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When a drop of fluid containing long, flexible polymers breaks up, it forms threads of
almost constant thickness, whose size decreases exponentially in time. Using an Oldroyd-
B fluid as a model, we show that the thread profile, rescaled by the thread thickness,
converges to a similarity solution. Using the correspondence between viscoelastic fluids
and non-linear elasticity, we derive similarity equations for the full three-dimensional
axisymmetric flow field in the limit that the viscosity of the solvent fluid can be neglected.
A conservation law balancing pressure and elastic energy permits to calculate the thread
thickness exactly. The explicit form of the velocity and stress fields can be deduced from
a solution of the similarity equations. Results are validated by detailed comparison with
numerical simulations.

1. Introduction

When a drop of water falls from a tap, it will break into two or more pieces under the
action of surface tension (Eggers & Villermaux 2008). Similarly, holding a drop between
two solid plates which are then separated to make this liquid bridge unstable, breakup is
observed at some finite time t0. Near breakup time, drop profiles and the velocity field
are characterised by similarity solutions (Eggers 1993; Eggers & Fontelos 2015), which
describe the evolution toward smaller and smaller scales.

If even a small amount of long, flexible polymer is added, the singularity is inhibited
(Bazilevskii et al. 1981; Amarouchene et al. 2001; Chang et al. 1999; Clasen et al. 2006;
Morrison & Harlen 2010; Eggers & Fontelos 2015), and a thread of almost uniform
thickness is formed, as shown in Fig. 1. This is because polymers are stretched in
the extensional flow near breakup, but resist the stretching, producing an axial stress,
sometimes quantified as an extensional viscosity. This slows down the pinching, and
results in a uniform thread thickness. In the framework of the Oldroyd-B model for
polymer solutions, the characteristic relaxation time λ of the polymer selects a constant
extension rate ǫ̇ inside the thread, which leads to an exponential thinning

hthr = h0 exp

(

−
t

3λ

)

(1.1)

of the thread radius (Bazilevskii et al. 1990; Clasen et al. 2006; Eggers & Villermaux
2008). This is well confirmed by experiments (Bazilevskii et al. 1990; Anna & McKinley
2001; Amarouchene et al. 2001; Clasen et al. 2006) in both high and low viscosity solvents,
as well as in full numerical simulations of the Oldroyd-B equations (Etienne et al. 2006;
Bhat et al. 2010; Turkoz et al. 2018).
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Figure 1. An illustration of the problem studied in this paper. On the top, a sequence of
experimental images showing the pinch-off of a drop of polymer solution (PAM) between two
solid plates, forming a uniform thread of radius hthr(t) (Deblais et al. 2018b). On the bottom, our
numerical simulation of the Oldroyd B model for flexible polymer solutions, with dimensionless
parameters (defined in Section 2.3), chosen as in Turkoz et al. (2018): De = λ/τ = 60, Oh = 3.16,
S = ηs/η0 = 0.25. The elasto-capillary number is G = ηpR0/(λγ) = 0.0395. Times are made

dimensionless with the capillary time scale τ =
√

ρR3

0
/γ, and lengths are given in units of the

initial bridge radius R0. On the left, hthr(t) is shown to decrease exponentially in time, with
decay exponent 1/3λ, where λ is the polymer timescale (blue line). For comparison, we also
include a simulation with infinite relaxation time, keeping G constant. On the right, a closeup
of the corner region between the thread and the drop, showing the axial stress σzz. The stress
is very high inside the thread, and decays very rapidly in the transition region.

In Fig. 1 (red curve on bottom left) we also show the minimum thread radius for
a simulation in which we have taken the limit of infinite relaxation time. As a result,
elastic stresses do not relax, and a stationary minimum thread thickness is reached at a
point where elastic and surface tension forces balance. Below we will show that the time-
dependent problem of an exponentially thinning thread is closely related to the stationary
elastic problem. Both are described by the same similarity solution, respectively, in the
limit of long times, and of vanishing elasto-capillary number (given that contributions
from the solvent are small).

One of the main outstanding questions is to calculate the prefactor h0 theoretically,
and to relate it to the extensional viscosity inside the thread. By measuring the thread
thickness one could then infer the viscosity, and thus use the device as a rheometer
(Bazilevskii et al. 1990). However, it was pointed out by Clasen et al. (2006) that a
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proper description of the thread cannot result from a force balance within the uniform
thread alone, since the driving force of the motion results from the capillary pressure
difference between the thread and the drops which connect to it (cf. sequence at the
top of Fig. 1). To calculate the resistive force, one has to consider the flow of liquid
emptying from the thread into the drops (of which in Fig. 1 there is one on either end
of the thread). As a result, the task is to understand the transition region connecting
the thread and the drop, which has the form of a similarity solution (Clasen et al. 2006;
Turkoz et al. 2018): if both the axial and radial coordinates are rescaled by the thread
thickness hthr, the drop profile in the corner region connecting the thread and the drop
falls onto a universal curve.
In Clasen et al. (2006) the similarity solution for the corner was calculated in the

framework of lubrication theory, which is valid if the interface slope is assumed small,
so the flow inside the thread can be described within a one-dimensional model. Clearly,
this is not satisfied throughout the corner as seen in Fig. 1; we will in fact find that the
slope of the similarity solution grows exponentially away from the thread. It is also clear
that the stress distribution has a significant radial dependence (cf. the bottom right of
Fig. 1), which cannot be captured by a one-dimensional model.
A more recent numerical study (Turkoz et al. 2018) has confirmed that the corner

solution is fully three-dimensional axisymmetric, while it has the similarity structure an-
ticipated in Clasen et al. (2006). The present paper closes this gap by calculating the full
self-similar structure of the three-dimensional axisymmetric equations, both numerically
and theoretically. Following many previous papers, we do this in the framework of the
Oldroyd-B model, which has become a standard model for the description of solutions
of long, flexible polymers (Bird et al. 1987; Larson 1999; Morozov & Spagnolie 2015),
including capillary flows (Eggers & Villermaux 2008). The stress contains contributions
from both the polymers themselves, and a Newtonian contribution coming from the
solvent. Its main simplifying features are that polymers are modelled with a single
characteristic relaxation time of the polymer λ, and that each polymer strand is assumed
infinitely extensible, so that the extensional viscosity can become arbitrarily large.
As a result, the exponential thinning regime described by (1.1) will continue forever

in the Oldroyd-B model, which allows us to focus on this critical part of the pinching
dynamics. If finite extensibility of the polymer is taken into account (Fontelos & Li 2004;
Wagner et al. 2005), as in the so-called FENE-P model (Bird et al. 1987), pinching
proceeds in a localised fashion, similar to the Newtonian case (Renardy 2002; Fontelos
& Li 2004). However, this mode of breakup does not appear to be a realistic description
of experiment, as instead (Oliveira & McKinley 2005; Sattler et al. 2008, 2012) the
polymer thread undergoes a spatially periodic instability, in the course of which the
highly stressed thread partially relaxes, to form a series of small droplets. This has been
called the blistering instability (Sattler et al. 2008, 2012), whose theoretical description
(Eggers 2014) has recently been confirmed experimentally (Deblais et al. 2018b).
In this paper, we give the first consistent analysis of polymeric pinching using the full

