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Abstract

A scaling model of self-similar conformations and dynamics of nonconcatenated entangled ring 

polymers is developed. Topological constraints force these ring polymers into compact 

conformations with fractal dimension df = 3 that we call fractal loopy globules (FLGs). This result 

is based on the conjecture that the overlap parameter of subsections of rings on all length scales is 

the same and equal to the Kavassalis–Noolandi number OKN ≈ 10–20. The dynamics of entangled 

rings is self-similar and proceeds as loops of increasing sizes are rearranged progressively at their 

respective diffusion times. The topological constraints associated with smaller rearranged loops 

affect the dynamics of larger loops through increasing the effective friction coefficient but have no 

influence on the entanglement tubes confining larger loops. As a result, the tube diameter defined 

as the average spacing between relevant topological constraints increases with time t, leading to 

“tube dilation”. Analysis of the primitive paths in molecular dynamics simulations suggests a 

complete tube dilation with the tube diameter on the order of the time-dependent characteristic 

loop size. A characteristic loop at time t is defined as a ring section that has diffused a distance 

equal to its size during time t. We derive dynamic scaling exponents in terms of fractal dimensions 

of an entangled ring and the underlying primitive path and a parameter characterizing the extent of 

tube dilation. The results reproduce the predictions of different dynamic models of a single 

nonconcatenated entangled ring. We demonstrate that traditional generalization of single-ring 

models to multi-ring dynamics is not self-consistent and develop a FLG model with self-consistent 

multi-ring dynamics and complete tube dilation. This selfconsistent FLG model predicts that the 

longest relaxation time of nonconcatenated entangled ring polymers scales with their degree of 

polymerization N as τrelax ~ N7/3, while the diffusion coefficient of these rings scales as D3d ~ 

N−5/3. For the entangled solutions and melts of rings, we predict power law stress relaxation 

function G(t) ~ t−3/7 at t < τrelax without a rubbery plateau and the corresponding viscosity scaling 
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with the degree of polymerization N as η ~ N4/3. These theoretical predictions are in good 

agreement with recent computer simulations and are consistent with experiments of melts of 

nonconcatenated entangled rings.

Graphical abstract

1. INTRODUCTION

One of the most important properties of polymers is that they are able to heavily overlap 

with each other1 and are characterized by large overlap parameter

(1)

defined as the number of molecules with N Kuhn segments of length b sharing the same 

pervaded volume R3, where c is the number of Kuhn segments per unit volume. The overlap 

parameter can be as high as O ≈ N1/2b3/v for linear chains of size R ≈ bN1/2 in the melt (c 
≈ 1/v, where v is the volume of a Kuhn monomer).1 Here and below we drop numerical 

coefficients on the order of unity and keep the discussion in the paper at the scaling level.

1.1. Unentangled Polymer Dynamics

Linear polymers do not topologically restrict motion of their neighbors if the overlap 

parameter is below the magic Kavassalis–Noolandi number1–4

(2)

where Ne is the number of Kuhn segments per entanglement strand. The polymer dynamics 

in this case (O < OKN) is described by the Rouse model for melts and Rouse–Zimm model 

for semidilute unentangled solutions.1,5 A polymer chain is represented in these models by 

N beads connected by springs with root-mean-square size b. The friction coefficient ζ of 

each bead in the Rouse model is assumed to be independent of the motion of other beads (no 

hydrodynamic coupling), and the friction coefficient of the entire chain consisting of N 
beads is ζR ≈ Nζ. The diffusion coefficient of the unentangled polymer in a melt is obtained 

using the Einstein relation6

(3)
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and is reciprocally proportional to the number of beads—degree of polymerization N—

independently of the chain architecture (linear, branched, ring, etc.), where kT is the thermal 

energy (k is the Boltzmann constant and T is the absolute temperature). The Rouse 

relaxation time is on the order of the time it takes a polymer to diffuse its size R

(4)

If the equilibrium conformation of a polymer chain (which could in principle have a 

complex branched architecture, e.g., randomly branched polymer near gel point1) is a fractal 

with fractal dimension df, the chain size is  and the Rouse relaxation time of an 

unentangled polymer in a melt is

(5)

where the monomeric relaxation time is τ0 ≈ ζb2/(kT). The fractal dimension of linear 

chains in a melt is df = 2, and their Rouse time is τ ≈ τ0N2. We stress that Rouse model 

predicts self-similar (fractal) chain dynamics: each section of a chain consisting of g 

monomers with section size  relaxes during time

(6)

1.2. Entangled Polymer Dynamics

Polymers with higher overlap parameter O > OKN strongly affect motion of their neighbors 

and are called entangled.1 In the classical tube model, proposed by Edwards7 for polymer 

networks with permanent topological interactions, each linear network strand is permanently 

confined by its neighbors to a tube-like region.8 de Gennes extended this idea of Edwards to 

dynamics of a free linear chain in an array of fixed topological obstacles,9 such as linear 

chains diffusing through a permanent network. de Gennes suggested that the motion of such 

polymers is also restricted to confining tubes, although topological constraints in this case 

are not permanent and the new tube is formed as the polymer diffuses out of the old one.1,5,8 

He proposed reptation model in which polymer has hard time moving in directions normal 

to the axis of its tube and instead slides (reptates) predominantly along it.9 This motion 

along the contour of the tube is unhindered by the topological constraints and proceeds with 

Rouse curvilinear diffusion constant (eq 3) Dc ~ 1/N. The contour length L of the Edwards 

tube, called primitive path, is proportional to chain length Nb of linear polymer L ~ N. 

