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SELF-SHRINKERS WITH A ROTATIONAL SYMMETRY

STEPHEN KLEENE AND NIELS MARTIN MØLLER

Abstract. In this paper we present a new family of non-compact properly
embedded, self-shrinking, asymptotically conical, positive mean curvature ends
Σn ⊆ Rn+1 that are hypersurfaces of revolution with circular boundaries.
These hypersurface families interpolate between the plane and half-cylinder in
Rn+1, and any rotationally symmetric self-shrinking non-compact end belongs
to our family. The proofs involve the global analysis of a cubic-derivative
quasi-linear ODE.

We also prove the following classification result: a given complete, embed-
ded, self-shrinking hypersurface of revolution Σn is either a hyperplane Rn, the

round cylinder R× Sn−1 of radius
√

2(n− 1), the round sphere Sn of radius√
2n, or is diffeomorphic to an S1 × Sn−1 (i.e. a “doughnut” as in the paper

by Sigurd B. Angenent, 1992, which when n = 2 is a torus). In particular, for
self-shrinkers there is no direct analogue of the Delaunay unduloid family. The
proof of the classification uses translation and rotation of pieces, replacing the
method of moving planes in the absence of isometries.

1. Introduction and statement of results

We consider smooth n-dimensional hypersurfaces Σn ⊆ Rn+1, n ≥ 2, possibly
with boundary ∂Σ �= ∅, satisfying the (extinction time T = 1) self-shrinker equation
for mean curvature flow, away from ∂Σ,

(1.1) H =
〈 �X,�ν〉

2
,

where �ν is the unit normal such that �H = −H�ν.

Theorem 1. In R
n+1 there exists a 1-parameter family of non-compact smooth

rotationally symmetric, embedded, positive mean curvature, asymptotically conical
self-shrinking ends Σn with boundary.

In fact, for each rotationally symmetric cone C in {x1 ≥ 0} ⊆ Rn+1 with a tip
at the origin, of slope σ > 0, there is a unique such self-shrinker Σσ, lying outside
of C , which is asymptotic to C as x1 → ∞.

Theorem 2. Let Σn ⊆ Rn+1 be a complete, embedded, self-shrinking hypersurface
of revolution. Then Σn is one of the following:

(1) n-dimensional hyperplane Rn in Rn+1,

(2) round cylinder R× Sn−1 of radius
√
2(n− 1),

(3) round sphere Snof radius
√
2n,

(4) a smooth embedded S1 × Sn−1.
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Figure 1. Examples of the asymptotically conical self-shrinking
“trumpet” ends in Theorem 1, interpolating between the flat plane
and round cylinder (Matlab).

Remark 1. Note that the list (1)–(3) together with Angenent’s torus (in R
3, and

more general his specific S1×Sn−1-solutions) gives all the presently known examples
of complete, embedded self-shrinkers.

In case (4), our assertion is only that Σ is generated by a closed, smooth, embed-
ded curve. We conjecture however that geometrically such Σ must be symmetric
with respect to x1 �→ −x1 and in fact coincide with Angenent’s Torus in [Ang].

By combining Theorem 2 with a result by Anciaux [Anc] we have the following
corollary in 3-space.

Corollary 1. Let Σ2 ⊆ R3 be a self-shrinker of genus zero which is foliated by
circles. Then Σ is either: a plane, a round cylinder of radius

√
2, or a round

sphere of radius 2.

The study of the self-shrinker equation H = 1
2 〈 �X,�ν〉 is motivated by the regular-

ity theory for mean curvature flow. In particular, type I singularities are governed
by (1.1), as Huisken showed in [Hu1]. Huisken in [Hu3] classified the possible
singularities for the flow of a positive mean curvature initial surface, under the
assumption of a bound on |A|2. Currently, very few complete solutions of equa-
tion (1.1) are known, embedded or otherwise, with the sphere, plane, cylinder, and
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Angenent’s Torus (constructed in [Ang]) being the only known examples. There is
however numerical evidence for many more. David Chopp in [Ch] (and see [AIC])
numerically computed a large number of interesting (apparently) self-similar so-
lutions, and Angenent in [Ang] gave numerical evidence for immersed topological
spheres, although none of them have actually been rigorously demonstrated. The
methods in [Ka] of Kapouleas for producing examples of complete embedded min-
imal surfaces in Euclidean space by desingularization promise to be successful in
the context of equation (1.1); in particular, X. H. Nguyen in [Ng] has had success
in providing examples of self-translating (not self-shrinking) surfaces under mean
curvature flow.

The numerical evidence cited above suggests that, in general, the singularity
profile for mean curvature flow can be quite exotic and wildly behaved, and the
classification of solutions to (1.1) seems impossible in general. However, in di-
mension 2 the methods of Colding-Minicozzi in [CM1]–[CM7] offer a possibility.
However, for a generic initial surface, one expects to find a rather tame singularity
profile, due to the highly unstable nature of most solutions of (1.1). In fact, this is
a long-standing conjecture of Huisken, which was recently answered positively by
Colding and Minicozzi in [CM7].

The study of equation (1.1) turns out to be a variational problem. Namely, the
solutions are actually minimal hypersurfaces in the conformal metric (see [Hu1])

(1.2) g = e−
| �X|2
2n

n+1∑
i=1

dx2
i

on Rn+1. If Σγ is a hypersurface of revolution determined by a planar curve γ,
then Σγ is minimal in the metric g if and only if the curve γ is a geodesic in the
upper half-plane with non-complete conformal metric (cf. [Ang])

(1.3) gAng = r2(n−1)e−
(x2+r2)

2

{
dx2 + dr2

}
,

where (x, r), r > 0, are Euclidean coordinates on the upper half-plane. The idea
of reducing the problem of finding closed minimal sub-manifolds to the search for
closed geodesics on a related manifold with a singular metric goes back at least as far
as the paper [HL], where Hsiang and Lawson produced closed minimal submanifolds
of Sn invariant under a subgroup of the full isometry group. Mean curvature flow
restricted to the rotational class is not a new venture either. For example, in
addition to [Ang] the paper [AAG95] considered regularity of viscosity solutions for
mean curvature flow within the class of rotational surfaces.

The geodesic equation for curves parametrized by arc length in the upper half-
plane with metric gAng as given above in (1.3) is given by the following system of
equations (see [Ang]):

(1.4)

⎧⎪⎨
⎪⎩

ẋ = cos θ,

ṙ = sin θ,

θ̇ = x
2 sin θ +

(
n−1
r − r

2

)
cos θ,

where θ is the angle that γ̇ makes with the x-axis, and where “·” denotes derivation
in the arc length parameter. We will use this notation throughout the article.
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Thus, for a hypersurface of revolution generated by a graph u ∈ C2(I) over an
interval on the x1-axis, u : I → R+, the self-shrinker equation is

(1.5) H(u(x)) =
〈 �X,�ν〉

2
=

1

2

u(x)− xu′(x)

(1 + (u′)2)
1
2

,

which is equivalent to the following ODE:

(1.6) u′′(x) =
[xu′(x)− u(x)

2
+

n− 1

u(x)

](
1 + (u′(x))2

)
,

which is a cubic-derivative quasi-linear elliptic second-order equation of the form

u′′ − xp(x, u′(x))u′ + p(x, u′(x))u = g(u(x), u′(x))

for appropriately defined functions p and g. For the graph of a function f over the
r-axis, the equation becomes

(1.7) f ′′(r) =

{(
r

2
− n− 1

r

)
f ′(r)− f(r)

2

}(
1 + (f ′(r))2

)
.