three-dimensional, axisymmetric Oldroyd-B equations. In the next section, we present
the Oldroyd-B equations of motion. We use a powerful new code based on mapping the
physical domain unto a simple rectangular domain (Herrada & Montanero 2016; Deblais
et al. 2018a), together with a logarithmic transformation of the polymeric stress tensor
(Turkoz et al. 2018), in order to study the self-similar structure of the polymeric pinching
problem in detail. We find that contrary to previous assumptions, owing to the stress
contribution from the solvent, the stress distribution inside the thread has a non-constant
radial distribution. This suggests the similarity solution in general is non-universal, and
dependent on boundary conditions. However, the contribution from the solvent is often
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small for realistic parameter values, as measured by a dimensionless parameter v0 which
we identify below. As a result, the main focus of our paper is on calculating the universal
similarity solution in the limit of vanishing solvent contribution; the non-universal part
comes from the solvent contribution.
In Section 3 we present the similarity equations describing the corner region between

the polymer thread and the drop including solvent contributions. Since inertia is found to
be subdominant asymptotically, the tension in each cross section is conserved. To solve the
similarity equations for vanishing solvent parameter v0, in Section 4 we consider a related
problem in non-linear elasticity: the collapse of a cylinder of elastic material under surface
tension. As the elastic bridge deforms, elastic stresses build up and eventually balance
surface tension to establish a new stationary equilibrium state. For small elastic modulus
µ, a thread of almost uniform thickness is formed, whose radius goes to zero in the limit
of vanishing µ. We show that this limit is described by a similarity solution, which is
identical to the similarity solution for the time-dependent collapse of a viscoelastic fluid
bridge.
Using Lagrangian coordinates with respect to the reference state of a cylindrical elastic

bridge, we derive a simplified set of similarity equations for the elastic problem in the
limit µ → 0. The elastic similarity equations are shown to obey a novel conservation
law involving the pressure and the elastic energy, which is closely related to Eshelby’s
elastic energy-momentum tensor (Eshelby 1975). Physically, it represents invariance of
the equations under a relabelling of Lagrangian coordinates.
With the help of this conservation law, we are able to calculate the thickness of

the elastic thread, without having to solve the full three-dimensional similarity equa-
tions. Remarkably, the result agrees with what was found by us earlier Clasen et al.

(2006) using a one-dimensional description, because the description correctly respects
the conservation law. However, the spatial structure of the similarity solution is different
from what the earlier one-dimensional description predicts. We then solve the similarity
equations numerically to yield the self-similar interface profile and the stress distribution
in the interior. This then solves the problem both of the time-dependent pinching of a
viscoelastic thread, and the collapse of an elastic thread.
In a final discussion, we compare numerical results to our similarity theory, and outline

future directions of research.

2. Equations of motion and numerical simulations

The Oldroyd-B model can be described by the following set of equations (Bird et al.

1987; Morozov & Spagnolie 2015):

ρ

(

∂v

∂t
+ (v ·∇)v

)

= −∇p+∇ · σp + ηs△v, (2.1)

∂σp

∂t
+ (v ·∇)σp = (∇v)T · σp + σp · (∇v)−

σp

λ
+
ηp
λ
γ̇ (2.2)

∇ · v = 0, (2.3)

where γ̇ = (∇v) + (∇v)T is the rate-of-deformation tensor, and ρ the fluid density. As
seen on the right of the momentum equation (2.1), the total stress on a fluid element
is the sum of two contributions, coming from the solvent and from the polymer. The
solvent contributes a Newtonian stress, where ηs the dynamic viscosity of the solvent,
while σp is the deviatoric part of the polymeric stress.
The Oldroyd-B model can be derived as the continuum version of a solution of non-
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interacting model polymers, each of which consists of two beads, experiencing Stokes’
drag, and connected by a Hookean spring. Thus on one hand, springs become stretched
when beads move apart as described by the flow. On the other hand, the resulting tension
in the string contributes to the polymeric stress σp, described by the equation of motion
(2.2); (2.3) enshrines incompressibility of the flow.

In the limit of small shear rates (so that polymers are hardly stretched at all), (2.1)-
(2.3) describe a Newtonian fluid of total dynamic viscosity η0 = ηs+ηp; thus ηp is known
as the polymeric contribution to the viscosity. Polymeric stress relaxes at a rate λ, as seen
from the second to last term on the right of (2.2), while stretching by the flow is described
by the first two terms on the right. In particular, in the case of an extensional flow with
constant extension rate ǫ̇, the polymeric stress will grow exponentially if ǫ̇λ > 1/2. This
follows from a comparison of the stretching and relaxation terms. We will see below that
in fact ǫ̇λ = 2/3 inside the thread.

From a continuum perspective, the first four terms of (2.2) are known as the “upper
convected derivative”

▽

σp =
∂σp

∂t
+ (v ·∇)σp − (∇v)

T
σp − σp (∇v) . (2.4)

Its form can be derived purely from the requirement that the polymeric stress ought to
transform consistently as a covariant tensor (Morozov & Spagnolie 2015).

On account of the axisymmetry of the problem, the velocity field can be written v =
vrer + vzez in cylindrical coordinates, and the polymeric stress tensor is σp = σrrer ⊗
er + σrzer ⊗ ez + σzzez ⊗ ez + σθθeθ ⊗ eθ. The stress boundary condition at the free
surface is

n · (σp + ηsγ̇) = (p− γκ)n, (2.5)

where

κ =
1

h(1 + h2z)
1/2

−
hzz

(1 + h2z)
3
2

, n =
er − ezhz
(1 + h2z)

1/2
(2.6)

are (twice) the mean curvature and the surface normal, respectively. The coefficient γ
is the surface tension. If h(z, t) is the thread profile, the kinematic boundary condition
becomes

∂h

∂t
+ vz(z, h)

∂h

∂z
= vr(z, h). (2.7)

The numerical problem of solving (2.1)-(2.3) with boundary conditions (2.5) and (2.7)
under conditions of breakup is highly demanding, for a number of reasons. First, the
Oldroyd-B equation is well known to exhibit numerical instabilities (for reasons which
are not well understood) if ǫ̇λ is of order unity (Fattal & Kupferman 2004). This is
sometimes known as the high Weissenberg number problem (HWNP). Second, it is crucial
to correctly describe the balance between surface tension forces and the force exerted by
the polymer, both of which go to zero in the limit of vanishing thread thickness.

