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Similarity solutions are obtained for one-dimensional adiabatic flow behind a magnetogas-
dynamic cylindrical shock wave propagating in a rotating non-ideal gas in presence of an
azimuthal magnetic field. The density of the medium ahead of the shock is assumed to be
constant. In order to obtain the similarity solutions the angular velocity of the ambient medium
is assumed to be obeying a power law and to be decreasing as the distance from the axis
increases. It is found that the similarity solutions exist, in both the cases, when the initial
magnetic field is constant or obeying a power law. The effects of an increase in the value of the
index for variation of angular velocity of the ambient medium, in the value of the parameter
of the non-idealness of the gas and in the strength of the initial magnetic field are obtained.

Keywords: Shock wave; Magnetogasdynamics; Non-ideal gas; Rotating medium; Adiabatic
flow; Similarity solutions

1. Introduction

The formulation of self-similar problems and examples describing the adiabatic motion
of non-rotating gas models of stars, are considered by Sedov (1959), Zel’dovich and
Raizer (1967), Lee and Chen (1968) and Summers (1975). Rotation of the stars
significantly affects the process taking place in their outer layers. Therefore, question
connected with the explosions in rotating gas atmospheres are of definite astrophysical
interest. Chaturani (1970) studied the propagation of cylindrical shock waves through
a gas having solid body rotation, and obtained the solutions by a similarity method
adopted by Sakurai (1956). Nath et al. (1991) obtained the similarity solutions for
the flow behind spherical shock waves propagating in a non-uniform rotating
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interplanetary atmosphere with increasing energy. Ganguly and Jana (1998) studied

a theoretical model of propagation of strong spherical shock waves in a self-gravitating

atmosphere with radiation flux in presence of a magnetic field. They, also, considered

the medium behind the shock to be rotating, but neglected the rotation of the

undisturbed medium. In all of the works, mentioned above, the medium is taken to be

a gas satisfying the equation of state of a perfect gas.
Because of high pressure and density that generally occur behind a shock wave,

produced by an explosion, the assumption that the gas is ideal is no more valid.

The popular alternative to the ideal gas is a simplified van der Waals model. Roberts

and Wu (1996, 2003) adopted this model to discuss the shock wave theory of

sonoluminescence. In the present work, we too adopt this as our model of a non-ideal

gas to obtain the self-similar solutions for the flow behind a magnetogasdynamic

cylindrical shock wave propagating in a rotating gas in presence of an azimuthal

magnetic field. The non-ideal gas is assumed to have infinite electrical conductivity

and constant specific heats. The initial density of the medium is assumed to be constant.

In order to obtain similarity solutions, angular velocity of rotation of the ambient

medium is assumed to be obeying a power law and to be decreasing as the distance from

the axis increases. It is expected that such an angular velocity may occur in the

atmospheres of rotating stars.
Effects of a change in the strength of ambient magnetic field, in the non-idealness of

the gas, and in the index of variation of angular velocity of the ambient medium

(or index of variation of ambient magnetic field) are investigated.

2. Basic equations and boundary conditions

The fundamental equations governing the unsteady adiabatic cylindrically symmetric

motion of a non-ideal and perfectly conducting gas, which is rotating about the axis of

symmetry and in which an azimuthal magnetic field is permeated and heat conduction

and viscous stress are negligible (cf. Whitham 1958, Chaturani 1970), are
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where �, p, h are density, pressure and azimuthal magnetic field, respectively; u and v are

radial and azimuthal components of the fluid velocity; � is magnetic permeability; r and

t are distance and time; and e is internal energy per unit mass. Also, we write

v ¼ Ar, ð2Þ

where A is angular velocity of the medium at radial distance r from the axis of

symmetry.
In most of the cases the propagation of shock waves arises in extreme conditions

under which the assumption that the gas is ideal is not a sufficiently accurate

description. To discover how deviations from the ideal gas can affect the solutions, we

adopt a simple model. We assume that the gas obeys a simplified van der Waals

equation of state of the form (Roberts and Wu 1996, 2003)

p ¼
��T

1� b�
, e ¼ cvT ¼

p 1� b�ð Þ

� � � 1ð Þ
, ð3a; bÞ

where � is the gas constant, cv ¼ �=�ð�1Þ is the specific heat at constant volume and

� is the ratio of specific heats. The constant b is the ‘van der Waals excluded volume’;

it places a limit, �max ¼ 1=b, on the density of the gas.
We assume that a cylindrical shock is propagating outwards from the axis of

symmetry in the non-ideal and perfectly conducting gas with constant initial density.