For such equations containing a non-linearity of the form (u′)3, the general ex-
istence results by Nagumo and others do not apply (see for instance the survey
[CH]) and we will be developing an approach from scratch. Furthermore, note that
the sign of the terms in (1.6) are such that one does not have the best possible
maximum and convexity principles, but instead an oscillating behavior (e.g. as is
the case for the linear equations u′′+ bu′+ cu = 0 when c > 0 is positive), contrast-
ing for example the situation one would have had for self-expanders. Much of the
intricacy concerning equation (1.6) stems from this fact, and also from the lack of
known exact symmetries.

The reader will notice that, in the proof of Theorem 2 (e.g. in Proposition
2), solutions to equation (1.4) are translated to get contradictions via a maximum
principle, as in the method of moving planes. However, here translation is not an
isometry for the geometric problem in (1.1), and correspondingly is not an invari-
ance for (1.4). In certain situations, depending on the relative position of solutions
and signed direction of translation, it is even “better” than an exact symmetry, a
key special feature which we exploit repeatedly in our maximum principle argu-
ments.

Few known examples of complete embedded hypersurfaces in R
n satisfying the

self-shrinker equation, and indeed several non-existence results are known. In the
paper [Hu1], Huisken showed that the only positive mean curvature H ≥ 0 rota-
tionally symmetric hypersurface Σn, defined by revolution of an entire graph over
the x1-axis, is the cylinder.

However, without the curvature assumption H ≥ 0 it is still an open question
as to whether there could exist for example non-standard embedded self-shrinking
spheres, planes or cylinders. Note in this connection that Angenent in [Ang] gave
numerical evidence for many non-round immersed spheres with a rotational sym-
metry axis. Our Theorem 2 answers the question negatively under the assumption
of embeddedness as well as a rotational symmetry axis of the hypersurface. Thus
there are no analogues of the members of the rotationally symmetric Delaunay
unduloid family of embedded, complete, singly periodic constant mean curvature
surfaces that in the H ≡ 1 case interpolates between the round cylinder and a string

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SELF-SHRINKERS WITH A ROTATIONAL SYMMETRY 3947

of round spheres touching at antipodal points (see [De] or [KK]). However, as The-
orem 1 demonstrates there does exist a family of self-shrinkers (with boundary)
interpolating between the flat plane and round cylinder orthogonal to the plane.

Notice that the existence of the “trumpet” family of self-shrinkers as in Theorem
1 (and its precise version in Theorem 3 below) along with the maximum principle for
equation (1.1) places certain crude a priori restrictions on what the non-compact
ends of a general self-shrinker can be. Without investigating such issues further
at present, let us remind the reader that this is related to announced work by
Tom Ilmanen [Il] stating that self-shrinkers have ends that are (in Hausdorff sense)
asymptotically conical.

As mentioned in the introduction, there has been recent interest in applying
the desingularizing methods of Kapouleas to the construction of complete embed-
ded self-shrinkers with genus. Apart from its use in the proof of Theorem 2, the
perspective of such constructions is one of the main interests of Theorem 1.

We note that simultaneously with our work for this paper, the recent mono-
graph of Giga-Giga-Saal [GGS10] was also concerned with different proofs of well-
known weaker versions of the uniqueness of self-shrinkers given by entire cylindrical
graphs, which dates back to Huisken [Hu1] (see also Soner-Souganidis [SS93] and
Altschuler-Angenent-Giga [AAG95]), a special case of the present paper. Note also
that Lemma 1 below alone removes the assumption of H ≥ 0 from all such results;
see Corollary 2.

2. Proof of Theorem 1: An integral identity for graphs

The version of Theorem 1 we will prove is more precisely stated as follows:

Theorem 3 (:= Theorem 1’). Let n ≥ 2. For each fixed ray from the origin,

rσ(x) = σx, rσ : (0,∞) → R
+, σ > 0,

there exists a unique smooth graphical solution uσ : [0,∞) → R
+, of (1.6), asymp-

totic to rσ.
Also, for d > 0, any solution u : (d,∞) → R+ to (1.6) is either the cylinder

u ≡
√
2(n− 1), or is one of the uσ for some σ = σ(u) > 0.

Furthermore, the following properties hold for uσ when σ > 0:

(i) uσ > rσ, and uσ(0) <
√
2(n− 1),

(ii) |uσ(x)− σx| = O( 1x ), and |u′
σ(x)− σ| = O( 1

x2 ) as x → +∞,
(iii) Σσ generated by uσ has mean curvature H(Σσ) > 0,
(iv) uσ is strictly convex, and 0 < u′

σ < σ holds on [0,∞),
(v) γσ, the maximal geodesic containing the graph of uσ, is not embedded.

This immediately gives the following corollary, where as an improvement over
[Hu1] (where H ≥ 0 was required) we do not need any curvature assumption.

Corollary 2. Let Σn be a smooth self-shrinking hypersurface of revolution, which
is generated by rotating an entire graph around the x1-axis. Then Σn is the round
cylinder R× Sn−1 of radius

√
2(n− 1) in Rn+1.

Proof of Corollary 2. Any entire graph is a graph over the right half axis. Theorem
3 characterizes all such graphs, and in particular says that none are embedded
except the cylinder solution. �
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Note that our Theorem 3 amounts to the following interesting geometric fact,
which we get since instead of (n − 1) we may take an arbitrary number α > 0
everywhere in our proofs.

Corollary 3. In the (non-complete) generalized Gaussian upper half-plane

Gα = (Rx × R
+
r , gij = r2αe−

x2+r2

4 δij),

for any α ≥ 0, there exists for each σ > 0 a unique geodesic ray uσ, with the
properties in Theorem 3. Note that for the usual Gaussian metric (where α = 0),
we have uσ ≡ rσ, i.e. straight lines through the origin.

We will need the following lemma, which observes sufficient conditions for solu-
tions to become non-graphical.

Lemma 1. If x0 ∈ (0,∞), and (x0, x∞) is a maximally extended solution to the
initial value problem

(2.1)

⎧⎪⎪⎨
⎪⎪⎩

u′′ =
[
x
2u

′ + n−1
u − u

2

](
1 + (u′)2

)
,

u(x0) = σx0,

u′(x0) ≥ σ,

where σ > 0, then x∞ < ∞, and if u(x0) ≥
√
2(n− 1), then x∞ ≤ (1 + 1

n−1 )x0.

Geometrically these initial conditions mean that H(u(x0)) ≤ 0 at the point on the
hypersurface Σ.