2.1. Logarithmic transformation

In order to avoid the HWNP as ǫ̇λ is of order unity, a partial (2D) matrix-logarithm
transformation of the polymeric stress tensor σp is applied in this work (Fattal &
Kupferman 2004; Turkoz et al. 2018). The idea behind these transformations is to replace
(2.2), which allows to advance the stresses σrr, σzz and σrz in time, with three equations
for the elements of a 2x2 symmetric positive-definite matrix ψ. The first step is to
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decompose this matrix as

ψ =

(

ψzz ψrz

ψrz ψrr

)

= R

(

ln(Λ1) 0
0 ln(Λ2)

)

RT , (2.8)

ln(Λ1) and ln(Λ2) being the eigenvalues of ψ, and the columns of R containing their
normalised eigenvectors: RRT = I. The second step is to construct the conformation
tensor A:

A =

(

Azz Arz

Arz Arr

)

= R

(

Λ1 0
0 Λ2

)

RT . (2.9)

Then, the stresses σzz, σrz and σrr can be expressed as function of the elements of ψ
with the help of A:

σzz = ηp(Azz − 1)/λ, σrr = ηp(Arr − 1)/λ, σrz = ηpArz/λ. (2.10)

Finally, the equation of motion for ψ is

∂ψ

∂t
+ (v ·∇)ψ − (Ωψ −ψΩ)− 2B =

1

λ

[

A−1 − I
]

, (2.11)

with matrices Ω, B given by

Ω = R

(

0 ω
−ω 0

)

RT , B = R

(

M11 0
0 M22

)

RT . (2.12)

Here

M =

(

M11 M12

M12 M22

)

= RT (∇v)T2dR, (∇v)2d =

(

∂vz

∂z
∂vr
∂z

∂vz

∂r
∂vr
∂r

)

, (2.13)

and ω = [Λ2M12 +M21Λ1]/[Λ2 −Λ1]. In case that Λ1 = Λ2, matrices Ω, B are replaced
by

Ω = 0, B =
1

2
[(∇v)T2d + (∇v)2d]. (2.14)

2.2. Mapping technique

The numerical technique used in this study is a variation of that developed in Herrada
& Montanero (2016). The spatial physical domain occupied by the fluid is mapped onto
a rectangular domain 0 6 η 6 1, 0 6 ξ 6 L by means of the coordinate transformation
η = r/h(z, t) and ξ = z. Then each variable (vz, vr, p, ψrr, ψrz, ψzz, σθθ and h) and
all its spatial and temporal derivatives, which appear in the transformed equations, are
written as a single symbolic vector. For example, seven symbolic elements are associated

to the axial velocity, vz: vz,
∂vz

∂η , ∂vz

∂ξ , ∂2vz

∂2η , ∂2vz

∂2ξ , ∂2vz

∂ηξ , and ∂vz
∂τ , τ = t being the

transformation for time. The next step is to use a symbolic toolbox to calculate the
analytical Jacobians of all the equations with respect to the symbolic vector. Using these
analytical Jacobians, we generate functions which can be evaluate later point by point
once the transformed domain is discretized in space and time. In this work, we used
the MATLAB tool matlabFunction to convert the symbolic Jacobians and equations in
MATLAB functions.
Next we carry out the temporal and spatial discretization of the transformed domains.

The spatial domain is discretized using a set of nξ = 850 equally spaced collocation
points in the axial (ξ) direction, while a set of nη = 20 of equally spaced collocation
points are used in the radial (η) direction. Fourth-order finite differences are employed
to compute the collocation matrices associated with the discretized points. In the time
domain, second-order backward finite differences are used for the discretization.
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The final step is to solve at each time step the non-linear system of discretized
equations using a Newton procedure, where the numerical Jacobian is constructed using
the spatial collocations matrices and the saved analytical functions. Since the method is
fully implicit, a relatively large fixed time step, dt/τ = 0.1, was used in the simulation.

2.3. Numerical results and parameters

As a representative example, we simulate a liquid bridge with periodic boundary
conditions, using the parameters of Turkoz et al. (2018). The initial condition is a cylinder
of radius R0, with a sinusoidal perturbation of small amplitude ǫ added to it:

h(z, 0)

R0
= 1− ǫ cos

(

z

2R0

)

, −2π 6
z

R0
6 2π, (2.15)

and ǫ = 0.05. Only half of the domain was simulated, using symmetry.
We define the dimensionless parameters of the simulation as in Clasen et al. (2006).

First, the Deborah number De = λ/τ is the dimensionless relaxation time, compared to

the capillary time scale τ =
√

ρR3
0/γ. The Ohnesorge number Oh = η0/

√

R0ργ measures
the relative importance of viscous and inertial effects, while S = ηs/η0 is the solvent
viscosity ratio. The ratio µ = ηp/λ defines an elastic constant; it measures the effective
shear modulus of the viscoelastic fluid on time scales shorter than the relaxation time λ.
Its dimensionless version

G = µR0/γ = ηpR0/(λγ) (2.16)

is known as the elasto-capillary number.
In most of the plots shown below, we choose the same parameter values as those in

Turkoz et al. (2018): De = 60, Oh = 3.16, S = ηs/η0 = 0.25. The elasto-capillary number
is G = 0.0395. Our mapping technique allows for the description of all fields with high
accuracy, avoiding the singular behaviour of the stress near the free surface reported
previously (Turkoz et al. 2018). The use of the logarithmic transformation described in
Section 2.1, together with a fully implicit formulation, allows for superior stability. As
a result, we were able to follow the dynamical evolution to well beyond a dimensionless
time of t/τ = 500. This corresponds to the minimum thread radius being smaller by a
factor of 1/4 than in Turkoz et al. (2018).

3. Similarity description

3.1. Solution inside the thread

As shown in Clasen et al. (2006), and illustrated in Fig. 1, there are three different
regions involved in this problem: first, a thread of uniform thickness, inside which
polymers are highly stretched by an extensional flow of constant extension rate ǫ̇:

vr(r, z, t) = −ǫ̇r/2, vz(r, z, t) = ǫ̇z. (3.1)

As a result, using the kinematic boundary condition at the interface, the thread radius
behaves as

hthr = h0e
−ǫ̇t/2 ≡ h0ℓ, ℓ = e−ǫ̇t/2, (3.2)

where h0 is a constant Second, fluid is injected from the thread into a drop, in which
elastic stresses have relaxed almost completely, and the force balance is dominated by
capillarity. Third, connecting the thread and the drop is a corner region, the typical size
of which is set by the thread thickness, for which we aim to find a similarity description.
A typical velocity scale is set by the velocity v0 = ǫ̇L/2 at the exit of the thread, based
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on the linear axial velocity field vz (cf. (3.1)), and a vanishing velocity at the middle of
the thread (on account of symmetry), of total length L.
We begin by finding the solution inside the thread, where the radius is assumed

uniform, shrinking at an exponential rate, consistent with the incompressible extensional
velocity field (3.1). Owing to translational invariance along the thread, we assume that
the polymeric stress is z-independent, but allow for an arbitrary dependence in the radial
direction. We expect stresses to be of the same magnitude as the capillary pressure, which
scales like γ/hthr. However, since h0 is still to be determined, we now introduce the scaling

σzz =
γ

R0ℓ
σ0(r) + C, r =

r

R0ℓ
, (3.3)

where σ0 is the dimensionless axial stress inside the thread. Inserting (3.3) into (2.2), the
axial component of the terms on the left are:

∂σzz
∂t

+ vr
∂σzz
∂r

=
ǫ̇γ

2R0ℓ
σ0 +

ǫ̇γ

2R0ℓ
rσ′

0 −
ǫ̇γ

2R0ℓ
rσ′

0 =
ǫ̇γ

2R0ℓ
σ0,

and thus the axial component of (2.2) becomes

ǫ̇γ

2R0ℓ
σ0 =

(

2ǫ̇−
1

λ

)(

γσ0

R0ℓ
+ C

)

+
2ǫ̇ηp
λ

.