Therefore, the time it takes for a linear chain to diffuse out of its original tube, called 

reptation time, is1,8,9

(7)

The reptation model predicts 3-dimentional diffusion coefficient1,5,8,9
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(8)

Doi and Edwards10–13 generalized the de Gennes reptation model from a single chain in an 

array of fixed obstacles to melts of linear polymers. They predicted1,5,8,10 the viscosity η of 

entangled liquids (such as melts) of linear chains to be proportional to the cube of polymer 

molecular weight M

(9)

and their self-diffusion coefficient to have similar degree of polymerization dependence to 

that of a linear chain in an array of fixed obstacles (eq 8). Experimentally measured 

exponents for molecular weight dependence of viscosity and relaxation time were slightly 

larger than predicted by the reptation model (eq 9).14 The difference between experimentally 

measured exponent 3.4 and theoretically predicted exponent 3 is believed to be primarily 

due to tube length fluctuations introduced by Doi.15,16 Similar corrections to the reptation 

prediction were observed for diffusion coefficient17 D3d ~ M−2.3. Extensions of these models 

account for many-chain effects, such as constraint release18,19 and tube dilation,20 that are 

especially important in polydisperse systems21 and for branched entangled polymers.22

Tube dilation refers to the increase of the effective tube diameter during the relaxation of 

entangled polymer chains. This concept was introduced by Marrucci20 based on the 

consideration that the topological constraints giving rise to the tube can be effectively 

released due to the mobility of surrounding polymer chains. Marrucci described the chain 

segments relaxed from the tube as effective solvent that dilutes the topological constraints 

relevant to long-time chain dynamics and hence increases the effective tube diameter. The 

stress relaxation modulus in this model was predicted20,21 to scale as the square of the 

fraction ϕ(t) of the polymer chain that remains in the effective tube at time t

(10)

where Ge ~ 1/Ne is the entanglement plateau modulus and τe ~ Ne
2 is the relaxation time of 

an entanglement strand containing Ne monomers. The stress relaxation in eq 10 is faster than 

that in the original reptation model5 with G(t) ≈ Geϕ(t). This approach to tube dilation 

called “double reptation” successfully characterized the stress relaxation in both 

polydisperse linear polymers20 and branched polymers,22 with narrow tube diameter at short 

times and wide tube diameter at long times. An alternative approach to describe tube dilation 

uses dilation exponent23,24 7/3 instead of 2 in eq 10. However, these approaches are not self-

consistent because they assume that tube dilation does not affect single chain motion in the 

“skinny” bare tube even at long times and does not renormalize the monomeric friction 

coefficient.

We emphasize that reptation dynamics is not self-similar because new conformations of the 

tube appear only at two chain ends. This leads to nonfractal (almost exponential) stress 

relaxation dominated by chain ends. Therefore, complete relaxation of a typical chain 
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section containing g monomers occurs on the same time scale as of the whole chain. The 

only exceptions are tube length fluctuations proposed by Doi15,16 that relax small sections 

near chain ends, each corresponding to a fraction (Ne/N)1/2 of the whole chain, by Rouse-

like self-similar motion along the tube.1

1.3. Overview of Nonconcatenated Entangled Ring Polymers

The success of the reptation model of linear entangled polymers22 emphasizes our failure to 

understand the dynamics of nonconcatenated entangled ring polymers that do not have 

ends25 and thus do not reptate like linear chains. Below we show that both conformations 

and dynamics of these ring polymers are self-similar because new conformations can appear 

on all length scales anywhere along ring contour.26 Besides obvious intellectual importance, 

strands with conformations and dynamics similar to those in nonconcatenated rings are also 

expected to occur in deswollen gels27 and thus influence properties of the gel networks.

Strong similarity has been suggested between conformations of nonconcatenated entangled 

rings in melts and packing of chromatin in nucleus28 with topological constraints forcing 

DNA molecules into fractal crumpled globule conformation.29 The original idea of fractal 

crumpled globule formed by collapsed linear chain was proposed by de Gennes30 and later 

by Grosberg, Nechaev, and Shakhnovich.31 They suggested that if the solvent condition 

suddenly deteriorates, a polymer chain collapses in a self-similar way, forming a kinetically 

trapped fractal globule. The structure of this crumpled globule depends on the kinetics of 

collapse and its relaxation toward equilibrium is slowed down by self-entanglements. The 

equilibrated globule of a linear chain is nonfractal.32

We would like to emphasize the difference between temporary topological constraints of 

linear chains (as well as tree-like branched polymers without loops) in entangled polymer 

solutions and melts33 (Figure 1a) and permanent topological constraints between ring 

polymers (Figure 1c,d). The equilibrium polymer conformations of the former are 

independent of these temporary topological constraints. Equilibrium conformations of both 

unentangled (N < Ne) and entangled (N > Ne) linear chains in melts and thetasolutions are 

almost ideal.1,8,32 The deviations of linear chain conformations from ideality are not related 

to the topological constraints.34 In contrast to linear polymers, the equilibrium 

conformations of ring polymers strongly depend on the topological constraints they impose 

on each other. Unentangled ring polymers with N < Ne are almost ideal in melts and theta 

solutions similar to their linear counterparts. Conformations of longer rings with N > Ne are 

strongly perturbed by topological constraints.

Equilibrium entanglement network formed by temporary entanglements between linear 

chains in solutions depends on chain flexibility, polymer concentration, and solvent quality 

but is independent of the preparation conditions (does not depend on the history of the 

sample). For ring polymers, there are permanent topological constraints such as self-knots 

(Figure 1b) and concatenation (Figure 1c), which are fixed at the time of synthesis and 

conserved as long as main chain bonds of polymers are not broken.
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1.3.1. Double-Folded Lattice Animal (DFLA) Model

Conformations: The lattice animal model of equilibrium conformation of a 

nonconcatenated ring in an array of fixed topological obstacles was developed in 

mid-1980s.35,36 In order to maximize the entropy of the ring, while preserving its 

topological constraints with a fixed lattice of obstacles, the ring preservation of topology—

absence of concatenation by obstacles—while randomly branched structure of double-folds 

(called lattice animals or, more precisely, lattice trees) maximizes entropy of these 

conformations. Self-interactions of different overlapping subsections of double-folded lattice 

animal (DFLA) conformations were ignored in this model of nonconcatenated rings in an 

array of fixed obstacles. The predicted fractal dimension of ideal lattice animals df = 4 is 

higher than space dimension d = 3. Very large DFLA conformations of rings would become 

too dense and do not fit in three-dimensional space. Therefore, one would expect a crossover 

from df = 4 to space dimension d = 3 as ring concentration approaches the bulk value c ≈ 

1/v for the number of Kuhn segments in a ring N ≈ Ne
3b12/v4, where Ne is the number of 

Kuhn segments in an entanglement strand with size on the order of the distance between 

topological obstacles a ≈ bNe
1/2 and v is the volume of a Kuhn monomer.