Proof of Lemma 1. Defining Ψ(x) := xu′(x)− u(x), we note that the initial condi-
tions are equivalent to Ψ(x0) ≥ 0. Since

(2.2) Ψ′ =
(Ψ
2
+

n− 1

u

)
(1 + (u′)2) >

Ψ

2
≥ 0,

we see that Ψ′ > 0 and Ψ ≥ 0, so u′(x) ≥ u(x)/x > 0, for x ≥ x0. Thus in particular

there always exists x′
0 ≥ x0 such that u(x′

0) ≥
√
2(n− 1) and Ψ(x′

0) ≥ 0, and we

can without loss of generality assume u(x0) ≥
√

2(n− 1).
If we define for u the quantity

Φ(x) :=
x

2
u′ +

n− 1

u
− u

2
,

then by (2.1) we have Φ(x0) ≥ n−1
σx0

. We claim that in fact Φ(x) ≥ n−1
σx0

for all
x ≥ x0. Namely, assuming this holds up to x, we have for x ≥ x0,

d

dx

(x
2
u′ +

n− 1

u
− u

2

)
=

x

2
u′′ − (n− 1)

u′

u2
=

x

2

(
1 + (u′)2

)
Φ− (n− 1)

u′

u2

≥ x

2

n− 1

σx0

(
1 + (u′)2

)
− (n− 1)

u′

u2
≥ n− 1

2σ
> 0,

assuming that both u(x) ≥
√
2(n− 1) and u′(x) ≥ σ. In particular u′′ ≥ 0, and

hence the set of conditions

(2.3)

⎧⎪⎨
⎪⎩

Φ(x) ≥ n−1
σx0

,

u′(x) ≥ σ,

u(x) ≥
√
2(n− 1)

are simultaneously preserved by the self-shrinker ODE in (1.6) as x ≥ x0 increases.
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Using Φ(x) ≥ n−1
σx0

, we get that u′′ ≥ n−1
σx0

(1 + (u′)2), for x ≥ x0, and integrating
this inequality gives

u′(x) ≥ tan
[
(n− 1)

x− x0

σx0
+ arctanσ

]
,

which finally leads to x∞ < σx0

n−1

(
π
2 − arctanσ

)
≤ n

n−1x0 + x0 < ∞. �

Remark 2. Incidentally Lemma 1 also removes the H ≥ 0 assumption, yielding a
different proof of Corollary 2.

Lemma 2 (Integral identity). Any solution u : (d,∞) → R+ to (1.6), where d ≥ 0,
satisfies for some σ = σ(u) ≥ 0 the identity

(2.4) u(x) = 2(n−1)x

∫ ∞

x

1

t2

{∫ ∞

t

s

2

1 + (u′(s))2

u(s)
e−

1
2

∫ s
t
z(1+(u′(z))2)dzds

}
dt+σx,

when x ∈ (d,∞).

Proof. Suppose first that we are given a solution u : (d, a) → ∞ over an interval
(d, a). We can regard the solution u as solving an inhomogeneous linear equation
determined by freezing the coefficients at u,

(2.5) u′′ −
(
1 + (ϕ′)2

)x
2
u′ +

(
1 + (ϕ′)2

)u
2
= (n− 1)

(
1 + (ϕ′)2

)
ϕ

,

where we have set u = ϕ. We can solve the resulting linear equation with variable
coefficients, for x ∈ (d, a), by making the observation that a pair of spanning
solutions of the homogeneous linear equation are

(2.6) u1(x) = x and u2(x) = x

∫ a

x

e−
1
2

∫ a
s

z(1+(ϕ′)2)dz

s2
ds.

Then computing the Wronskian W (s) = e−
1
2

∫ a
s

z(1+(ϕ′(z))2)dz and matching the
initial conditions gives

u(x) =
u(a)

a
x+ (u(a)− u′(a)a)x

∫ a

x

e−
1
2

∫ a
s

z(1+(u′)2)dz

s2
ds

+ (n− 1)x

∫ a

x

1

t2

{∫ a

t

s
(
1 + (u′(s))2

)
u(s)

e−
1
2

∫ s
t
z(1+(u′(z))2)dzds

}
dt.(2.7)

To complete the proof of (2.4), we will show that for some limit σ ≥ 0,

(2.8)
u(a)

a
→ σ, for a → ∞,

(2.9) (u(a)− u′(a)a)x

∫ a

x

e−
1
2

∫ a
s

z(1+u′2)dz

s2
ds → 0, for a → ∞.

Recall that by Lemma 1, for any solution u : (d,∞) → R+ the quantity Ψ(x) =

xu′(x)−u(x) is pointwise negative. Thus the ratio u(a)
a is monotonically decreasing

in a, and hence converges to some limit σ ≥ 0. The negativity of Ψ also implies
that

(2.10) u(x) ≥ (n−1)x

∫ a

x

1

t2

{∫ a

t

s
(
1 + (u′(s))2

)
u(s)

e−
1
2

∫ s
t
z(1+(u′(z))2)dzds

}
dt+σx.
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By this it follows that there exists a sequence {ak} increasing to infinity such

that u(ak) ≥
√
2(n− 1). Namely, otherwise one would have that u(x) <

√
2(n− 1)

for large enough x. With (2.10) we get for such large x that

u(x) ≥ 2(n− 1)√
2(n− 1)

−R(a) →
√
2(n− 1), for a → ∞,

where R(a) is an explicit error term, yielding the contradiction u(x) ≥
√
2(n− 1).

Moreover, we can modify the sequence {ak} to satisfy in addition u′(ak) ≥ 0.
This is easily seen to follow from equation (1.6) and the mean value theorem, using

the fact that u(ak) ≥
√
2(n− 1) on the original sequence. Thus we have

0 < u(ak)− u′(ak)ak <
√
2(n− 1),

so that this term is bounded, and since

∫ ak

x

e−
1
2

∫ ak
s

z(1+(u′(z))2)dz

s2
ds ≤ e−

a2
k
4

x2

∫ ak

x

e
s2

4 ds → 0, for ak → ∞,

we see that inserting the sequence ak → ∞ in (2.7) leads to (2.4). �

As an immediate consequence of Lemma 2 we see that uσ(x) > σx, i.e. uσ > rσ,
which leads to the following L∞-estimates.

Lemma 3. Let u : (d,∞) → R+ be as in Lemma 2, with σ > 0. Then

sup
s∈(x,∞)

|u(s)− σs| ≤ 2(n− 1)

σx
,(2.11)

sup
s∈(x,∞)

|u′(s)− σ| ≤ 2(n− 1)

σx2
,(2.12)

for x ∈ (d,∞). In particular, u extends to uσ : (0,∞) → R+.