For this to be a solution, we have ǫ̇ = 2/(3λ) (Bazilevskii et al. 1990; Entov & Hinch
1997) and C = −4ηp/λ, so that the solution in the thread becomes

σzz =
γ

R0ℓ
σ0(r)−

4ηp
λ
. (3.4)

Here σ0(r) inside the thread can have an arbitrary radial profile, whereas usually a
uniform profile has been assumed. The exact form of the profile will be determined by
the initial (non-universal) dynamics of the thread. Analysing the other two components
in a similar manner, we find to leading order

σrz =
γ

R0
σ(0)
rz (r)ℓ

2, σrr = −
2ηp
5λ

. (3.5)

Thus inside the thread, the axial stress σzz dominates over the remaining components.

3.2. Similarity solution for the corner region

We now describe the transition region at the end of the thread, assuming that the
thread thickness hthr is the only length scale. Again, the ratio h0/R0 is still to be
determined, so for the similarity description we use ℓ = exp{−t/3λ} and the length
R0, so that Thus using ℓ = exp{−t/(3λ)}, we find the similarity description

h(z, t) = R0ℓh(z), p(z, r, t) =
γ

R0ℓ
p(z, r), v(z, r, t) = v0v(z, r), σ(z, r, t) =

γ

R0ℓ
σ(z, r),

(3.6)
where z = z/(R0ℓ) and r = r/(R0ℓ). Then to leading order as ℓ → 0, the similarity
equations become

∇p = ∇ · σp + v0△v, (3.7)

(v ·∇)σp = (∇v)T · σp + σp · (∇v) (3.8)

∇ · v = 0, (3.9)

where v0 = v0ηs/γ = ηsL/(3λγ). The stress boundary condition is:

n ·
(

σp + v0γ̇
)

= (p− κ)n. (3.10)
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Figure 2. Results of a numerical simulation with parameters as in Fig. 1, rescaled to
similarity variables according to (3.6). The profiles for three different times collapse onto a
time-independent similarity solution. The top four profiles are the components of the stress
tensor, evaluated at the surface, the bottom four profiles show the components of the velocity,
the pressure (again at the surface), as well as the surface profile itself. All profiles collapse onto
the time-independent similarity solution defined by (3.6).

The system (3.7)-(3.10) does not contain time, but there are matching conditions to be
satisfied for z → ±∞. For z → −∞ the solution has to tend toward the thread solution

v → ez, h→ h0, p→ 1/h0, σp → σ0(r)ez ⊗ ez. (3.11)

The first condition says that since the scale of the similarity solution hthr is much smaller
than the length L of the thread, the velocity of the similarity solution has to match the
velocity at the exit of the thread. The other conditions correspond to thickness and the
stress distribution inside the thread. To verify the similarity form (3.6) we present our
numerical results in scaled form in Figures 2 and 3. We indeed observe a collapse of the
data and moreover the numerics confirm the matching conditions (3.11).

Our main aim will be to calculate the self-similar thread thickness h0, which determines
the prefactor in the exponential thinning law (3.2). Clearly, h0 will depend on the initial
thread radius: the build-up of elastic tension depends on the history of deformation, and
thus must involve the ratio hthr/R0. However, in obtaining the similarity description
(3.7)-(3.8), the choice of the length R0 was somewhat arbitrary, in the sense that any
fixed length would give rise to the same similarity equations. The effect of the initial
jet radius will be properly introduced in Sec.4, where h0 will be determined. However,
the product hσzz = γh0σzz does not depend on either R0 or ℓ, and is thus expected to
be universal. This means that with h0 in hand and measuring h, one can deduce the
extensional stress in the thread.

As implied by (3.4) and (3.11), the stress will in general not be constant across the
fibre, corresponding to a stress distribution σ0(r) which depends on the radius explicitly.
This is confirmed in Fig. 4, although deviations from a constant stress are small, since the
dimensionless exit velocity v0 = 0.035 is small. Indeed, we will see below that for v0 = 0
the radial stress distribution is uniform. On the top we show the axial stress on the axis
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Figure 3. Contour plots of stresses, rescaled according to (3.6), obtained as in Fig. 2, for the
last dimensionless time t/τ = 550.

and on the surface, which converge to different values in the long-time limit. While for
S = 0.25 the stress is greater on the axis, for S = 0.7 it is the other way around.

On the bottom we show the corresponding profiles across the thread for the two
different values of the solvent viscosity. The two shapes are entirely different, and indicate
a non-universal dependence of the stress distribution on the initial dynamics of the
collapsing bridge.

3.3. Force balance

Now we derive boundary conditions for z → ∞, i.e. toward the drop. Owing to the
scaling of the polymeric stress ∼ 1/h ∼ eǫ̇t/2, the total tension inside the thread scales
like σh2 ∼ ℓ ∼ e−ǫ̇t/2, which needs to be supported by surface tension forces inside the
drop (Clasen et al. 2006). To derive this more formally, we follow Eggers & Fontelos
(2005) and integrate (3.7), written in the form ∇ ·

(

σp + v0γ̇ − pI
)

≡ ∇ ·σ = 0, over the
fluid volume bounded by the planes z = z±. Using the dynamic boundary conditions in
the form n · σ = −κn, we have

0 =

∮

S

n · σds = −

∫

O

κnds±

∫

C±

ez · σ, (3.12)
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Figure 4. A convergence study of the axial stress distribution inside the uniform thread, taken
at the middle of the thread z = 0. The left hand column (a), (c) and (e) corresponds to
S = ηs/η0 = 0.25 as in Fig. 1, the right hand column while (b),(d) and (f) to S = 0.7; all other
parameters are as in Fig. 1. The top two panels demonstrate convergence toward a self-similar
stress distribution, which remains non-constant over the radius, as the dimensionless exit velocity
converges toward its asymptotic value (two middle panels). The bottom two panels show the
self-similar stress profiles σ0(r). The shape of the profiles, scaled according to (3.6), depends on
the solvent ratio S.

where S is the closed surface between the planes z = z+ and z = z−, denoted C±, as
well as the jet surface O. According to Eggers & Fontelos (2005), the integral over O is

∫

O

κnds = −
2πh

√

1 + h
2

z

∣

∣

∣

∣

∣

∣

z+

z−

ez,

and the integral over the z-component of C+ and C− is (using incompressibility to
transform the viscous term)

2π

[

∫ h

0

rσ(p)
zz dr −

∫ h

0

rpdr − 2v0hvr(h, z)

]z+

z−

.

We note further that

2h
√

1 + h
2

z

− 2

∫ h

0

rκdr =
2h

√

1 + h
2

z

− h
2
κ = h

2
K,

where

K =
1

h(1 + h2z)
1/2

+
hzz

(1 + h2z)
3
2

, (3.13)



12

so that (3.12) can be written as

0 = 2

∫ h

0

rσ(p)
zz dr + 2

∫ h

0

r(κ− p)dr − 4v0hvr(h, z) + h
2
K

∣

∣

∣

∣

∣

z+

z−

. (3.14)

So far no approximation has been made.
Using the boundary conditions (3.11) inside the thread, (3.14) becomes

T ≡ 2

∫ h0

0

rσ0(r)dr + h0 = 2

∫ h

0

rσ(p)
zz dr + 2

∫ h

0

r(κ− p)dr − 4v0hvr(h, z) + h
2
K

∣

∣

∣

∣

∣

z=z+

,

(3.15)
where πT is the constant tension in the liquid thread. As we confirm below, all viscous
and elastic stresses decay rapidly inside the drop, and the balance is maintained by
surface tension forces alone. As a result, the deviatoric part of the stress σzz and vr
decay rapidly as z → ∞, and the pressure almost equals the capillary pressure: p ≈ κ.
Only the fourth term on the right of (3.15), coming from surface tension, survives, and
equation describing the shape of the capillary region is (Eggers & Fontelos 2015):

T = h
2
K. (3.16)

This equation describes the crossover toward the drop, whose dimensionless radius
R = R/hthr diverges in the limit. Indeed, in the intermediate region where h ≪ R, the
only way the right hand side of (3.16) can be constant is to require that h/hz → const,
which is achieved for

h = Heaz, z → ∞. (3.17)

This means the right hand side of (3.16) becomes 2/a in the limit, and we obtain

T =
2

a
.