It was not clear how to extend the DFLA model to describe the conformations of many 

nonconcatenated rings in entangled solutions or melts. The DFLA model certainly describes 

the minimally open (maximally compact) conformation with no topological concatenations 

formed by double-folded sections of neighboring DFLA rings (Figure 1d). It was clear that 

the entropy of the system can be increased by opening a fraction of small loops of some 

rings and letting the unopened smallest loops of other rings penetrate through them.27 A 

similar operation can be performed on larger length scales, but how much penetration can be 

allowed on these length scales was not clear. If such penetration of loops into loops proceeds 

too far, the possibility of topological glass transition was suggested.27

Dynamics: Self-similar amoeba-like dynamics of non-concatenated rings in an array of 

fixed obstacles (DFLA model) was proposed35 in 1986 and corrected and tested by Monte 

Carlo simulations37 in 1994. The main idea of this fractal dynamics is that smaller loops 

diffuse along larger loops in a self-similar way. For any ring section of g monomers (e.g., 

green line in Figure 2a) one can define the corresponding backbone, called primitive path 

(red line AB in Figure 2), by reducing the length of this section to the shortest topologically 

equivalent line through the array of obstacles. As a result, this ring section consists of the 

primitive path AB and a set of double-folded loops connected to it. This section (green line 

in Figure 2a) can be described as a fractal consisting of g/Ne elements of size a ≈ bNe
1/2 and 

the section size

(11)

where the fractal dimension df = 4. The same distance r between points A and B can also be 

expressed as the end-to-end distance of the primitive path (red line AB in Figure 2) with the 

fractal dimension dp = 2
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(12)

corresponding to an ideal random walk with step size a along the primitive path with contour 

length l. From eqs 11 and 12, the contour length of the primitive path is

(13)

with the exponent dp/df = 1/2. For an entangled linear chain with df = 2 and dp = 2, the 

primitive path length l ≈ a(g/Ne) ≈ bg/Ne
1/2 is proportional to the length s ≈ bg of the chain 

section of g monomers. In contrast, the primitive path length for a section of g monomers 

along a ring in the DFLA model with df = 4 and dp = 2 is

(14)

indicating that most of the mass of the ring section is in the double-folded loops. Therefore, 

a small fraction

(15)

of entanglement strands with Ne monomers in each (cyan loops in Figure 2b) move along 

the primitive path of the ring section consisting of g monomers (red line in Figure 2b), 

resulting in the effective mass transport on this length scale through the entanglement 

network of fixed obstacles, whereas most of the entanglement strands (magenta loops in 

Figure 2b) move along the double-folded sections leading to ineffective displacement of 

mass on this length scale (it could still be effective on smaller length scales). The same 

partition of effective vs ineffective motion occurs on every length scale and results in the 

self-similar dynamics in the DFLA model.37

During the relaxation time of an entanglement strand

(16)

the strand moves by its size a ≈ bNe
1/2. This displacement of a single entanglement strand 

causes mean-square curvilinear displacement of the center of mass of a section with g Kuhn 

monomers (green line in Figure 2a) by distance (aNe/g)2. The curvilinear displacement of 

the center of mass of this section along its primitive path during time τe produced by the 

diffusion of l/a minimal loops along the same primitive path is (aNe/g)2(l/a). The resulting 

curvilinear diffusion coefficient of this section of g Kuhn monomers along its primitive path 

of length l ≈ a(g/Ne)1/2 is

(17)
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where the Rouse diffusion coefficient De of a minimal entanglement loop with Ne Kuhn 

monomers (see eq 3) is

(18)

The time it takes the section of g Kuhn monomers to diffuse its size is on the order of its 

relaxation time

(19)

Thus, the DFLA model predicts that the relaxation time of a nonconcatenated ring with N 
Kuhn monomers is

(20)

Stress Relaxation: Kapnistos et al.38 derived the stress relaxation modulus for a single 

nonconcatenated ring in the DFLA model. The stress is supported by the gate of 

entanglements through which loops have not yet been pulled out, and thus the stress 

relaxation modulus is on the order of kT per such gate of entanglements. (Such a gate is 

between two neighboring fixed obstacles.) The number density of gates associated with the 

loops containing g ≈ mNe monomers each is proportional to m−3/2 for 1 ≪ m ≪ N/Ne.35–37 

The lifetime of a loop of g ≈ mNe monomers and hence the relaxation time of the 

corresponding gate is τ(m) ≈ τemβ with β = 5/2 (see eq 19). As a result, the single-ring 

stress relaxation modulus in the DFLA model is

(21)

where ϕ(t) ≈ (t/τe)−1/(2β) is the fraction of unrelaxed gates at time t in the interval τe < t < 

τrelax. Milner and Newhall39 calculated the stress relaxation modulus Gs(t) in the DFLA 

model using essentially the same method. They estimated from their Monte Carlo 

simulations that the exponent β ≈ 8/3 for the scaling relation between the relaxation time of 

a gate and the number m of the associated entanglement strands and obtained the single-ring 

stress relaxation modulus Gs(t) ≈ Ge(t/τe)−1/(2β) ≈ Ge(t/τe)−3/16 with the exponent 3/16 ≈ 

0.19 close to the value 1/5 = 0.2 (eq 21) derived by Kapnistos et al.38

The single-ring stress relaxation modulus Gs(t) derived by Kapnistos et al.38 is shown 

schematically in Figure 3 (red line). At t ≈ τrelax ≈ τe(N/Ne)5/2

(22)
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corresponding to (N/Ne)1/2 remaining stress-carrying entanglement strands along the 

primitive path of the ring. This implies that the backbone of the double-folded lattice tree is 

not yet completely relaxed by the relaxation time τrelax (eq 20). The stress relaxes 

exponentially at t > τrelax as shown in Figure 3, in a manner similar to the terminal relaxation 

of entangled linear polymers after the entanglement stress plateau.