Proof. We can estimate using u > rσ,

|u(x)− σx| ≤2(n− 1)

σ

∫ ∞

x

1

t2

{∫ ∞

t

s

2
(1 + (u′(s))2)e−

∫ s
t

z
2 (1+(u′(z))2)dzds

}
dt

≤2(n− 1)

σx
,

and by similar reasoning obtain the estimate for u′. �

We can thus assume without loss of generality that d = 0.
To prove existence of a solution uσ for any σ, we find it illustrative to construct

each solution uσ as a limit of approximating solutions. More specifically, fixing a
σ > 0, we solve the initial value problem

(2.13)

⎧⎪⎪⎨
⎪⎪⎩

u′′ =
[
x
2u

′ + n−1
u − u

2

](
1 + (u′)2

)
,

u(a) = aσ,

u′(a) = σ

for a positive. Denoting the solution uσ,a, one derives the analogous identity
(2.14)

uσ,a(x) = (n− 1)x

∫ a

x

1

t2

{∫ a

t

(
1 + u′

σ,a(s)
2
)

uσ,a(s)
e−

1
2

∫ s
t
z(1+u′

σ,a(z)
2)dzds

}
dt+ σx,
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for x < a. The lack of terms in this expression corresponding to the homoge-
neous equation is a special property of the initial conditions. One derives uniform
estimates analogous to (2.11)–(2.12) for the solutions

sup
s∈(x,a)

|uσ,a(s)− σs| ≤ 2(n− 1)

σx
,(2.15)

sup
s∈(x,a)

|u′
σ,a(s)− σ| ≤ 2(n− 1)

σx2
,(2.16)

for any x < a. This gives the fact that each solution uσ,a extends to (0, a), and by
compactness that the family {ua}a>0 converges to a limiting solution uσ on (0,∞),

uniformly in the C2-norm on compact sub-intervals.
Note however, that each approximate solution is really only approximate: Lemma

1 implies that they do not remain graphical for values of x much larger than a, but
bend upwards with u′

σ,a(x) → ∞ as x → x∞ < ∞.

We next prove that any solution uσ : (0,∞) → R
+ asymptotic to the ray rσ is

unique. Recall that we have shown that, given a σ, any solution uσ must satisfy

(2.17) uσ(x) > σx

as well as the L∞-estimates in (2.11)–(2.12). Consider for b > 0 the Banach space

C1
0 ([b,∞)) = {v : [b,∞) → R | v, v′ ∈ C0([b,∞))}

of continuously differentiable functions v such that |v(x)| → 0 and |v′(x)| → 0 as
x → +∞, endowed with the uniform C1-norm ‖v‖C1 = ‖v‖∞ + ‖Dv‖∞, where the
supremum is taken over [b,∞).

Also, for b, σ > 0 we can for example consider the open subsets

Yσ,b :=

{
v ∈ C1

0 ([b,∞))
∣∣∣ v(x) > 0, |v′(x)| < 4(n− 1)

σx2

}
,

so that by the estimates (2.11)–(2.12) the solutions to (1.6), σx, are in Yσ,b.
Then we will show that the non-linear mapping Tσ on Yσ,b given by

[Tσv](x) = 2(n− 1)x

∫ ∞

x

1

t2

{∫ ∞

t

1 + (v′(s) + σ)2

v(s) + σs

s

2
e−

∫ s
t

z
2 (1+(v′(z)+σ)2)dzds

}
dt

is a contraction, if b = b(n, σ) is chosen large enough. Note that if u is a solution
to the equation (1.6), then by the integral identity in Lemma 2,

[T̃σu](x) := [Tσ(s �→ u(s)− σs)](x) + σx = u(x),

and conversely, so that v(x) + σx solves equation (1.6) if and only if Tσv = v.
In fact Tσ,b is well defined, and we get the mapping property

Tσ : Yσ,b → Yσ,b,

as follows similarly to the proofs of the estimates in Lemma 3 and of the properties
(2.17), using the integral identity in Lemma 2.

Proposition 1. There exists b0 = b0(n, σ) such that Tσ is a contraction for the
norm ‖ · ‖C1 on the set of functions Yσ,b for b ≥ b0.
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Proof. For two functions v1, v2 ∈ Yσ,b we may write ui(x) = vi(x) + σx and get for

T̃σ the expression:

T̃σu2 − T̃σu1

= 2(n− 1)x

∫ ∞

x

1

t2

∫ ∞

t

(
1

u2
− 1

u1

)
s

2
(1 + (u′

2)
2)e−

∫ s
t

1
2 z(1+(u′

2(z))
2)

+ 2(n− 1)x

∫ ∞

x

1

t2

∫ ∞

t

s
2 (1 + (u′

2)
2)

u1

(
e−

∫ s
t

z
2 (1+(u′

2)
2) − e−

∫ s
t

z
2 (1+(u′

1)
2)
)

+ 2(n− 1)x

∫ ∞

x

1

t2

∫ ∞

t

1

u1

s

2

(
(u′

2)
2 − (u′

1)
2
)
e−

∫ s
t

z
2 (1+(u′

1)
2)

=: A+B + C.

We estimate the term A by

A ≤ 2(n− 1)
||u2 − u1||∞

σ2x2
.

The term C may be estimated by

C ≤ ||u′
2 − u′

1||∞||u′
2 + u′

1||∞
n− 1

σ

∫ ∞

x

1

t2

{∫ ∞

t

se
1
4 (t

2−s2)ds

}
dt

= ||u′
2 − u′

1||∞||u′
2 + u′

1||∞
2(n− 1)

σx
.

To estimate the term B, we note that, for real numbers x, y ≤ c, one has |ey−ex| ≤
ec|y − x| so that we may estimate term B as follows:

B ≤ ||u′
2 + u′

1||∞||u′
2 − u′

1||∞||1 + (u′
2)

2||∞
(n− 1)x

σ

×
∫ ∞

x

1

t2

{∫ ∞

t

1

4
(s2 − t2)e

1
4 (t

2−s2)ds

}
dt

≤ ||u′
2 + u′

1||∞||u′
2 − u′

1||∞||1 + (u′
2)

2||∞
(n− 1)x

2σ

×
∫ ∞

x

1

t3

{∫ ∞

t

1

2
(s2 − t2)e

1
4 (t

2−s2)sds

}
dt

= ||u′
2 + u′

1||∞||u′
2 − u′

1||∞||1 + (u′
2)

2||∞
(n− 1)x

2σ

∫ ∞

x

1

t3

{∫ ∞

0

τe−τdτ

}
dt

≤ ||u′
2 + u′

1||∞||u′
2 − u′

1||∞||1 + (u′
2)

2||∞
(n− 1)

2σx
.

Also, we may write

(T̃σu)
′ =

T̃σ(u)

x
− 2(n− 1)

x

∫ ∞

x

s
2

(
1 + (u′(s))2

)
u(s)

e−
∫ s
x

z
2 (1+(u′(z))2)dzds+ σ,
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and from this representation formula similarly obtain, for pi(s) =
s
2 (1 + (u′

i(s))
2),

(T̃σu2)
′ − (T̃σu1)

′ =
1

x
(Tσu2 − Tσu1)

− 2(n− 1)

x

∫ ∞

x

(
1

u2(s)
− 1

u1(s)

)
p2(s)e

−
∫ s
x
p2(z)dz

− 2(n− 1)

x

∫ ∞

x

p2(s)

u1(s)

(
e−

∫ s
x
p2(z)dz − e−

∫ s
x
p1(z)dz

)

− 2(n− 1)

x

∫ ∞

x

1

u1(s)
(p2(s)− p1(s)) e

−
∫ s
x
p1(z)dz

=
1

x
(Tσu2 − Tσu1)− A′ −B′ − C ′.