4. The elastic correspondence

At least in the limit that the contribution from the solvent in the momentum balance
(3.7) is negligible, one can make use of the fact that in the similarity equations (3.7)-(3.8)
terms containing the relaxation time λ have disappeared. Thus, we anticipate that the
same set of equations can be obtained in a purely elastic description, where we take the
limit λ → ∞ such that elastic stress do not relax. In the absence of inertia the elastic
equations describe the equilibrium between surface tension, which tends to deform the
elastic medium, and elasticity, which resists deformation. Thus for λ → ∞, but keeping
µ = ηp/λ fixed, this equilibrium state is described by

∇p = ∇ · σp, (4.1)
▽

σp = µγ̇, (4.2)

∇ · v = 0, (4.3)

using that ∂tσp = 0. One can already see that in the limit of vanishing elasticity µ→ 0,
(4.1)-(4.3) are identical to the similarity equation (3.7)-(3.8) for the case where v0 = 0
(the stress coming from the solvent can be neglected). So indeed, the similarity solution
can be computed from the elastic limit. However, it is advantageous to first retain the
elastic term µγ̇, as it will allow to properly introduce the history-dependence into the
description, and to determine the value of h̄0 we are looking for.
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To proceed, we first show (for details see Snoeijer et al. (2019)), that instead of
solving (4.2) with the constraint (4.3), one can write σp as the stress tensor of a neo-
Hookean elastic solid, which depends quadratically on the deformation from an unstressed
reference state. Thus one needs to find a transformation of the undeformed state (e.g. a
cylinder), parameterized by variables R,Z, into a deformed state r = r(R,Z), z = z(R,Z)
such that elastic and surface tension forces are balanced. The equilibrium state is
characterised by the deformation tensor (in Cartesians)

FiK =
∂xi
∂XK

, (4.4)

which satisfies incompressibility

detF =
r

R

(

∂r

∂R

∂z

∂Z
−
∂r

∂Z

∂z

∂R

)

= 1. (4.5)

Here lower case variables and lower case indices refer to the deformed state, upper case
variables and upper case indices refer to the undeformed state.

If we write the stress tensor as σp = µ (A− I), where A is the conformation tensor as

in (2.10), then (4.2) simplifies to
▽

A = 0. Using the fact that v = dx/dt, where the time
derivative is taken at a constant material point X, one shows that (Morozov & Spagnolie
2015)

▽

A = F

[

d

dt

(

F−1AF−T
)

]

FT (4.6)

From this relation, it is clear that A = FFT indeed provides an integral to the equation
▽

A = 0. In addition, this solution satisfies the condition that σp = 0 in the initial
configuration, where F = I.

With the above steps we have managed to integrate (4.2), and have identified σp,
satisfying a stress-free initial condition. Since −µI can be written as part of the pressure
p, the elastic stress tensor becomes

σ = −pI+ σp ≡ −pI+ µFFT , (4.7)

which is the classical result for the “true” stress tensor of a new-Hookean solid (Suo
2013b,a). Then in terms of the deformation, the stress tensor becomes (Negahban 2012)

σp = µ







(

∂r
∂R

)2
+
(

∂r
∂Z

)2
0 ∂r

∂R
∂z
∂R + ∂r

∂Z
∂z
∂Z

0
(

r
R

)2
0

∂r
∂R

∂z
∂R + ∂r

∂Z
∂z
∂Z 0

(

∂z
∂Z

)2
+
(

∂z
∂R

)2






. (4.8)

The true elastic stress is formulated in the deformed state, (just like the fluid stress
tensor), and thus satisfies the same equilibrium conditions as before, but with vs = 0:

∇ · σ = 0, n · σp|S = γ(p− κ)n. (4.9)

If R0 is the radius of the unperturbed interface as usual, the free surface h(z) has the
parametric representation

h(z(R0, Z)) = r(R0, Z). (4.10)

Transforming the equilibrium condition (4.9) to Lagrangian coordinates, we obtain in



14

cylindrical coordinates:

µR

r

[

∂2r

∂R2
+

1

R

∂r

∂R
−

r

R2
+
∂2r

∂Z2

]

=
∂p

∂R

∂z

∂Z
−
∂p

∂Z

∂z

∂R
, (4.11)

µR

r

[

∂2z

∂R2
+

1

R

∂z

∂R
+
∂2z

∂Z2

]

=
∂p

∂Z

∂r

∂R
−
∂p

∂R

∂r

∂Z
, (4.12)

for the radial and axial force balances, respectively. The stress boundary conditions on
the surface are

−
h2zσzz − 2hzσrz + σrr

1 + h2z
= γ(κ− p)

∣

∣

∣

∣

r=h

, (4.13)

hz(σrr − σzz) + (1− h2z)σrz = 0
∣

∣

r=h
. (4.14)

4.1. Elastic similarity equations

We now analyse the elastic problem in the limit G = µR0/γ → 0, which corresponds to
the similarity solution for the pinching of a polymeric thread. We expect a static balance
between elastic stresses and surface tension to be established at a thread thickness which
scales like an elasto-capillary length scale ℓe: z ∝ r ∝ ℓe. Here we have anticipated
that as in the similarity solution (3.6), both Eulerian coordinates scale in the same
way. By contrast, the Lagrangian coordinates do not have the same scales for R and Z.
Namely, the radial coordinate R must be rescaled by the original radius R0; on account
of incompressibility (4.5) we have that Z ∝ ℓ3e/R

2
0. This implies that the d/dZ ≫ d/dR,

so that the dominant stress contributions in (4.8) is of the order σp ∝ µR4
0/ℓ

4
e. The

curvature κ scales as the inverse radius h−1 ∝ ℓ−1
e of the thread (cf. (2.6)), and thus on

account of the stress balance (4.9) µR4
0/ℓ

4
e ∝ γ/ℓe. As a result, the elasto-capillary length

scale becomes

ℓe =

(

µR4
0

γ

)1/3

= R0G
1/3, (4.15)

which sets the thickness of the thread (Eggers & Fontelos 2015), at which elastic and
capillary forces are balanced.
According to the scaling analysis above, we introduce the similarity solution

z = ℓeφ(R,Z), r = ℓeψ(R,Z), p = (γ/ℓe)Π(R,Z), (4.16)

valid in the limit G → 0, where R = R/R0 and Z = ZR2
0/ℓ

3
e. The rescaled thread

thickness h is defined by h = G1/3h, and z = ℓez, so the slope hz = hz remains invariant
under the scalings, and hzz = ℓ−1hzz. As a result, the curvature scales as κ = ℓ−1κ,
where κ is defined as in (2.6), but on the basis of h(z). Note that with this scaling,
σp ∝ µG−4/3, so that the right hand side of (4.2) becomes subdominant in the limit. As
a result, the elastic similarity equations defined by the above rescaling become identical
to (3.7)-(3.8) in the limit that solvent effects are negligible (v0 = 0), and the similarity
profiles (overlined variables defined above) are the similarity profiles defined by (3.6) in
that limit. The only way µ still enters into the problem is through the initial condition,
for which we require that the conformation tensor A = I. The rescaling (3.6), on the
other hand, still contains a free length scale R0, which we choose such that the similarity
profiles of both the time-dependent problem and of the elastic problem are the same.
The key observation is that the ratio G = (ℓe/R0)