Conditions across the magnetogasdynamic shock are

u2 ¼ ð1� �ÞV, �2 ¼
�1
�
, h2 ¼

h1
�
, ð4a�cÞ

p2 ¼
1

�M2
þ

2 1� �ð Þ

� � þ 1ð Þ � � � 1ð Þ � 2b�1

1

M2
þ
� � 1

4M2
A

1

�
� 1

� �2
( )" #

�1V
2, ð4dÞ

v2 ¼ v1, ð4eÞ

where

�3 � �2Lþ
� þ b�1 � 2

ð� þ 1ÞM2
A

� �
�þ

b�1
ð� þ 1ÞM2

A

¼ 0, ð5aÞ

L ¼
� � 1

� þ 1
þ

2b�1
ð� þ 1Þ

þ
2

ð� þ 1ÞM2
þ

�

ð� þ 1ÞM2
A

: ð5bÞ

Here V is the shock velocity, M is the shock-Mach number referred to the frozen

speed of sound �p1=�1ð Þ
1=2, and MA is the Alfven–Mach number. Quantities with

suffices ‘1’ and ‘2’ correspond to their values just ahead and just behind the shock,

respectively.
The shock-Mach number Me referred to the speed of sound in non-ideal gas

½�p1=�1 1� b�1ð Þ�
1=2 and the Alfven–Mach number MA are given by

Me ¼ Mð1� b�1Þ
1=2, MA ¼

V

ð�h21=�1Þ
1=2

, ð6a; bÞ
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where

M ¼
V

ð�p1=�1Þ
1=2

: ð6cÞ

Ahead of the shock the azimuthal magnetic field varies as

h1 ¼ h0R
�, ð7Þ

where h0 and � are constants, and R is the shock radius.
In order to obtain the similarity solution, it is assumed that the initial angular

velocity A1 varies as

A1 ¼ A0R
d, ð8Þ

where A0 and d are constants. The assumption of varying initial angular velocity
is necessary as d¼ 0 implies from relation (13) �¼ 1, which is inconsistent with
the relation (19).

The momentum equation (1b) in the undisturbed state of the gas, gives

p1 ¼ �1A
2
0 � ð1þ �Þ�h20

� �R2�

2�
þ constant: ð9Þ

The total energy of the flow-field behind the shock is not constant, but assumed to be
time dependent and varying as (Rogers 1958, Freeman 1968, Director and Dabora
1977)

E ¼ E0t
w, w � 0, ð10Þ

where E0 and w are constants. The positive values of w correspond to the class in
which the total energy increases with time. This increase can be achieved by the
pressure exerted on the fluid by an expanding surface (a contact surface or a piston).
Thus the flow is headed by a shock front and has an expanding surface as an inner
boundary.

3. Similarity solutions

We introduce the following similarity transformations to reduce the equations of
motion into ordinary differential equations:

u ¼ VUðxÞ, � ¼ �1�ðxÞ, p ¼ �1V
2PðxÞ, ð11a�cÞ

v ¼ VKðxÞ,
ffiffiffiffi
�

p
h ¼ �1=21 VHðxÞ, ð11d; eÞ

where U, �, P, H, and K are the functions of the non-dimensional variable x¼ r/R. The
shock front is represented by x¼ 1.