Then the terms A′, B′, and C ′ may be treated similarly to the terms A, B, and C
noted before.

Thus we see, going back to vi and to Tσ, that

(2.18) ||Tσv2 − Tσv1||C1 < τ ||v2 − v1||C1 ,

for some 0 < τ < 1, if we choose b0 large enough, and with the C1-norm taken over
(b0,∞). Thus Tσ : Yσ,b0 → Yσ,b0 is a contraction.

Note also that a family version of the proposition follows, that is, if 0 < σi < ∞
are given, then b0 and τ can be chosen so that (2.18) holds uniformly for σ ∈
[σ1, σ2]. �

Applying the proposition shows the claimed uniqueness for graphs over half-lines
satisfying equation (1.6). Namely, let two solutions u1 and u2 to the equation for
the same σ-value be given. Then for b0 chosen large enough we have u1, u2 ∈ Yσ,b0

and the result follows.

Remark 3. Since the map Tσ is a contraction for large enough x-values, one can also
prove the existence part (for large x) of Theorem 1 using a fixed point principle.

The graphs of the functions uσ constructed above are eventually graphical over
the r-axis as well (since they are eventually increasing), and are given by functions
f1/σ : [r1/σ,∞] → R on some maximal domain (r1/σ,∞). The functions f1/σ then
satisfy equation (1.7), and an analysis similar to that in the proof of Lemma 2 gives
that the f1/σ satisfy the identity

(2.19) Sσf1/σ = f1/σ,

where the map Sσ given by

(2.20) f �→ r

σ
− (n− 1)r

∫ ∞

r

1

t2

∫ ∞

t

f ′(s)
(
1 + (f ′(s))2

)
e−

∫ s
t

z
2 (1+(f ′(z))2)dzdsdt,

which is then similarly shown to be a contraction mapping. The fixed points of the
maps S1/σ and Tσ then determine a complete geodesic γσ in the upper half-plane.

We now show that the γσ depend smoothly on the parameter σ in the Ck topology.
For this, we will need the following general fact, proved in the Appendix.

Lemma 4. Let Φσ : Y → Y be a smooth one parameter family of smooth contrac-
tion mappings on a fixed open subset Y of a Banach space X. Then the fixed points
xσ (assumed to exist) are smooth functions of σ.
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Thus, the solutions γσ depend smoothly on C1 in the parameter σ. However,
the geodesic equation gives that the dependence is smooth on Ck for any k.

Lemma 5. The map σ �→ fσ : R+ → Ck is smooth for any k.

Proof. The equation

(2.21) f ′′
σ (r) =

{(
r

2
− n− 1

r

)
f ′
σ(r)−

fσ(r)

2

}
(1 + (f ′

σ)
2)

immediately gives that the second derivative f ′′
σ is differentiable in σ. Differentiating

(1.7) in r then gives that all higher derivatives f
(k)
σ are differentiable in σ as well. �

By Lemma 5, the function F (σ, r) given by

(2.22) F (σ, r) = fσ(r)

is smooth on its domain of definition. Note that, as σ → ∞ the functions f1/σ
converge to the function f0(r) ≡ 0 uniformly in Ck on compact subsets of (0,∞)

for any k. Thus, defining σ̂ = 1/σ, it follows that the function g(r) = df
dσ̂ |σ̂=0(r) is

defined on (0,∞) and satisfies the linearized equation

(2.23) g′′(r) =

(
r

2
− n− 1

r

)
g′(r)− g(r)

2
.

To analyze solutions of the linearized equation, we again prove an integral iden-
tity.

Lemma 6. The solution to the linearized equation g above satisfies the identity

(2.24) g(r) = r − (n− 1)r

∫ ∞

r

1

t2

∫ ∞

t

g′(s)e(t
2−s2)/4dsdt.

Proof. Differentiating identity (2.19) (with σ̂ = 1/σ), we obtain

(2.25) f ′
σ̂(r) = fσ̂/r +

n− 1

r

∫ ∞

r

f ′
σ̂(s)(1 + (f ′

σ̂(s))
2)e−

∫ s
r

z
2 (1+(f ′

σ̂(z))
2)dzds.

Thus, for r > 2(n− 1), we get

(2.26) f ′
σ̂(r)/σ̂ < (1− 2(n− 1)/r2)−1.

Now, since

(2.27) f ′
σ̂(s)/σ̂

(
1 + (f ′

σ̂(s))
2
)
e−

∫ s
t

z
2 (1+(f ′

σ̂(z))
2)dz → g′(s)e(t

2−s2)/4, as σ̂ → 0,

the above estimate (2.26) gives convergence of equation (2.19) divided by σ̂ = 1/σ,
as σ̂ → 0 to (2.24) by, for example, the dominated convergence theorem. �

Corollary 4. The solution g to the linearized equation assumes both positive and
negative values on (0,∞).

Proof. Assume first that g > 0 everywhere on (0,∞). Note that we must then also
have g′ > 0 everywhere. Suppose g′(r0) ≤ 0 at some r0. Then appealing to equation

(2.23), we see that g′(r) < 0 for all r > r0. In particular, for r >
√
2(n− 1), we get

g′′(r) < 0, which implies that the graph of g will eventually intersect the r-axis, a
contradiction.
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Thus we have g′ > 0 on (0,∞). However, the identity (2.24) then gives the
contradiction

(2.28) lim
r→0

g(r) = −(n− 1)

∫ ∞

0

g′(s)e−s2/4ds < 0.

Since equation (2.24) is linear homogeneous, it follows that g < 0 cannot hold
either. �

Lemma 7. The functions uσ have positive slope on [0,∞) for σ > 0 sufficiently
large.

Proof. As before, take σ̂ = 1/σ. Then the graphs fσ̂ are defined on the maximal
interval (rσ̂,∞) (that is, limr→r+σ̂

f ′
σ̂(r) → ∞). Note that rσ̂ → 0 as σ̂ → 0, since

the graphs fσ̂ converge uniformly to 0 in any Ck on compact subsets of (0,∞).

Now, let r0 be a point such that ∂f
∂σ (r0) = g(r0) < 0. Then, choosing σ̂ sufficiently

small so that rσ̂ < r0, we get that

(2.29) fσ̂(r0) = g(r)σ̂ +O(σ̂2) < 0,

for σ̂ small enough. Since each fσ̂ is eventually positive, we see that there is a
largest point mσ̂ such that fσ̂(mσ̂) = 0. Thus f ′

σ̂(mσ̂) > 0. Then the graph of
fσ̂|[mσ̂,∞] is also graphical over the x-axis, and defines the solutions uσ for σ̂ = 1/σ.
Thus, for σ sufficiently large, the function uσ is increasing. �

As corollaries to the above, we now obtain the properties (i) and (iv) listed in
Theorem 3.

Proof of Theorem 3(iv). First we prove the second part of Theorem 3(iv), namely
that the functions uσ : [0,∞) → R+ are strictly increasing for any σ > 0.