Extension of DFLA Model to Entangled Melts of Non-concatenated Rings: In a melt of 

entangled nonconcatenated rings, topological constraints are not fixed as in the DFLA 

model. As the sections of entangled rings progressively relax, the topological constraints are 

reorganized as well. Kapnistos et al.38 applied the approach of double reptation20 previously 

used for entangled linear and branched polymers to account for the dynamic reorganization 

of topological constraints between entangled rings. They estimated the multi-ring stress 

relaxation modulus for a melt of nonconcatenated rings based on eq 21 as

(23)

which is shown schematically by the blue line in Figure 3. The same result can be obtained 

based on the picture that the multi-ring stress relaxation modulus in the time interval τe < t < 

τrelax is on the order of kT per smallest unrelaxed loop1,38

(24)

where eq 19 for the relaxation time of a section with g monomers in the DFLA model was 

used. However, the derivation in eq 24 is not self-consistent, as tube dilation is not 

considered in the derivation of τ(g) in eq 19.

Milner and Newhall39 have also estimated the multi-ring stress relaxation modulus G(t) from 

their result for the single-ring stress relaxation modulus Gs(t) ≈ Ge(t/τe)−1/(2β) ≈Ge(t/τe)−3/16 

with their estimate of the exponent β ≈ 8/3 and a tube dilation exponent that characterizes 

the dynamic reorganization of topological constraints γ = 7/3.23,24 They obtained G(t) ~ 

[Gs(t)/Ge]γ ~ t−7/16. However, this result is problematic, as it predicts a stress relaxation 

faster than that allowed by the rearrangements of loops. The multi-ring stress relaxation 

modulus at τe < t < τrelax is at least ~ kT per smallest unrelaxed loop with m(t) entanglement 

strands, and therefore the fastest stress relaxation for their value of β = 8/3 corresponds to 

G(t) ~ 1/m(t) ~ t−1/β ~ t−3/8.

1.3.2. Cates and Deutsch’s Conjecture on Conformations of Ring Polymers—
Cates and Deutsch40 have proposed a mean-field approach to determine the conformations 

of non-concatenated rings. They assumed that the free energy cost of topological 

interactions of a ring is thermal energy kT per neighboring ring it overlaps with. Thus, the 

total topological free energy per chain is proportional to the overlap parameter kTO ≈ 

kTR3/(Nv) (see eq 1). Balancing this topological free energy cost with confinement free 

energy penalty kTNb2/r2, Cates and Deutsch predicted partially compacted conformations of 

nonconcatenated rings with the ring size R ~ N2/5. It is not clear why it was assumed that 
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free energy cost of topological interactions per nonconcatenated ring is linearly proportional 

to the number of other rings it overlaps with. We will show below that this free energy cost 

is much higher—on the order of kT per temporary entanglement ~ kTN/Ne. The 

conformations of nonconcatenated ring polymers have also been studied by Sakaue41 using 

the mean-field approach and by Brereton and Vilgis,42 who considered a melt with zero 

winding number between each pair of rings.

1.3.3. Grosberg’s Model—Grosberg43 assumed that a nonconcatenated ring in an 

entangled melt has a double-folded branched structure similar to the ring conformation in 

the DFLA model but is a compact object with fractal dimension df = 3 at the length scales 

above the spacing a between entanglements. The underlying skeleton of such an entangled 

ring is conjectured to be a lattice tree randomly branched at the scale of entanglement 

spacing a. Grosberg wrote down a Flory-type free energy for an entangled ring as a function 

of the length L of the primitive path, which is the backbone of the randomly branched tree

(25)

where the size of the ring consisting of N Kuhn monomers is 

. The first free energy term r2/(aL) arises as it is assumed 

that the ring is stretched to size R larger than the ideal size of the randomly branched tree 

a(L/a)1/2 ≈ (aL)1/2, which corresponds to the ideal random-walk conformation of the 

primitive path. The term L2/(Nb2) was first derived by Gutin et al.44 as the entropic free 

energy of the random branching of a polymer with N monomers and a contour length L 
between two fixed ends. The same term is used in eq 25 to describe the random branching of 

the skeleton of an entangled ring. Note that the first term in eq 25 penalizes branching with 

smaller primitive path length L, whereas the second term promotes branching. The balance 

of the two terms yields L ~ N5/9 and R ~ L3/5. Grosberg argued that the scaling relation

(26)

suggests that the random-walk conformation of the primitive path of a nonconcatenated ring 

follows the self-avoiding statistics with the fractal dimension dp = 5/3 rather than the ideal 

Gaussian statistics with dp = 2 as in the DFLA model (see eq 12).

The differences between Grosberg’s model and the DFLA model are the values of the fractal 

dimension df of a nonconcatenated entangled ring and the fractal dimension dp of the 

primitive path of a ring. Using Grosberg’s values of df and dp, the single-ring dynamics in 

the DFLA model has been rederived and then employed45 to describe the stress relaxation in 

a melt of entangled rings. It was shown45 that in Grosberg’s model the relaxation time of a 

section of g Kuhn monomers τg ~ g−2.56 and the multi-ring stress relaxation modulus is G(t) 
≈ Ge(t/τe)−0.39, which is obtained based on the same argument1,38 that produced eq 24. 

However, this derivation of multi-ring stress relaxation modulus is also not self-consistent 

for the similar reason as the generalization of the DFLA model to melts of rings as it does 

not include the tube dilation in the derivation of τg but assumes tube dilation for G(t).

Ge et al. Page 10

Macromolecules. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. FRACTAL LOOPY GLOBULE (FLG) MODEL

Existing scaling models for nonconcatenated entangled ring polymers provide different 

descriptions of the conformations of entangled rings and the corresponding primitive paths. 