The shock conditions (4) are transformed into

Uð1Þ ¼ 1� �, �ð1Þ ¼
1

�
, Hð1Þ ¼

1

�MA
, ð12a�cÞ
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Pð1Þ ¼
1

�M2
þ

2 1� �ð Þ

� � þ 1ð Þ � � � 1ð Þ � 2b�1

1

M2
þ

� � 1ð Þ

4M2
A

1

�
� 1

� �2
( )

, ð12dÞ

Kð1Þ ¼
2�

�M2
þ
1þ �

M2
A

� 	1=2
, ð12eÞ

where

1þ d ¼ �: ð13Þ

The total energy behind the shock is given by

E ¼ 2�

Z R

rp

1

2
� u2 þ v2

 �

þ
p 1� b�ð Þ

� � 1
þ
�h2

2

� �
rdr ¼ E0t

w, ð14Þ

where rp is the radius of inner expanding surface. Applying the similarity transforma-

tions (11) to the relation (14), we find that the motion of the shock front is given by the

equation

R2V2 ¼
E0t

w

2��1J
, ð15aÞ

where

J ¼

Z 1

xp

1

2
� U2 þ K2

 �

þ
P 1� b�1�ð Þ

� � 1
þ
H2

2

� 	
xdx, ð15bÞ

in which xp is the value of x at the inner expending surface. Equation (15a) can be

written as

R
dR

dt
¼

E0

2��1J

� �1=2

tw=2, ð16Þ

which on integration gives

R ¼
8E0

��1J

� �1=4
1ffiffiffiffiffiffiffiffiffiffiffiffi

wþ 2
p t wþ2ð Þ=4: ð17Þ

From (34), we get the shock velocity

V ¼
dR

dt
¼

wþ 2ð Þ

4

R

t
¼

8E0

��1J

� �1= wþ2ð Þ
wþ 2ð Þ

w=ðwþ2Þ

4
R w�2ð Þ= wþ2ð Þ: ð18Þ

Since M and MA are constants for similarity solutions, we have

� ¼
w� 2

wþ 2
: ð19Þ
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Now, the following two cases arise:

Case 1 �¼ 0
In this case, we have

dþ 1 ¼ 0 ð20Þ

and the shock velocity is constant. It follows that p1 ¼ constant,

�1A
2
0 ¼ �h20 and M2 ¼

�h20M
2
A

�p1
: ð21a; bÞ

Case 2 � 6¼ 0
In this case, the constant in the right hand side of (9) must be zero, the shock velocity is

variable and so

M2 ¼
�h20M

2
A

� �1A2
0 � 1þ �ð Þ�h20

� � : ð22Þ

Now, we have the following relations, valid in both the cases:

�h20M
2
A

�1
¼

8E0

��1J

� �1= wþ2ð Þ
wþ 2ð Þ

w=ðwþ2Þ

4

" #2

ð23aÞ

and

A2
0�1
�h20

¼
2�M2

A

�M2
þ 1þ �ð Þ, 05MA51: ð23bÞ

To obtain the solution in a convenient form, we introduce the following

transformations:

g ¼
�

�2
, y ¼

p

p2
, W ¼

u

V
, Z ¼

v

V
, s ¼

h

h2
: ð24a�eÞ

Using the transformation (24), the equations of the motion (1) take the form

W� xð Þ
dg

dx
þ g

dW

dx
þ
gW

x
¼ 0, ð25aÞ

ðW� xÞ
dW

dx
þ
�F

g

dy

dx
þ

s

�M2
Ag

ds

dx
þ

s2

�M2
Agx

�
Z2

x
þ �W ¼ 0, ð25bÞ

ðW� xÞ
ds

dx
þ s

dW

dx
þ �s ¼ 0, ð25cÞ

ðW� xÞ
dZ

dx
þ
ZW

x
þ �Z ¼ 0, ð25dÞ
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2�yþ ðW� xÞ
dy

dx
�
�y� W� xð Þ

g �� bg

 � dg

dx
¼ 0, ð25eÞ

where

F ¼
1

�M2
þ

2 1� �ð Þ

� � þ 1ð Þ � � � 1ð Þ � 2b

1

M2
þ
� � 1

4M2
A

1

�
� 1

� �2
" #

ð26Þ

and b ¼ b�1 is the parameter of non-idealness of the gas.
In terms of the dimensionless variables x, W, y, g, s and Z the shock conditions take the

form

x ¼ 1, W ¼ 1� �, g ¼ 1, s ¼ 1, y ¼ 1, ð27a�eÞ

Z ¼
ð1þ �Þ

M2
A

þ
2�

�M2

� 	1=2
: ð27fÞ

Because of the dependence of the equations (25b), (25e) and (27) on b, similarity

solution exists only when b is constant i.e. only when the initial density �1 is constant.
The problem with the flow of a non-ideal gas is different from that of the perfect gas