By Lemma 7 this is true for large enough σ > 0. Assume there exists a σ > 0,
and hence a largest σ0 > 0, such that this is not true. Then there is a point x0 > 0
such that u′

σ0
(x0) = 0, and since σ0 is the largest such point, then by continuity

of the solution in σ, we must have uσ0
(x0) =

√
2(n− 1) unless x0 = 0 (since

otherwise by (1.6) there would be a point x′
0 �= x0 such that u′

σ(x
′
0) < 0, violating

the maximality). Thus uσ0
in that case is the cylinder, a contradiction. Since in

the other case u′
σ0
(0) = 0, we get by reflection a smooth, entire graphical surface

of revolution with H ≥ 0, and thus by [Hu1] we get that uσ0
is the cylinder, again

a contradiction. Thus Lemma 7 extends to all σ > 0.
As a corollary, we get the convexity in Theorem 3(iv), i.e. that uσ is strictly

convex on [0,∞) for σ > 0. Namely, differentiating (2.4) twice, we obtain

u′′
σ

1 + (u′
σ)

2
= (n− 1)

[
1

uσ(x)
−
∫ ∞

x

s
2 (1 + (u′

σ(s))
2)

u(s)
e−

∫ s
x

z
2 (1+(u′

σ(z))
2)dzds

]
,

and hence u′′
σ > 0 on [0,∞), since uσ(s) > uσ(x) for s > x. �

We also get the second property in Theorem 3(i).
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Proof of Theorem 3(i). Using the integral identity in Lemma 2 for uσ gives the
following sharp bound on the value of u(0), using l’Hôpital’s rule:

u(0) ≤ 2(n− 1)

u(0)

∫ ∞

0

s

2
(1 + (u′(s))2)e−

∫ s
0

z
2 (1+(u′(z))2)dzds ≤ 2(n− 1)

u(0)
,

with sharp inequality unless u ≡ u(0), so that

u(0) ≤
√
2(n− 1),

with equality if and only if u is the cylinder solution. �

3. Classification of self-shrinkers with rotational symmetry

In this section we prove Theorem 2, which we restate here for the convenience
of the reader in the context of geodesics in the upper half-plane (H+, gAng).

Theorem 4. Let γ be a complete embedded geodesic for the metric gAng in the
upper half-plane H+. Then the following statements hold:

(1) If γ is closed, it is a curve that intersects the r-axis exactly twice.

(2) If γ is not closed, it is either the r-axis, the line r =
√
2(n− 1), or the

sphere x2 + r2 = 2n.

Corollary 5 (= Theorem 3(v)). In particular, this implies the remaining part
(v) in Theorem 3, that the asymptotically conical ends are not parts of complete,
embedded self-shrinkers.

To facilitate the discussion, we say that a point in a smooth curve is “vertical”
if the tangent line at that point is parallel to er, and “horizontal” if parallel to ex,
where {ex, er} is the unit basis corresponding to the Euclidean coordinates (x, r) on
H+. By the first and second quadrants, we as usual mean the sets {(x, r) | x, r > 0}
and {(x, r) | x < 0, r > 0} contained in H+, respectively. For a smooth curve
γ(t) = (x(t), r(t)) parametrized by Euclidean arc length, we denote

θ(t) = arccos ẋ(t) = arctan(ṙ(t)/ẋ(t)),

and we say that γ(t) is a solution to (1.4) if the triple (x(t), r(t), θ(t)) solves (1.4).
We occasionally refer to such curves γ as “geodesics” for the metric gAng in H+,
although this is a slight abuse of terminology as solutions to (1.4) are parametrized
by Euclidean arc length, not arc length with respect to gAng. We will make frequent
use of the following elementary observation.

Lemma 8. Let γ(t) = (x(t), r(t)) be a solution to (1.4). Then the functions x(t)

and r(t) −
√
2(n− 1) have neither positive minima nor negative maxima, and in

particular these functions have different signs at successive critical points.

Remark 4. We remind the reader that the reflection (x, r) �→ (−x, r) is a symmetry
of the equation, a fact that will be used often in the text below.

The following lemma is of fundamental importance for our proof. Included in
the statement of (2) is the (geometrically unsurprising) fact that geodesics for the
metric gAng that leave the upper half-plane through the x-axis do so orthogonally.

Lemma 9. Let γ : (a, b) → H+ be a solution to (1.4), maximally extended as a
graph over the x-axis. Then

(1) There is t ∈ (a, b) such that x(t) = 0.
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(2) Assuming the existence and finiteness of the limit

xb := lim
t→b−

x(t) < ∞,

the curve γ extends smoothly to (a, b], with γ(b) a vertical point. If r(b) = 0,
the curvature of γ at γ(b) (signed w.r.t. the orientation out of the half-
plane) is − xb

2n .
(3) There is at least one horizontal point in γ.

Proof. Assume the orientation of the curve is such that cos θ = ẋ(t) > 0 for t ∈
(a, b). Set

(3.1) Λ(t) := x(t) sin θ(t)− r(t) cos θ(t) = −〈γ(t), ν(t)〉,
where ν(t) = (− sin θ(t), cos θ(t)) is the (leftward pointing w.r.t γ̇) unit normal to
γ. Then (1.4) becomes

(3.2) θ̇ =
1

2
Λ +

n− 1

r
cos θ,

and Λ satisfies the equation

(3.3) Λ̇ =
1

2
Λ〈γ, γ̇〉+ n− 1

r
cos θ〈γ, γ̇〉.

We now investigate the oscillation behavior. Picking some (x0, u(x0)) on γ and
integrating by parts in (1.6) gives

(3.4) arctanu′ |xx0
= xu(x)− x0u(x0) +

∫ x

x0

[n− 1

u(s)
− u(s)

]
ds,

so that if we assume a lower (resp. upper) bound on r(t) = u(x), as x → xb, it
leads to a uniform upper (resp. lower) bound on u′(x). Therefore by the mean
value theorem (recall that by Lemma 8 successive points where u′(x) = 0 must

occur on either side of the line r =
√
2(n− 1)), such points must either eventually

stop occurring as t → b, or the limit r(t) →
√
2(n− 1) must hold. But if u′(x)

eventually has a fixed sign, then the limit limt→b r(t) also exists.
Thus if we denote by r+b (resp. r−b ) the lim sup (resp. lim inf) of r(t) as t → b,

then we have shown that either:

(i) There is a limit: lim rb = r+b = r−b , or

(ii) both r+b = ∞ and r−b = 0.

But the second situation does not happen: Case (ii) implies that the straight line
segment {(xb, t) : t > 0} satisfies (3.2), and thus we conclude xb = 0. But from
(ii) we thus also obtained a positive solution g(r) to the linearized equation at the
r-axis (2.23), which gives a similar contradiction to the one in Corollary 4.