The scaling of ring degree of polymerization N with its size R in Cates and Deutsch’s theory 

is N ~ R5/2 (section 1.3.2), while the fractal dimension of a ring in the DFLA model is df = 4 

(section 1.3.1), and it is df = 3 in Grosberg’s model (section 1.3.3). In section 2.1, we 

account for entanglements between rings on all length scales in a self-similar way26 and 

demonstrate that nonconcatenated entangled rings are fractal loopy globules (FLGs) with 

fractal dimension df = 3. The same fractal dimension has been obtained by Grosberg43 and 

Obukhov et al.46 as well. The primitive path of a ring section in the DFLA model (section 

1.3.1) adopts the ideal random walk conformation with fractal dimension dp = 2 between the 

two ends of this section while it was assumed by Grosberg (section 1.3.3) to be in a self-

avoiding random walk conformation with fractal dimension dp = 5/3. In section 2.2, in light 

of the analysis of primitive paths in molecular dynamics simulations, we propose a scaling 

description of the primitive paths with complete tube dilation during the dynamics of 
entangled rings: the primitive path step size (tube diameter) is on the order of the time-
dependent characteristic loop size defined as the size of a ring section that has diffused a 
distance equal to its size. Compared with other models, our fractal loopy globule (FLG) 

model with fractal dimension df = 3 and complete tube dilation provides predictions in best 

agreement with simulation results. In this work, no independent new simulations of 

nonconcatenated ring melts have been performed. We reanalyze the results of the 

simulations by Halverson et al.47,48 to obtain our estimates of various scaling exponents in 

their simulations (see Table 1). However, we design and perform original primitive path 

analysis of one of the simulation samples provided by Halverson.

2.1. Conformations of Nonconcatenated Entangled Rings

The main concept of the self-similarity of entanglements on all length scales is that 

nonconcatenated rings and loops (sections of rings) can overlap with each other on different 

length scales without disturbing conformations of each other. On each length scale, the 

overlapping loops of corresponding size are characterized by constant Kavassalis–Noolandi 

overlap parameter2–4 OKN (eq 2). Larger overlap of loops on a given length scale without 

significant distortion is prohibited by topological constraints. We emphasize that our 

description of the overlap of entangled loops on all length scales using OKN is a conjecture 

and needs to be further tested by experiments and simulations.

To illustrate this concept, let us start from a dilute solution of large nonconcatenated rings in 

a theta solvent and increase their concentration by slowly evaporating solvent. The 

conformation of rings in a dilute theta-solvent solution is almost ideal with mean-square 

radius of gyration 〈Rg
2〉 = b2N/12 equal to half of that of the corresponding linear chains. 

The overlap parameter of rings (eq 1) exceeds unity O > 1 at polymer concentrations above 

the overlap concentration c* ~ N−1/2, but conformations of overlapping rings stay almost 

ideal and unperturbed by other rings as long as their concentration is below entanglement 

concentration ce and the overlap parameter is below the Kavassalis–Noolandi value2–4 (for 

c* < c < ce and 1 < O < OKN).
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As solution concentration exceeds ce, rings can no longer stay ideal-like as condition of 

nonconcatenation would be violated. The conjecture we propose26 is that ring conformation 

changes into that of a large loop that stays at the overlap parameter OKN with similar size 

loops of neighboring rings and a set of smaller loops at the same overlap parameter OKN 

with similar size loops. The constant overlap OKN of loops is conjectured to occur in a self-

similar way over a wide range of length scales from an entanglement length a(c) up to ring 

size R (in a hyperscaling-like1,49 manner). The lower boundary of this fractal structure is on 

the order of tube diameter a(c) of linear chains at concentration c (Figure 4). The upper 

boundary is the ring size

(27)

which is OKN
1/3 times larger than the distance rcm ≈ (c/N)−1/3 between centers of mass of 

neighboring rings to ensure that their overlap parameter (eq 1) stays at OKN (eq 2). The 

fractal dimension of rings over these length scales a(c) < r < R(c) is df = 3 (Figure 4b). This 

fractal loopy globule (FLG) conformation of nonconcatenated rings in entangled solutions 

with concentration c > ce and melts (fat deer in Figure 4a) is somewhat analogous to DFLA 

conformation (skinny deer in Figure 2a)—randomly branched structure of loops on loops 

(cactus-like conformation)—but the distribution of branch sizes and probability of branching 

is different as clear from their different fractal dimensions. Another difference between the 

two models is that unlike the DFLA case loops in the loopy globule model are not perfect 

double folds.

Rosa and Everaers50 have examined the overlap parameter O as a function of the ratio 

between the ring contour length Lr ~ Ne and the entanglement length Le ~ Ne in their 

simulations of nonconcatenated rings in a melt. They found that the overlap parameter O 
increases with the ratio Lr/Le and then remains close to the Kavassalis–Noolandi overlap 

parameter OKN ≈ 20 at Lr/Le > 10. This finding provides direct evidence in support of the 

conjecture in the FLG model that entangled loops of different sizes overlap with similar size 

loops at the same overlap parameter OKN. Similar to the FLG model, Obukhov, Johner, 

Baschnagel, Meyer, and Wittmer46 have proposed a decorated loop model in which a 

nonconcatenated ring adopts the conformation of a tree-like structure made of a skeleton 

loop decorated by smaller loops of various sizes. Polydisperse loops in this model penetrate 

each other to fill the space while obeying the topological constraint of nonconcatenation as 

in the FLG model.

Below we restrict our consideration to nonconcatenated rings in melts (c ≈ 1/v). 

Generalization of loopy globule model to solutions (ce < c < 1/v) is straightforward. The size 

of any subsection of g Kuhn segments in melts of linear polymers is Gaussian r ≈ bg1/2. 

Ring sections with g < Ne smaller than entanglement strands (entanglement scale a ≈ bNe
1/2 

are still ideal-like (blue line with slope 1/2 in Figure 4b). Larger subsections in loopy 

globule conformations are compressed with fractal dimension df = 3 and size
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(28)

(red line with slope 1/3 in Figure 4b) up to the size R of a loopy globule (eq 27) in a melt

(29)

The number of loops of length scale r per ring decreases reciprocally proportional to the 

pervaded volume R3 of these loops

(30)

The total number of loops per ring is proportional to the number of the smallest loops of size 

a

(31)

and is on the order of number of entanglement strands N/Ne per ring.