problem. In the latter case, similarity solution exists for initial density varying as some

power of distance (Rogers 1958, Rosenau 1977), but it is not true for the problem with

the flow of a non-ideal gas.
In addition to the shock conditions (27), the condition to be satisfied at the

inner boundary surface is that the velocity of the fluid is equal to the velocity of

inner boundary itself. This kinematic condition, from equations (11a) and (24), can be

written as

WðxpÞ ¼ xp: ð28Þ

From equations (25), we have

Bx
dW

dx
¼

�y�2FW

�� bg
þ 2��xyF� ðW� xÞ

s2

�M2
A

� Z2gþ �Wgx

� 	
þ

�s2x

�M 2
A

, ð29aÞ

BxðW� xÞ
ds

dx
¼ �s

(
�x ðW� xÞ2g�

s2

�M 2
A

� 	
þ ð1� �xÞ

�y�2FW

�� bg

þ 2��xyF� ðW� xÞ
s2

�M2
A

� Z2gþ �Wgx

� 	
þ

�s2x

�M2
A

)
, ð29bÞ

BxðW� xÞ
dg

dx
¼ g �2��xyFþ W� xð Þ

s2

�M2
A

� Z2gþ �Wgx

� 	�

�
�s2x

�M�2
A

�W W� xð Þ
2g�

s2

�M 2
A

� 	�
, ð29cÞ
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BxðW� xÞ
dy

dx
¼

�y�

�� bg
W� xð Þ

s2

�M2
A

� Z2gþ �Wgx

� 	
�

�s2x

�M 2
A

�

�W W� xð Þ
2g�

s2

�M�2
A

� 	�
� 2�xy W� xð Þ

2g�
s2

�M2
A

� 	
, ð29dÞ

x W� xð Þ
dZ

dx
¼ �Z �xþWð Þ, ð29eÞ

where

B ¼ W� xð Þ
2g�

s2

�M2
A

�
�yF�2

�� bg
: ð30Þ

Now, the equations (29) may be integrated, numerically, with the boundary conditions
(27) and the appropriate values of the constant parameters �,�, b,M and MA, to obtain
W, g, s, y and Z.

4. Results and discussion

Similarity considerations led to the following relations among the constants �, d
and w:

1þ d ¼ �, � ¼
w� 2ð Þ

wþ 2ð Þ
: ð31a; bÞ

Then the following two cases may exist:

(i) The constant velocity shock (�¼ 0);
(ii) the decreasing velocity shock (�<0).

Therefore, for the purpose of numerical calculations, we choose �¼ 0,�0.5 which
correspond, respectively, to the following two sets of values of the constants:

(i) � ¼ 0, w ¼ 2, d ¼ �1; and
(ii) � ¼ �1=2, w ¼ 2=3, d ¼ �3=2.

The solution of the differential equations (29) with boundary conditions (27) depends
on five constant parameters �, M, MA, b and �. Numerical integration of these
differential equations is performed to obtain the reduced variablesW, Z, g, y, s, starting
from the shock surface to the inner expanding surface for � ¼ 5=3;M ¼ 10;M�2

A ¼

0:02, 0:1; b ¼ 0, 0:05, 0:1; � ¼ 0, �0:5 (Rosenau and Frankenthal 1976, Rosenau 1977,
Roberts and Wu 1996, 2003, Vishwakarma and Yadav 2003). For a fully ionized gas
� ¼ 5=3, and therefore it is applicable to stellar medium. Rosenau and Frankenthal
(1976) have shown the effects of magnetic field on the flow-field behind the shock are

significant when M�2
A � 0:01; therefore the above values of M�2

A are taken for
calculations in the present problem. The value b ¼ 0 corresponds to the perfect gas case.

162 J. P. Vishwakarma et al.
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The results are shown in figures 1–5. Values of xp (the reduced position of the inner

expanding surface) and the density ratio across the shock front � ¼ �1=�2 are shown in

tables 1 and 2 for different cases.
Figure 1 shows that the radial velocity W increases from the shock front to the inner

expanding surface when �¼ 0; whereas it decreases when �¼�0.5. Figures 2 and 4

show that the density g and the pressure y decrease rapidly behind the shock front.