3 between a characteristic axial scale
and a radial scale in Lagrangian coordinates becomes very small in the limit. As a result,
radial derivatives can be neglected relative to axial ones. It also means that in the limit
G→ 0 fluid elements become stretched out in the axial direction, so that the self-similar
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region comes from just a single point in the reference configuration. The radius R0 has
to be taken as the radius at that point in the reference configuration.
With the scalings (4.16), the similarity equations become, beginning with incompress-

ibility,

ψ

R
(ψRφZ − ψZφR) = 1. (4.17)

The equilibrium conditions (4.11) and (4.12) are, to leading order as G→ 0,

R

ψ
ψZZ = ΠRφZ −ΠZφR,

R

ψ
φZZ = ΠZψR −ΠRψZ . (4.18)

The key point is that the second radial derivatives on the right hand side have disap-
peared, and as result the equations are of first order only in the radial coordinates.
The deviatoric stresses are at leading order

σzz =
γ

ℓe
φ2
Z
, σrz =

γ

ℓe
φZψZ , σrr =

γ

ℓe
ψ2
Z
, (4.19)

and so the boundary conditions (4.13),(4.14), to be evaluated at the surface R = 1,
become to leading order

−
h2zφ

2
Z
− 2hzφZψZ + ψ2

Z

1 + h2z
= κ−Π, (4.20)

hz
(

ψ2
Z
− φ2

Z

)

+ (1− h2z)φZψZ = 0. (4.21)

But along the surface we have

ψZ

φZ

∣

∣

∣

∣

R=1

=
∂r

∂z

∣

∣

∣

∣

R=1

= hz,

and so dividing through (4.20) and (4.21) by φ2
Z
, the left hand side of both equations is

seen to vanish. As a result, the tangential stress balance (4.21) is satisfied identically in
the limit G → 0, while the kinematic boundary condition as well as the normal stress
balance become

ψ(1, Z) = h(φ(1, Z)), Π(1, Z) = κ. (4.22)

Thus as (4.18) is only of first order in R, there is only one stress boundary condition to
be satisfied instead of two.
We now show that the pressure may be eliminated from the leading-order equations.

Multiplying the first equation of (4.18) by φZ and using (4.17), we find

φZφZZ = ΠZ +
ψ

R
ψZ (ΠZφR −ΠRφZ) = ΠZ − ψZψZZ ,

using the second equation (4.18) in the second step. This can be integrated over Z to

1

2

(

φ2
Z
+ ψ2

Z

)

= Π + C, (4.23)

where the constant of integration C is in general still a function of R. In our particular
case, we will see that in fact C = 0. The conservation law expressed by (4.23) can be
shown to be a special case of conservation laws discovered by Eshelby (1975).

4.2. Numerical simulations of the elastic equations

Before we continue with solving the similarity equations, we test the similarity ansatz
(4.16) by rescaling full numerical simulations of the elastic equations (4.7)-(4.10). For
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Figure 5. Convergence of the elastic solution toward the similarity solution (4.16) for smaller
and smaller values of the dimensionless elasto-capillary number G = µR0/γ. Stresses have been
rescaled according to (4.25). Profiles from the similarity solution as described in Section 4.4 are
shown as the dashed line for comparison.

the numerical treatment, we define the reference state by

R = R0(Z)η, Z = Z0(ξ),

with the elastic domain defined by η ∈ [0, 1] and ξ ∈ [0, 1] The function Z0(ξ) is designed
to ensure a homogeneous distribution of grid points in the deformed state, starting from
a uniform ξ-grid. This accounts for the extreme stretching in the Z-direction for small
values of G, and ensures that enough points remain in the corner region.
As an initial condition, we take the free surface shape

hin(z) = 1− ǫ cos(z/2), (4.24)

where ǫ = 0.005. We are looking for two unknown functions f and g, where r = r(R,Z) =
f(η, ξ) and z = z(R,Z) = g(η, ξ), as well as the pressure p(η, ξ). These three unknowns
are found from solving the three equations (4.5) and (4.9). The free surface h(z) then is
given by the parametric representation h(g(1, ξ)) = f1(1, ξ), from which the curvature κ
can be evaluated.

The domain is discretized using fourth-order finite differences with 11 equally spaced
points in the η-direction and 4001 points in the ξ-direction. The resulting system of non
linear equations is solved using a Newton-Raphson technique (Herrada & Montanero
2016). We start from the reference state as an initial guess and G sufficiently large
(G = 100) to ensure the convergence of the Newton-Raphson iterations. Once we get a
solution, we use this solution in a new run with a smaller value of G. As seen in Fig. 5,
rescaled stresses as defined by

σ =
γ

ℓe
σ (4.25)

converge nicely onto a universal similarity solution.

4.3. The thread thickness

In solving the similarity equations, we first concentrate on the free surface profile,
shown in Figure 6 as a real-space profile in similarity variables. We now show that the
dimensionless minimum thread thickness h0 can in fact be calculated without first solving



17

-5 -4 -3 -2 -1 0 1 2
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 6. The interface h(z) in similarity variables. The solid line is the rescaled profile obtained
from the simulation for G = 10−6, the dashed line is the solution to the similarity equations.
The thread thickness is h0; for large arguments the profile grows exponentially.

the full similarity equations. Inside the thread, a cylinder of constant dimensionless
thickness R = 1 (the reference state) is transformed into a thread whose thickness h0 is
constant. This results in the transformation ψ = h0R, and thus from incompressibility

(cf. (4.17)) φZ = 1/h
2

0. Then using (4.8), the extensional part of the axial stress becomes

σ0 = φ2
Z

= 1/h
4

0. In particular, the radial stress profile σ0(r) of Section 3 is uniform.
Since in the elastic case there is no contribution from the velocity, (3.15) becomes

T = 2

∫ h

0

rσzzdr + 2

∫ h

0

r(κ−Π)dr + h
2
K. (4.26)

Evaluating (4.26) inside the thread of constant thickness, one obtains a finite tension:

T = h
2

0/h
4

0 + h0 = h0 +
1

h
2

0

> 0. (4.27)

This corresponds to the earlier conclusion that there must be a positive tension in a
liquid bridge (polymeric or Newtonian) in order for pinching to occur (Eggers & Fontelos
2005; Clasen et al. 2006).
On the other hand, toward the “drop” side of the elastic bridge, where h becomes large,

elastic stresses decay rapidly, as is confirmed by our numerics. As a result, the balance
(4.26) is between T and the second term on the left, which must approach a constant.
As a result, it follows that for large z, the similarity profile must be of the form

h = Heaz, a =
2

T
=

2h
2

0

1 + h
3

0

. (4.28)