In their decorated loop model, Obukhov et al.46 constructed a mathematical formulation to 

delineate the decoration process. They calculated the mean-square radius of gyration Rg
2 of 

a ring as a function of the degree of polymerization N and obtained Rg
2 ~ N2/3(1 − 

const·N−1/3). This result demonstrates that rings are asymptotically compact with Rg
2 ~ N2/3 

in the long chain limit (N → ∞) after a broad crossover regime extending to N ~ 103–104. 

The compactness of nonconcatenated entangled rings with fractal dimension df = 3 is also 

observed in recent molecular dynamics simulations.47,48

2.2. Dynamics of Nonconcatenated Entangled Rings

2.2.1. Primitive Path of a Nonconcatenated Entangled Ring—The description of 

the primitive path of a ring is at the core of a scaling theory for the dynamics of 

nonconcatenated entangled rings. During the entangled dynamics of rings, the primitive path 

of a ring section is revealed by reducing the ring section to the shortest segment that obeys 

all the dynamically relevant topological constraints imposed on the section. For the single-

ring calculation in the DFLA model35,37 and Grosberg’s model,43 the topological constraints 

are permanent, and the primitive path of a ring section adopts an ideal35,37 or self-avoiding43 

random walk conformation with the step size equal to the fixed spacing a between 

topological constraints. For a melt of nonconcatenated entangled rings, the topological 

constraints contributing to the confining tubes are diluted as loops of increasing sizes are 

successively rearranged. Thus, the tube diameter, defined as the average spacing between 

topological constraints relevant to the suppression of fluctuations of ring sections at a 

particular time scale, increases with time during the dynamics of rings. If only part of the 

topological constraints associated with rearranged smaller loops are released, there is a 

partial tube dilation, in which the increase of the tube diameter is slower than the growth of 

the size of a characteristic loop that has diffused a distance equal to its size. In the limiting 
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case, all the topological constraints related to rearranged smaller loops are released and 

result in a complete tube dilation; i.e., the tube diameter increases with time at the same rate 

as the characteristic loop size. With either partial or complete tube dilation, the conformation 

of the primitive path of a ring section is expected to be different from the random walk 

conformation in the DFLA model and Grosberg’s model where topological constraints are 

permanent.

Analysis of Primitive Paths in Simulations: In order to reveal the primitive paths of ring 

polymers at different time and length scales in molecular dynamics simulations and thereby 

examine the extent of tube dilation during dynamics of entangled rings, we apply two 

primitive path determination methods. One method is developed based on the standard 

primitive path analysis (PPA) algorithm.51,52 We fix every sth monomer along the ring 

contour for each ring and then reduce the contour lengths of all rings simultaneously without 

allowing the crossing of ring sections as in the standard PPA algorithm. Since there are s 
possible sets of fixed monomers, we determine the corresponding s different reduced 

conformations for each ring. The average of the s reduced conformations for a ring yields 

the primitive path of the ring with loops consisting of ≤s monomers all pulled out. A 

primitive path obtained in this way is called an s-dependent primitive path (s-PP). For one 

entangled ring in simulations, the original chain conformation and a set of s-PPs with 

different values of s are visualized in Figure 4c, exhibiting features consistent with the FLG 

conformation as illustrated in Figure 4a.

Another method of revealing the primitive paths of entangled rings is through averaging the 

positions of monomers over a time interval t.53 During the dynamics of a melt of 

nonconcatenated rings, the conformation of a ring fluctuates around the primitive path while 

obeys all dynamically relevant topological constraints. Time averaging removes the 

fluctuations around the primitive path, and the line connecting the time-averaged positions 

of all monomers in a ring is interpreted as the primitive path. We call a primitive path 

obtained using this method a t-dependent primitive path (t-PP).

The results of the root-mean-square end-to-end distance r of a primitive path segment as a 

function of the segment contour length l are shown in Figures 5a and 5b for a set of s-PPs 

and a set of t-PPs, respectively. Both sets of results are well fitted using the function

(32)

which describes the crossover from r ~ l to r ~ lμ with the crossover segment size rc and 

crossover contour length lc depending on s or t, respectively. As shown in the insets of 

Figures 5a and 5b, the results of r vs l for the two sets of primitive paths can be collapsed 

onto their respective master curves using eq 32. We obtain κ ≈ 1.64 ± 0.05 and μ ≈ 0.35 

± 0.01 for the s-PPs while κ ≈ 1.51 ± 0.04 and μ ≈ 0.33 ± 0.01 for the t-PPs. Since the 

values of κ and μ are close to each other for the two sets of primitive paths, the results of r/rc 

vs l/lc for all different primitive paths can be superimposed onto each other, as shown in 

Figure 5c. This result demonstrates that the conformations of the two sets of primitive paths 

both follow the scaling behavior r ~ l for straight segments on length scales smaller than the 
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time-dependent primitive path step (tube diameter) and r ~ l1/3 for compact objects on length 

scales larger than the time-dependent tube diameter and exhibit an almost identical crossover 

between the two scaling regimes for both methods of primitive path constructions.

We estimate the tube diameter as the crossover size rc of a segment along the primitive path. 

The extent of tube dilation is determined by comparing the time dependences of the 

crossover segment size rc and the root-mean-square end-to-end distance of a characteristic 

loop. The characteristic loop is defined as the ring section containing g monomers such that 

its root-mean-square end-to-end distance 〈re
2(g)〉1/2 is equal to the root-mean-square 

displacement of its center of mass 〈ΔrCM
2(g,t)〉1/2 at time t

(33)

which corresponds to a ring section that has diffused by its own size during time t. In section 

C of the Supporting Information, we present other measures of the characteristic loop size 

and show that the results of different measures agree with each other over many decades of 

time with 20% accuracy.

Time dependences of the tube diameter and the characteristic loop size measured 

respectively as rc (see eq 32) and r(g,t) (see eq 33) are shown in Figure 5d. At t smaller than 

about 4000 τ, r(g,t) < rc, corresponding to the rearrangement of ring sections with sizes 

smaller than the entanglement size a and hence a ring polymer is not yet “aware” of its 

confining tube. The intersection of rc and r(g,t) at t ≈ 4000τ suggests that the entanglement 

time τe is about 4000τ, at which entanglement strands have diffused by a distance of the 

undiluted tube diameter a(τe) ≈ a0. As t exceeds 4000τ, the tube diameter a(t) ≈ rc(t) 
increases with t and follows the trend of the increase of the characteristic loop size r(g,t) 
with t. This observation that the dilated tube diameter at t > τe is on the order of the 

characteristic loop size indicates a complete tube dilation.