Now, it is easy to see that the limit rb is finite: If xb ≤ 0, then assuming both
r(t) >

√
2(n− 1) and ṙ(t) > 0, (3.2) gives that θ̇(t) < 0, which immediately bounds

rb away from ∞.
On the other hand, still assuming rb = +∞ but xb > 0, then (again by Lemma

8) eventually ṙ(t) > 0 as t → b, and hence eventually 〈γ, γ̇〉 > 0. There are also
choices of t0 ∈ (a, b) arbitrarily close to b with Λ(t0) > 0, since otherwise for some
fixed x0 < xb we would have had xu′(x) − u(x) < 0 for x in an interval (x0, xb),
leading to the contradictory bound

(3.5) rb = lim
x→xb

u(x) ≤ xb
u(x0)

x0
< ∞.
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Now, since 〈γ(t), γ̇(t)〉 > 0, the property Λ(t) > 0 is propagated on t ∈ (t0, b) by
(3.3). Dividing (3.3) by Λ and integrating over (t0, t) gives the fact that

(3.6) Λ(t) > e|γ(t)|
2/4−|γ(t0))|2/4Λ(t0).

However, combining (3.6) with (3.2) and |γ(t)| → +∞ gives the fact that

(3.7) θ(t)− θ(t0) → +∞
as t → b, contradicting the fact that γ is graphical over the x-axis.

Thus the limit rb exists and is a non-negative real number. If it is positive,
then γ(t) remains in a relatively compact subset of the upper half-plane H+ as
t → b. Equation (3.2) then gives uniform Ck-bounds on γ(t) and the desired
smooth extension to a vertical endpoint, giving conclusion (2) in that case. Lemma
8 then implies that xb > 0.

If on the other hand rb = 0, then we claim that θ(t) decreases to −π/2 mono-
tonically as t increases to b. To see this, first note that θ(t) cannot remain bounded
away from −π/2 as t → b, since otherwise (3.2) and r(t) → 0 give that

(3.8) θ̇(t) ≥ δ

r(t)
− 2xb, where δ := inf

t↗b
(cos θ(t)),

for t close enough to b. This, after using that ṙ(t) ≥ −1 and integrating, gives

θ(t2)− θ(t1) ≥ log

(
δ
r(t1)

r(t2)

)
− 2xb(t2 − t1),

for any t2 > t1, and implicitly bounds r(t) away from zero as t → b, a contradiction.

In particular there must be points arbitrarily close to b s.t. θ̇ > 0. Now, r(t) → 0
and Lemma 8 imply that ṙ(t) < 0 for b − t sufficiently small, and differentiating
(3.2) gives that

(3.9) θ̈(t) = −n− 1

r2
ṙ(t) cos θ(t),

at times t for which θ̇(t) = 0, if there were any. Thus it follows that in fact θ̇(t) < 0
for all b− t sufficiently small, and we have proved that θ(t) ↘ −π/2 as t ↗ b.

Finally, applying l’Hôpital’s rule to (3.2) gives that

lim
t→b−

θ̇(t) = − xb

2n

so that γ(t) extends with two derivatives to (a, b] with xb > 0. The higher regularity
then follows immediately, giving (2) also in this case.

In all cases, we see that xb > 0. By symmetry, we obtain that also xa < 0, which
gives claim (1).

To see (3), suppose first that (a, b) is a bounded interval. Note that (3) is clear
if lim θ(t) ∈ {±π/2} is different at the two endpoints. We may thus assume, with
our chosen orientation, that limt→a+ θ(t) = limt→b− θ(t) = π/2, and we argue by
contradiction.

By (1), there is a t0 ∈ (a, b) so that x(t0) = 0. If r(t0) >
√
2(n− 1), then (3.2)

gives that θ̇(t0) < 0. Differentiating (3.2) and evaluating at a point t for which

θ̇(t) = 0 gives that

(3.10) θ̈(t) = −n− 1

r2(t)
ṙ(t) cos θ(t) < 0,
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so that θ(t) is bounded away from π/2 as t → b, a contradiction. If r(t0) <√
2(n− 1), then (3.2) gives θ(t0) > 0 and we apply a similar argument as before

to contradict the assumption limt→a+ θ(t) = π/2. In the case of equality r(t0) =√
2(n− 1), we have θ̇(t0) = 0, and we refer to (3.10) to obtain that θ̇(t) < 0 for

t > t0, from which as before we obtain a contradiction.
If b = ∞ and a is finite, then Theorem 3 gives that γ contains the graph of

a function uσ for some σ > 0. In particular, we have that, with t0 as before,
r(t0) <

√
2(n− 1), and we argue as before that ṙ(t) = 0 for some t ∈ (a, t0).

Finally, if (a, b) = R, then Theorem 3 gives that γ coincides with the line r =√
2(n− 1) for which (3) clearly holds. �

Proposition 2. Let γ be a complete solution to (1.4), such that one of the following
statements hold:

(1) γ contains 7 vertical points.
(2) γ is closed and contains two vertical points in the first quadrant.
(3) γ is not closed and contains one interior vertical point.

Then γ is not embedded.

Proof of Proposition 2(1). Consider a segment of γ containing seven consecutive
vertical points, which we identify with the interval [1, 7] ⊂ R such that the vertical
points correspond to integer values of the parameter. The vertical points will thus
be denoted by (x(k), r(k)) for k = 1, . . . , 7. Then by Lemma 8, after possibly
reflecting γ through the r-axis, we can assume that x(k) is positive for k odd and
negative otherwise. Lemma 9(3) then gives the existence of a horizontal point
in each segment [k, k + 1], k = 1, . . . , 6, which we identify with the points k + 1

2 ,

k = 1, . . . , 6. Lemma 8 implies that both the segments [2+ 1
2 , 3+

1
2 ] and [4+ 1

2 , 5+
1
2 ]

intersect the line r =
√
2(n− 1), so assume, after possibly reversing orientation,

that [2 + 1
2 , 3+

1
2 ] intersects to the left of [4 + 1

2 , 5+
1
2 ]. Take γ1 to be the segment

[2 + 1
2 , 3 + 1

2 ] and take γ2 to be the segment [3 + 1
2 , 6 + 1

2 ]. Note that on γ1 the
outward pointing unit tangent is −ex at each endpoint, while on γ2 the outward
pointing unit tangent is ex.