Also, the azimuthal velocity Z decreases rapidly behind the shock front when �¼ 0, and

it decreases slowly when �¼�0.5 (figure 5). Figure 3 shows that the azimuthal

magnetic field S increases rapidly from shock front to inner expanding surface, and this

increase becomes slower when � is decreased or when M�2
A is increased.

From tables 1 and 2 and figures 1–5, it is found that the effects of an increase

in the value of M�2
A (i.e. the effects of an increase in the strength of ambient

Figure 1. Variation of the reduced radial velocity W in the flow-field behind the shock front.
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magnetic field) are

(i) to decrease xp, i.e. to increase the distance of inner expanding surface from
the shock front. Physically it means that the gas behind the shock is less
compressed, i.e. the shock strength is reduced;

(ii) to increase the value of �, i.e. to decrease the shock strength, which is the
same as given in (i) above;

(iii) to decrease the radial velocity and to increase the azimuthal velocity at any
point in the flow-field behind the shock;

(iv) to decrease the slopes of the profiles of density, pressure and azimuthal
magnetic field, i.e. to reduce the tendency of abrupt fall of the density and the
pressure and abrupt increase of the azimuthal magnetic field as we move
inwards from the shock front.

Thus the presence of magnetic field has decaying effect on the shock wave.

Figure 2. Variation of the reduced density g in the flow-field behind the shock front.
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The effects of an increase in the value of the parameter of the non-idealness of the gas

b are

(i) to increase the distance of the inner expanding surface from the shock front

(table 1);
(ii) to increase the value of � (table 2), i.e. to decrease the shock

strength. Therefore the non-idealness of the gas has decaying effect on the

shock wave;
(iii) to decrease the radial velocity, in general; and to increase the

azimuthal velocity slightly, at any point in the flow-field behind the shock

(figures 1 and 5);
(iv) to decrease the slope of density profiles and to increase the slope of profiles of

azimuthal magnetic field (figures 2 and 3).

The effects of an increase in the value of the index for variation of ambient azimuthal

magnetic field �, i.e. the effects of an increase in the value of the index for variation of

Figure 3. Variation of the reduced azimuthal magnetic field s in the flow-field behind the shock front.
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the angular velocity of the ambient medium d are

(i) to decrease the distance of inner expanding surface from the shock front.
It means that the shock is stronger when the ambient magnetic field is
uniform (�¼ 0) in comparison with that when it is decreasing (�¼�0.5).
It also means that the shock is stronger when the angular velocity of the
ambient medium is slowly decreasing (see the relation (31a));

(ii) to increase the radial velocity and azimuthal magnetic field at any point in the
flow-field behind the shock (figures 1 and 3);

(iii) to increase the tendency of rapid increase in azimuthal magnetic field and
rapid decrease in azimuthal velocity, density and pressure.

Present self-similar model may be used to describe some of the overall features of a
‘‘driven’’ shock wave produced by a flare energy release Eð¼E0t

wÞ that is time
dependent. For w>0 the energy E increases with time and the solutions then

Figure 4. Variation of the reduced pressure y in the flow-field behind the shock front.
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Figure 5. Variation of the reduced azimuthal velocity Z in the flow-field behind the shock front.

Table 1. Position of inner expanding surface xp for � ¼ 5=3, M ¼ 10 and
various values of M�2

A , b and �.

M�2
A b � xp

0.02 0 0 0.820
�0.5 0.656

0.05 0 0.806
�0.5 0.628

0.1 0 0.788
�0.5 0.612

0.1 0 0 0.727
�0.5 0.473

0.05 0 0.714
�0.5 0.446

0.1 0 0.711
�0.5 0.456
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correspond to a blast wave produced by intense, prolonged flare activity in a rotating

star when the wave is driven by fresh erupting plasma for some time and its energy tends

to increase as it propagates from the star.
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Table 2. Density ratio � across the shock front for
M�2

A ¼ 0:02, 0:1; b ¼ 0, 0:05, 0:1;M ¼ 10 and � ¼ 5=3.

� ¼ �1=�2

b M�2
A ¼ 0:02 M�2

A ¼ 0:1

0 0.278962 0.355192
0.05 0.310485 0.379733
0.1 0.343672 0.393009
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