Our further analysis shows a one-to-one mapping between the two primitive path 

constructions, s-PP and t-PP. The root-mean-square difference δ between the position of a 

monomer along an s-PP and its corresponding position along the t-PP with the same 

crossover segment size rc is calculated (see section B in the Supporting Information for the 

calculation details). The difference δ is proportional to but smaller than the corresponding rc 

(δ/rc ≈ 0.6–0.8 as shown in the inset of Figure 5d), indicating that the difference between the 

two primitive path constructions using different protocols is smaller than the tube diameter. 

Note that the primitive path is defined with the accuracy of tube diameter a(t), and this 

difference between its two constructions with δ(t) < a(t) is not significant. The mapping 

between a s-PP and a t-PP reflects the equivalence between pulling taut any loops containing 

less than s monomers and averaging monomer positions over a time interval t. The 

equivalence of the two primitive path construction methods is consistent with the picture that 

the primitive paths evolve and coarsen with time as loops of increasing size are progressively 

rearranged.

Scaling Description of Primitive Paths: Our analysis of the primitive paths in simulations 

shows that there is a complete tube dilation during the dynamics of entangled rings. The tube 
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diameter increases with time such that it is on the order of the size r(g,t) of a characteristic 

loop containing g(t) monomers

(34)

with the undiluted tube diameter a(τe) ≈ a0 ≈ b(Ne,0)1/2. Since the tube diameter a(t) and the 

number of monomers Ne(t) per tube segment are time dependent in the case of tube dilation, 

we denote their undiluted bare values respectively by a0 and Ne,0 rather than a and Ne as in 

the DFLA model and Grosberg’s model with no tube dilation. The analysis of the primitive 

paths in simulations also reveals the conformation of primitive path (see Figure 5) in 

accordance with complete tube dilation. The primitive path of a characteristic loop is a 

single step (straight segment) of the confining tube with its size equal to the tube diameter 

a(t), while the primitive path of a larger loop with s monomers in an array of rearranged 

smaller loops of size g(t) is a fractal with size

(35)

where the fractal dimension is the same as that of a ring in the FLG conformation (see 

section 2.1), and l(s,t) is the primitive path length at time t of a section containing s 
monomers. If the tube dilation were not complete such that the size of a characteristic loop is 

multiple times the tube diameter, the primitive path of this loop would have a different 

fractal structure on length scales between a(t) and r(g,t) (eq 34). This fractal dimension 

could be dp = 2 by analogy with the DFLA model or dp = 5/3 as suggested by Grosberg.43 

We do not observe such regime in the primitive paths of rings in the molecular dynamics 

simulation data (see Figure 5). The fractal loopy globule (FLG) model with complete tube 

dilation (see eq 34) allows self-consistent calculations of the stress relaxation function and 

the melt viscosity of ring polymers as demonstrated in subsequent section 2.2.3. Therefore, 

we call the FLG model with complete tube dilation self-consistent FLG model, in contrast to 

the multi-ring DFLA model, Grosberg’s model, and the “naive” FLG model, where 

complete tube dilation is introduced not self-consistently.

2.2.2. Relaxation Time and Diffusion Coefficient—We derive the relaxation time of a 

ring polymer with a quantitative description of tube dilation in the Appendix. The derivation 

reflects the self-similar nature of nonconcatenated ring dynamics and incorporates an 

appropriate renormalization of monomeric friction at different time scales, the lack of which 

has been a major criticism of the tube dilation models for star polymers,54 bidisperse blends 

of linear polymers,55 and star/linear polymer blends.56 We obtain a general result of the 

relaxation time of a ring containing N monomers

(36)

with 0 ≤ θ ≤ 1 (see eq A.19). The parameter θ quantifies the extent of tube dilation. During 

the entangled dynamics of rings, the number of monomers per entanglement strand Ne(t) 
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scales with the number of monomers in a characteristic loop g(t) as Ne(t) ~ [g(t)]θ. In the 

limit θ = 1, there is complete tube dilation, and Ne(t) ≈ g(t) meaning that an entanglement 

strand and a characteristic loop have comparable sizes. In the opposite limit θ = 0, there is no 

tube dilation, and Ne(t) is time independent and equal to Ne,0 for an entanglement strand at t 
≈ τe. Based on eq 36, a general result of the 3-dimensional diffusion coefficient of 

nonconcatenated rings can be derived

(37)

where De ≈ a0
2/τe is the Rouse diffusion coefficient of an entanglement strand containing 

Ne,0 monomers (see eq 18).

If the tube dilation is complete with θ = 1, the relaxation time

(38)

and the 3-dimensional diffusion coefficient

(39)

are independent of the fractal dimension dp of the primitive path. These results are consistent 

with the picture that a characteristic loop has a size on the order of the tube diameter and 

hence does not feel the fractal structure of the primitive path at length scales above the tube 

diameter. With θ = 1 and df = 3, the self-consistent FLG model predicts

(40)

and

(41)

as listed in Table 1. If there is no tube dilation with θ = 0, one obtains.

(42)

and

(43)
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which are generally applicable to the DFLA model, Grosberg’s model, and the naive FLG 

model without tube dilation. The scaling exponents for the N dependences of τrelax and D3d 

depend on the specific values of dp and df in different models, as shown in Table 1.

2.2.3. Stress Relaxation and Viscosity—The stress relaxation modulus during 

entangled dynamics of nonconcatenated rings is

(44)

as derived in the Appendix (see eqs A.18 and A.19). If there is complete tube dilation with θ 

= 1, the stress relaxation modulus is

(45)

which is on the order of kT per volume of  monomers (eq A.15 

with θ = 1). This result of G(t) for complete tube dilation is independent of the fractal 

dimension dp of the primitive path, reflecting the irrelevance of the fractal structure of the 

primitive path in the case of complete tube dilation. With θ = 1 and df = 3, the self-consistent 

FLG model predicts

(46)

If there is no tube dilation, we obtain from eq 44 that the stress relaxation modulus is

(47)

which is general result for single-ring stress relaxation modulus applicable to the DFLA 

model, Grosberg’s model, and the naive FLG model.