Using (4.28), both radial and axial contributions to the mean curvature (2.6) scale like
e−2az, and cancel to leading order, resulting in κ ∼ e−4az. The prefactor H can be
normalised to unity by shifting the coordinate system. Thus putting H = 1 is a way of
fixing the origin, ensuring a unique solution.
Applying the conservation law (4.23) to the thread surface R = 1, we have Π = κ,
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Figure 7. Convergence onto the similarity solution. On the top, the ratio hz/h approaches the

limit a = 24/3/3, over a wide range of Z. On the bottom, we show contours of the function Π in
the [φ, ψ] domain, showing the transition region between the thread and the drop region. Red
dashes lines correspond with contours obtained rescaling the pressure in the elastic simulation
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and thus
1

2

(

φ2
Z
+ ψ2

Z

)

∣

∣

∣

∣

R=1

= κ+ C. (4.29)

The left hand side is the same as tr (σ) /2, which vanishes in the limit z → ∞. Since the
curvature vanishes as well for z → ∞, we have C = 0. On the other hand, for z → −∞,

φZ = 1/h
2

0 and ψZ = 0, while κ = 1/h0. As a result, (4.29) yields 1/(2h
4

0) = 1/h0, and
in summary

h0 = 2−1/3, σ0 = 24/3, T =
3

21/3
, a =

24/3

3
. (4.30)

Thus we have calculated the dimensionless thread thickness without explicitly solving
the similarity equations. Remarkably, these results are identical to those found using
lubrication theory (Entov & Yarin 1984; Clasen et al. 2006; Eggers & Fontelos 2015),
although the similarity solution doesn’t satisfy the slenderness (small slopes) requirement
for lubrication to be valid. The reason is that (4.30) only relies on the conservation laws
(4.29) and (4.26), which are preserved in the lubrication limit.

4.4. The similarity solution

It remains to calculate the actual form of the profile and of the deformation field inside.
We can eliminate Π from (4.18), which yields after simplification using (4.17)

φRφZZ + ψRψZZ = φZφZR + ψZψZR. (4.31)

This can be solved together with the incompressibility constraint (4.17):

ψ (ψRφZ − ψZφR) = R.

On the surface R = 1, we have (4.22), which in view of (4.29) takes the form

ψ(1, Z) = h(φ(1, Z)),
1

2

(

φ2
Z
+ ψ2

Z

)

∣

∣

∣

∣

R=1

= κ. (4.32)
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Differentiating the first equation of (4.32), it follows at constant R = 1 that ψZ = φZhz,
and hence the second equation can also be rewritten

1

2
φ2
Z
(1, Z) =

κ

1 + h
2

z

. (4.33)

For Z → −∞ the boundary condition is

ψ = 2−1/3R, φZ = 22/3, (4.34)

clearly there can be an arbitrary shift in Z. For Z → ∞ we must have

h = ψ(R = 1, Z) = eaφ(R=1,Z), (4.35)

where the prefactor has been chosen H = 1. For the other elastic fields the boundary
condition is that the pressure and all the elastic stresses decay for Z → ∞.
To obtain the similarity solution numerically, the domain [−L 6 Z̄ 6 L]× [0 6 R̄ 6 1]

was discretized using nR̄ and nZ̄ Chebyshev collocation points in the R̄ and Z̄ directions,
respectively. Here L is the value at which the Z̄ coordinate is truncated. Since strong
axial gradients are expected near the origin Z̄ = 0 the grid is stretched around that
location using the stretching function

Z̄ = L
arctanh(βs)

arctanh(β)
. (4.36)

Here s is in the original Chebyshev interval (−1 6 s 6 1), and β a stretching parameter.
Equations (4.17) and (4.18) with boundary conditions given by (4.32) and (4.34) are

discretized in the numerical domain. At Z̄ = L, the soft boundary condition φZ̄Z̄ =
ψZ̄Z̄ = 0 is used. The resulting discrete system of nonlinear equations have been solved
using the MATLAB function fsolve. As an initial guess for the nonlinear solver, the
numerical solution for the elastic simulation with G = 1×10−6, rescaled and interpolated
into the similarity mesh was used. Results presented have been obtained using nR̄ = 5,
nZ̄ = 450 , β = 0.995 and L = 150. A larger computational domain by imposing a
L > 150 does not alter the results.
The resulting similarity profiles are shown in Figs. 5-7. In Fig. 5 we compare represen-

tative stress profiles obtained from solutions of the elastic problem with those calculated
from the similarity solution, in Fig. 6 the profile h(z) is compared in greater detail. In
Fig. 7 (top) we show that the solution to the similarity equations has converged in a
large domain, using two different methods. In particular, according to (3.17) and (4.30)
hz converges to a = 24/3/3, as confirmed in Fig. 7.
Apart from a full numerical solution of the two-dimensional similarity equations,

we also show the result of a different method of solution, explained in more detail in
Appendix B. In view of the weak radial dependence, we expand the solution into a power
series (B 1) in the radial direction. The results of both methods of solution agree very
well. On the bottom of Fig. 7, we show contours of the self-similar pressure Π in the
[φ, ψ] domain. Once more, agreement with contours obtained by rescaling the simulation
for G = 10−6 agree very well with the full similarity solution.
As a final check, we return to the original problem of the exponential thinning of a

viscoelastic liquid bridge, as shown in Fig. 8. Since the dimensionless speed v0 = 0.035
is small for our simulations, solvent corrections are expected to be small. Indeed, there
is good agreement between our similarity theory based on elastic effects alone, and the
full viscoelastic simulations. As we reiterate in the discussion below, there is fading
memory in the viscoelastic simulation, and hence there is one adjustable parameter in
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Figure 8. Comparison of the similarity solution as described in Section 4.4 with the rescaled
profiles (3.6) obtained from the time-dependent simulation shown in Fig.1 for De = 60. The
time-dependent simulation has been rescaled according to (3.6), with an effective R0 chosen

such that σzz = 24/3 inside the thread.

the comparison, which we choose so that σzz = 24/3 inside the thread; h = 2/σzz is
then predicted without adjustable parameters. This is an effect of De being finite; for
the value of De = 60 being used in the present simulation, relaxation effects are almost
negligible, as discussed below.

5. Discussion

The aim of this paper has been to find similarity solutions describing the time-
dependent pinch-off of a polymeric thread. In the process, we found that this similarity
solution also describes another problem, the collapse of a soft elastic bridge under
surface tension. This fact had been noticed before Clasen et al. (2006), but is generalised
here to the full axisymmetric equations. In doing so, we make use of the very general
correspondence between fluid flow and non-linear elasticity (Snoeijer et al. 2019).
A particular use of our theory is that we can now calculate the radius of the thread

that has formed in the middle of the collapsed bridge. In the purely elastic case, returning
to dimensional variables, (4.30) implies that the thread thickness is

hthr = R0

(

G

2

)1/3

, (5.1)

where R0 is the initial radius of the elastic bridge. In the case of very long relaxation
times λ, such that an initial thread is formed without the polymer having a chance to
relax, followed by exponential relaxation in the limit of long times, (5.1) can be combined
with (1.1) to give (Clasen et al. 2006) h0 = R0(G/2)

1/3, and so

hthr = R0

(

G

2

)1/3

exp

(

−
t

3λ

)

, De ≫ 1. (5.2)
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This is illustrated in the lower left panel of Fig. (1), where the thread radius is shown
for De = 60 and for De = ∞, such that no relaxation takes place. The initial evolution is
almost identical for the two case, and the thread radius at the beginning of the exponential
relaxation (blue line) is just slightly below the asymptotic value without any relaxation
at all (red line).

