Device Driver Reuse and
Improved System Dependability via Virtual Machines. In ACM/USENIX OSDI, 2004.

[35] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor Support for Identifying Covertly
Executing Binaries. In USENIX Security, 2008.

[36] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor:
Efficient TCB reduction and attestation. In IEEE Symposium on Security & Privacy,
2010.

[37] Microsoft. Hyper-V Architecture. http://msdn.microsoft.com/en-us/
library/cc768520(BTS.10).aspx.

[38] D. Murray, G. Milos, and S. Hand. Improving Xen Security Through Disaggregation. In
ACM VEE, 2008.

[39] Toby C. Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,
Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. sel4: From general purpose to
a proof of information flow enforcement. In IEEE Symposium on Security and Privacy,
pages 415–429, 2013.

[40] George C. Necula. Proof-carrying code. In POPL, pages 106–119, 1997.

[41] George C. Necula and Peter Lee. Safe kernel extensions without run-time checking. In
OSDI, pages 229–243, 1996.

[42] B. Payne, M. Carbone, and W. Lee. Secure and Flexible Monitoring of Virtual Machines.
In ACSAC, 2007.

[43] B. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture for secure active
monitoring using virtualization. In IEEE Symposium on Security & Privacy, 2008.

[44] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker. Extending net-
working into the virtualization layer. In HotNets, 2009.

[45] Raluca Ada Popa, Jacob R. Lorch, David Molnar, Helen J. Wang, and Li Zhuang. En-
abling security in cloud storage slas with cloudproof. In Proceedings of the 2011 USENIX
conference on USENIX annual technical conference, pages 31–31, 2011.

[46] Z. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-fying middlebox
policy enforcement using SDN. In SIGCOMM, 2013.

[47] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds. In ACM CCS, 2009.

[48] Sage Cutely. Mine BCN, Monero, BTC and Others with Nvidia
Grid Test Drive! http://thecleangame.net/2014/05/
mine-bcn-monero-btc-others-nvidia-grid-test-drive/. Accessed:
2014-07-01.

[49] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J. Griffin, and L. van
Doorn. Building a MAC-based Security Architecture for the Xen Hypervisor. In ACSAC,
2005.

http://msdn.microsoft.com/en-us/library/cc768520(BTS.10).aspx
http://msdn.microsoft.com/en-us/library/cc768520(BTS.10).aspx
http://thecleangame.net/2014/05/mine-bcn-monero-btc-others-nvidia-grid-test-drive/
http://thecleangame.net/2014/05/mine-bcn-monero-btc-others-nvidia-grid-test-drive/

68

[50] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a TCG-
based integrity measurement architecture. In USENIX Security, 2004.

[51] N. Santos, R. Rodrigues, K. Gummadi, and S. Saroiu. Policy-sealed data: A new abstrac-
tion for building trusted cloud services. In USENIX Security, 2012.

[52] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes. In ACM SOSP, 2007.

[53] A. Srivastava and J. Giffin. Tamper-resistant, application-aware blocking of malicious
network connections. In RAID, 2008.

[54] A. Srivastava, H. Raj, J. Giffin, and P. England. Trusted VM snapshots in untrusted cloud
infrastructures. In RAID, 2012.

[55] Abhinav Srivastava and Vinod Ganapathy. Towards a richer model for cloud app markets,
2012.

[56] Abhinav Srivastava and Jonathon T. Giffin. Tamper-resistant, application-aware blocking
of malicious network connections. In RAID, pages 39–58, 2008.

[57] U. Steinberg and B. Kauer. NOVA: A Microhypervisor-Based Secure Virtualization Ar-
chitecture. In ACM Eurosys, 2010.

[58] TCPDump and libpcap. http://www.tcpdump.org.

[59] byte-unixbench: A Unix benchmark suite. http://code.google.com/p/
byte-unixbench.

[60] Marten van Dijk, Ari Juels, Alina Oprea, Ronald L. Rivest, Emil Stefanov, and Nikos
Triandopoulos. Hourglass schemes: how to prove that cloud files are encrypted. In ACM
Conference on Computer and Communications Security, pages 265–280, 2012.

[61] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. Swift. Resource-freeing
attacks: Improve your cloud performance (at your neighbor’s expense). In ACM CCS,
2012.

[62] vmitools. http://code.google.com/p/vmitools/.

[63] C. A. Waldspurger. Memory Resource Management in VMWare ESX Server. In
USENIX/ACM OSDI, 2002.

[64] Z. Wang and X. Jang. Hypersafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity. In IEEE Symposium on Security & Privacy, 2010.

[65] D. Williams, E. Elnikety, M. Eldehiry, H. Jamjoom, H. Huang, and H. Weatherspoon.
Unshackle the Cloud! In HotCloud, 2011.

[66] D. Williams, H. Jamjoom, and H. Weatherspoon. The Xen-Blanket: Virtualize Once, Run
Everywhere. In ACM EuroSys, 2012.

[67] [xen-devel] bidirectional network throughput for netback, July 2013. http://lists.
xen.org/archives/html/xen-devel/2013-07/msg02709.html.

[68] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor: Retrofitting Protection of Virtual
Machines in Multi-tenant Cloud with Nested Virtualization. In ACM SOSP, 2011.

http://www.tcpdump.org
http://code.google.com/p/byte-unixbench
http://code.google.com/p/byte-unixbench
http://code.google.com/p/vmitools/
http://lists.xen.org/archives/html/xen-devel/2013-07/msg02709.html
http://lists.xen.org/archives/html/xen-devel/2013-07/msg02709.html

	Abstract
	Acknowledgements
	Dedication
	List of Figures
	Introduction
	Motivation
	Self-service Cloud Computing
	SSC Hypervisor
	SSC Control Plane

	Benefits of SSC
	Services
	Mutual Trust

	Threat Model
	Summary of Contributions
	Dissertation Organization
	Statement of Contributions

	The SSC Hypervisor
	Components
	Bootstrapping
	Building Client Meta-Domains
	SSC Privilege Model
	Virtual I/O
	Regulatory Compliance using MTSDs

	The SSC Control Plane
	Motivation
	Traditional Control Plane
	SSC's Control Plane
	Operations of the SSC's Control Plane
	Specifying Inter-VM Dependencies
	VM Migration

	Evaluation
	Networked Services
	Baseline Overhead
	Network Access Control SD
	Trustworthy Network Metering
	Network Intrusion Detection
	VMWall Service

	Storage Services
	Encryption Storage Service
	Integrity Checking Service

	Memory Introspection Service
	System Call Monitor
	Other Services
	VM Checkpointing Service
	Memory Deduplication Service

	Evaluating VM Migration
	Migrating a Single VM
	Migrating a Group of VMs
	VM Downtime

	Related Work
	Security and Privacy of Client VMs
	Extending the Functionality of VMMs
	Cloud Accountability
	Techniques based on Software-defined Networking

	Conclusion
	Bibliography