We now translate the curve γ1 in the positive ex direction until we reach a
point of first contact with γ2. Note that such a point occurs, since both segments
intersect the line r =

√
2(n− 1), with γ1 intersecting to the left of γ2, and that this

point of first contact occurs away from the endpoints of both segments, and more
generally does not occur at any horizontal point (since in particular the convexity
near such a point is preserved under translation, it could not be a first intersection).
Let γ̂1 = γ1 + cex denote the segment for which the first point of contact occurs.
Appealing to system (1.4) we get that

(3.11) θ̇γ2
(p̂)− θ̇γ̂1

(p̂) =
c

2
sin θ

holds at the point of first contact p̂, and where θ = θγ′(p̂) = θγ̂1
(p̂), which is a

contradiction. �

Proof of Proposition 2(2). For simplicity of description, we identify γ with the unit
circle S1 = R/2πZ. Suppose now that there are two vertical points in γ in the
first quadrant, which after possibly reparametrizing we identify with the points
[0] and [π] in S1. By assumption, we have that x([0]) and x([π]) are positive.
Lemma 8 then gives an additional vertical point on each arc ([0], [π]) and ([π], [0]),
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which we identify with the points [π2 ] and [ 3π2 ] respectively. Now Lemma 9(3) gives

that there are horizontal points along the arcs ([0], [π2 ]), ([
π
2 ], [π]), ([π], [

3π
2 ]) and

([ 3π2 ], [0]), which we identify with the four points [ (2k−1)π
4 ], k = 1, . . . 4. Lemma

8 gives that both arcs [[ 7π4 ], [π4 ]] and [[ 3π4 ], [ 5π4 ]] intersect the line r =
√
2(n− 1),

and after possibly relabeling, we can assume that [[7π4 ], [π4 ]] intersects to the left

of [[ 3π4 ], [ 5π4 ]]. Assume now that the arc [[ 7π4 ], [π4 ]] contains no vertical points other

than [0], and take γ1 = [[ 7π4 ], [π4 ]] and γ2 = [[π4 ], [
7π
4 ]]. We then translate γ1 until

we reach a point of first contact with γ2 and, arguing as in the proof of Proposition
2(1), obtain a contradiction. �

Proof of Proposition 2(3). Identify γ with an interval (a, b) under a Euclidean arc
length parametrization, and assume first that a and b are finite. Proposition 2(2)
gives that γ contains a finite number of vertical points. Lemma 9 then gives that
γ extends to the closed interval [a, b] with vertical endpoints, and the assumption
that γ is complete in H+ gives that these endpoints are contained in the x-axis.

Now, suppose γ contains an interior vertical point c ∈ (a, b) , and assume that
it is in the second quadrant. By Lemma 9(3) the arcs [a, c] and [c, b] each contain
horizontal points p1 and p2, respectively, and consequently both intersect the line
r =

√
2(n− 1). Assume [a, c] intersects to the left of [c, b], and assume [p1, p2]

contains no vertical points other than c. Then set γ1 = [a, p1] and set γ2 = [p1, b].

Note that γ1 and γ2 both intersect the line r =
√
2(n− 1) and are compact.

Moreover, the outward pointing tangent to γ1 at p1 is−ex, and the outward pointing
tangent to γ2 at p1 is ex. As before, we translate γ1 in the positive ex direction
until we reach a point of first contact with γ2. By construction, this point of first
contact cannot occur at p1 (or its translated version). Moreover, by Lemma 9(2)
it cannot occur at the endpoints of γ1 and γ2 contained in the x-axis. Hence, it
is interior and non-transversal, and we obtain a contradiction as in the proof of
Proposition 2(1) and (2).

Assume now that both a and b are infinite and identify γ with the real line under
a Euclidean arc length parametrization. Assume that 0 is a vertical point in the
second quadrant. Then by the completeness of γ, the arcs (−∞, 0], [0,∞) contain
geodesic segments, maximally extended as graphs over the x-axis, and by Lemma
9 both contain horizontal points p1 and p2, respectively. Assume as before that
[p1, p2] contains no vertical points other than 0. By Proposition 2(2), γ has a finite
number of vertical points, and thus decomposes into a finite number of geodesic
segments, maximally extended as graphs over the x-axis. Then since (−∞, 0] and
[0,∞) have infinite Euclidean length, Lemma 9 and Theorem 3 imply that they
contain the segments

{(x, uσi
(x))|x ≥ 0}, i = 1, 2,

for distinct positive σ1 and σ2, respectively, after possibly reflecting through the
r-axis. Thus, both (−∞, 0] and [0,∞) intersect the line r =

√
2(n− 1) by Theorem

3, so assume that (−∞, 0] does so to the left of [0,∞). We then set γ1 := (−∞, p1]

and γ2 = [p1,∞). As before γ1 and γ2 intersect the line r =
√
2(n− 1), the outward

pointing tangent to γ1 at p1 is −ex, the outward pointing tangent to γ2 at p1 is
ex, and both curves γ1 and γ2 are properly embedded and separated by a positive
distance (since σ1 and σ2 are distinct). We then translate γ1 until we reach a point
of first contact with γ2 and obtain a contradiction as in the previous case.
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Finally, the case where the (a, b) = [0,∞) is handled exactly as in the previous
cases, and consequently we omit the details. �

We can now prove Theorem 4.

Proof of Theorem 4. Note that by Proposition 2 any non-closed embedded geodesic
γ different from the r-axis cannot contain any interior vertical points and thus is
globally given by the graph of a function u(x) satisfying (1.6) on an open interval
I away from its endpoints. Let Σ denote the surface of revolution determined by
γ. Then Σ is smooth and embedded and satisfies the self-shrinker equation (1.1).
Lemma 1 gives that u′(x)x− u(x) < 0, for all x ∈ I. This is in turn equivalent to
the positivity of the mean curvature of Σ with respect to the downward pointing
unit normal (with respect to the axis of rotation). Huisken’s classification of mean
convex self-shrinkers [Hu1] then implies that Σ is either the round sphere of radius√
2n or the cylinder of radius

√
2(n− 1).

If γ is closed, then Proposition 2 gives that it has at most two vertical points,
and Lemma 8 says that each is in a different quadrant of H+. This concludes the
proof. �

4. Appendix

We include for completeness a proof of the smoothness of fixed points that we
used in Lemma 4.

Proof of Lemma 4. Let σ be fixed, and let xσ+h, xσ be fixed points for Φσ and
Φσ+h. Then

|xσ+h − xσ| = |Φσ+h(xσ+h)− Φσ(xσ)|
≤ |Φσ+h(xσ+h)− Φσ(xσ+h)|+ |Φσ(xσ+h)− Φσ(xσ)|

≤
∣∣∣∣∂Φσ

∂σ
(σ, xσ+h)

∣∣∣∣h+ τ |xσ+h − xσ|+ o(h).

This gives the fact that the xσ are at least Lipshitz continuous functions of σ. To
show differentiability, we again write

xσ+h − xσ = Φσ+h(xσ+h)− Φσ(xσ)

= Φσ+h(xσ+h)− Φσ(xσ+h) + Φσ(xσ+h)− Φσ(xσ)

= Dxσ
Φσ(xσ+h − xσ) +O(|xσ+h − xσ|2) + Φσ+h(xσ+h)− Φσ(xσ+h).

Rearranging terms, we see that

(I −Dxσ
Φσ −O(|xσ+h − xσ|)) (xσ+h − xσ) = Φσ+h(xσ+h)− Φσ(xσ+h).

Dividing by h above and sending h → 0, we get

(4.1)
dxσ

dσ
=

(
I −Dxσ

Φσ

)−1 ∂Φ

∂σ
(σ, xσ).

Note that the operator A = I − Dxσ
Φσ is invertible, since the fact that Φσ is a

contraction gives ||DxΦ|| < 1.
Note that the formula for the derivative (4.1) gives the fact that the fixed points

xσ depend smoothly on the parameter σ, since the right hand side of σ may be
differentiated in σ if the mappings Φσ are smooth. �
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