If however the Deborah number is intermediate, relaxation will take place during
formation of the thread, and the prefactor h0 will depend on the details of the initial
dynamics. However, if one measures the radius hthr of the thread during exponential
thinning, the extensional stress can be deduced from it using (4.30):

σzz =
2γ

hthr
. (5.3)

This relation is needed for the original use of the liquid bridge geometry as a rheometer
(Bazilevskii et al. 1990): measuring the thread thickness, one can measure the extensional
viscosity ηE = σzz/ǫ̇ (Amarouchene et al. 2001).

The present work provides one of the first examples of a similarity solution in three
dimensions, which does not reduce to an effective one-dimensional theory (Chen & Steen
1997; Day et al. 1998; Eggers 2018). It is to be expected that non-trivial similarity
solutions in higher dimensions abound, but not many have been found, owing to tech-
nical difficulties in obtaining them. Another, and perhaps related feature concerns the
universality of similarity solutions. In a one-dimensional approximation, and taking into
account effects of the solvent viscosity, one obtains similarity solutions which depend on
the value of the parameter v0 alone (Clasen et al. 2006).

Here we provide evidence (cf. Fig. 4) that the three-dimensional, axisymmetric problem
is far less universal, and that there exists a similarity solution for a given stress distri-
bution σ0(r) inside the thread. To answer this question conclusively, one would have
to solve the full similarity equations (3.7)-(3.8) for a prescribed profile σ0(r), which we
have not yet attempted. It is however worth while keeping in mind that these corrections
coming from the solvent viscosity are small in practise. For example, for the experiments
by Clasen et al. (2006), using a quite elevated solvent viscosity, v0 = 0.031; for the
experiments by Sattler et al. (2008), using water as a solvent, v0 = 1.1× 10−3.

Finally, it is worth commenting on the experimental situation, since the Oldroyd
B model considered here may be popular for its conceptual simplicity, but cannot be
considered a first-principles description of polymeric flow. While an exponential thinning
regime of the polymer thread is observed almost universally, indicating exponential
stretching of polymer strands, there are experimental indications of a more abrupt change
in polymer conformation (Ingremeaux & Kellay 2013). As for the shape of the self-
similar profile, Turkoz et al. (2018) find that the experimental free surface profile grows
significantly faster toward the drop when compared to full numerical simulations of the
three-dimensional Oldroyd-B equations. This means that the theoretical result a = 24/3/3
for the growth exponent in the free-surface profile (4.28) underpredicts the experimentally
observed value by about a factor of two. Now that a fully quantitative prediction of the
Oldroyd-B fluid is finally in place, and given the time that has passed since the original
experiments (Clasen et al. 2006), it would be well worth repeating the measurements for
a different system. Another avenue to pursue is to allow for polymer models with more
free parameters, such as a spectrum of relaxation times. It might well be that different
regions between the drop and the thread are governed by different timescales.
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Appendix A. Force balance in Lagrangian coordinates

In order to solve the similarity equations by an expansion in the radial variable,
described in Appendix B below, it is useful to implement the force balance (4.26) in
Lagrangian coordinates. To this end, within the leading order balance (4.19), we use the
z-component of (3.12)

∫

O

κnds = −
2πh

√

1 + h
2

z

∣

∣

∣

∣

∣

∣

Z+

Z−

=

∫

C±

n± · σ · ezds. (A 1)

However now O is the surface of the thread between two fixed Lagrangian coordinates
Z±, and C± are the surfaces

z = φ(R,Z±), r = ψ(R,Z±), (A 2)

parameterized by R between 0 and 1; here n± are the outward normals to these surfaces.
Inside the thread, z is constant, and hence n− = −ez, while on the right

n+ = (ψR,−φR)/
√

φ2
R
+ ψ2

R
,

which follows from the parameterization (A 2).
The integral over the deviatoric part of the stress is

∫

C+

n+ · σp · ezds = 2π

∫ 1

0

n+ · σp · ezψ
√

φ2
R
+ ψ2

R
dR =

= 2π

∫ 1

0

(

ψRφ
2
Z
− φRψZφZ

)

ψdR = 2π

∫ 1

0

φZRdR,

having used incompressibility (4.17) in the last step. The pressure contribution is

−

∫

C+

Πn+ · ezds = −2π

∫ 1

0

ΠψRψdR.

Inside the thread,

n− · σ · ez = −σzz =
1

2

(

ψ2
Z
+ φ2

Z

)

= −21/3,

having used (4.34) and (4.30). Thus the integral over the cross section πh
2

0 yields
∫

C−

n± · σ · ezds = −π2−1/3.
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Finally, since inside the thread h = h0, (A 1) yields

2h
√

1 + h
2

z

+ 2

∫ 1

0

φZRdR−

∫ 1

0

(

φ2
Z
+ ψ2

Z

)

ψRψdR = T =
3

21/3
, (A 3)

where we inserted the expression (4.23) for the pressure, with C = 0.

Appendix B. Solution by radial expansion

The similarity profiles only have a weak dependence in the R-direction, and are thus
well represented by a polynomial in R. Thus we seek a solution by expanding in the
R-coordinate according to

φ = φ0 + φ2R
2
+ . . . , ψ = ψ1R+ ψ3R

3
+ . . . . (B 1)

First, from incompressibility we have

ψ1 =
1

φ
′1/2
0

, ψ3 = −
φ′0φ

′
2 + φ′′0φ2

4φ
′5/2
0

. (B 2)

Expanding (4.31) in a power series in R we find at first order that

−4φ′40 φ
′

2 + 4φ′30 φ
′′

0φ2 − φ′0φ
′′′

0 + φ′′20 = 0, (B 3)

which is valid exactly, as an equation between Taylor coefficients.
The second equation is (4.33), which can be satisfied approximately by truncating the

expansion (B 1) after the first two terms. Hence we obtain

(φ′0 + φ′2)
2

2
=

κ

1 + h
2

z

, (B 4)

where

h = ψ1 + ψ3, hz =
ψ′
1 + ψ′

3

φ′0 + φ′2
hzz =

ψ′′
1 + ψ′′

3

(φ′0 + φ′2)
2 −

(ψ′
1 + ψ′

3) (φ
′′
0 + φ′′2)

(φ′0 + φ′2)
3 ,

and ψ1, ψ3 is expressible through φ0 and φ2 using (B 2). We have to solve the system
of equations (B 3),(B 4) for the two variables φ0 and φ2 with conditions φ′0 = 22/3 and
φ2 = 0 for Z → −∞.
A problem with (B 4) is that it is of quite high order. A much better alternative is

to use (A 3), because it only requires first derivatives hz, and because it implements the
force balance exactly; inserting (B 1), the integrals can be done easily. The approximated
solution was obtained with the same numerical procedure used to obtain the solution to
the full similarity equation.
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