The derivations of the multi-ring stress relaxation moduli in the multi-ring DFLA model (see 

the extension of DFLA model to melts of multiple rings in section 1.3.1), Grosberg’s model 

(see section 1.3.3), and the naive FLG model are not self-consistent. In these models, the 

multi-ring stress relaxation moduli correspond to kT per volume of a characteristic loop 

containing  monomers (eq A.15 with θ = 0)

(48)

The derivation based on eq 48 is not self-consistent since it assumes complete tube dilation 

while uses the result of g(t) obtained for the case of no tube dilation. A tube dilation 

exponent γ = df/(df − dp) can be imposed to link the single-ring stress relaxation exponent αs 

= (df − dp)/(2df + dp) in eq 47 and the multi-ring stress relaxation exponent α = df/(2df + dp) 

in eq 48 such that α = γαs. The tube dilation exponent γ depends on the values of df and dp. 
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For the DFLA model with df = 4 and dp = 2, the tube dilation exponent γ = 2 is consistent 

with the approach of double reptation (eq 23), which has been applied to extend the original 

DFLA model to melts of nonconcatenated rings.38 For Grosberg’s model with df = 3 and dp 

= 5/3 and the naive FLG model with df = 3 and dp = 2, the corresponding tube dilation 

exponents γ = 9/4 and γ = 3 differ from γ = 2 used for double reptation.

The results of the stress relaxation modulus G(t) obtained from molecular dynamics 

simulations47,48 are shown in Figure 6a. We simultaneously fit the simulation data of G(t) 
for different N to a crossover function

(49)

with the fitting parameters c1, c2, c3, and α independent of N (see Figure 6). This fitting 

procedure provides an estimate of the power-law stress relaxation in the asymptotic limit of 

large N and hence allows evaluation of the predictions of various scaling models. Discussion 

of the finite-N effects and comparison of different fitting procedures are presented in section 

B of the Supporting Information. The best fit of the simulation results of G(t) yields that the 

scaling exponent for the power stress relaxation α ≈ 0.42 ± 0.01 (see eq A2 in the 

Supporting Information for the best fit values of c1, c2, and c3). Accordingly, the relaxation 

time of a ring polymer increases with the degree of polymerization as τrelax ~ N1/α ~ 

N2.40±0.06. These results are in excellent agreement with the predictions of the self-

consistent FLG model that the exponent for power-law stress relaxation is α = 3/7 ≈ 0.429 

and the exponent for relaxation time is 1/α = 7/3 ≈ 2.33 (see Table 1). All other models are 

in worse agreement with simulations as shown in Table 1.

The main rheological difference between melts of entangled linear chains and entangled 

rings is the absence of the plateau in the stress relaxation modulus G(t) of the latter even for 

very high molar mass rings. Rubbery plateau is the most prominent feature of topological 

interactions in polymer liquids.1,5 The value of the plateau modulus Ge ≈ kT/(vNe,0) 

provides the operational definition and the most direct way of measuring the average degree 

of polymerization Ne,0 between entanglements. In contrast with entangled liquids (solutions 

and melts) of linear polymers, nonconcatenated ring polymers do not have rubbery plateau 

and are instead characterized by a power law stress relaxation function representing their 

self-similar dynamics.

Viscosity of melts is proportional to the product of relaxation time τrelax and the terminal 

modulus G(τrelax) at this time

(50)

For linear melts the product of reptation time (eq 36 for τrelax can be used for linear 

polymers with θ = 0, df = 2, and dp = 2) and plateau modulus Ge ≈ kT/(vNe,0) gives 

viscosity (see also eq 9)

(51)
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where the viscosity at the crossover between entangled and unentangled melts with degree of 

polymerization Ne,0 is1

(52)

The viscosity of nonconcatenated rings is

(53)

as derived in the Appendix (see eq A.24). The melt viscosity in the case of complete tube 

dilation

(54)

is independent of the fractal dimension dp as the fractal structure of the primitive path is not 

felt by the ring with complete dilation. The self-consistent FLG model with θ = 1 and df = 3 

predicts

(55)

which is in excellent agreement with results of molecular dynamics simulations47,48 that 

give η ~ N1.33±0.04 as shown in Figure 6b. With no tube dilation, eq 53 gives

(56)

The N dependences of ring melt viscosity in the multi-ring DFLA model, Grosberg’s model, 

and the naive FLG model are obtained in a manner that is not self-consistent. In each of 

these models, the terminal modulus is assumed to be on the order of kT per ring G(τrelax) ≈ 

kT/(vN) ≈ Ge(N/Ne,0)−1, and the viscosity of a ring melt is predicted to be

(57)

based on eqs 42 and 50. However, the terminal modulus consistent with the terminal 

relaxation time given by eq 42 for no tube dilation should be 

 (eq A.21 with θ = 0), which 

corresponds to  times kT per ring. As a result, eq 57 exhibits a weaker N 
dependence than eq 56, as the terminal modulus is assumed to be as low as kT per ring. The 

predictions of different models using eq 57 do not agree well with simulation results of ring 

viscosity as shown in Table 1.
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Compared with the multi-ring DFLA model, Grosberg’s model, and the naive FLG model, 

the self-consistent FLG model yields predictions of relaxation time τrelax, 3-dimensional 

diffusion constant D3d, stress relaxation function G(t), and melt viscosity η that agree the 

best with the corresponding simulation results (see Table 1). We also derive the time 

dependence of the mean-square displacement of monomers 〈Δr2(t)〉 in section D of the 

Supporting Information. The self-consistent FLG model predicts that 〈Δr2(t)〉 ~ t2/7 during 

the self-similar dynamics of rings at time interval τe < t < τrelax (eq D.5 in Supporting 

Information), which is also in good agreement with simulation results as shown in Table 1 

and Figure D.1 of the Supporting Information.

3. SUMMARY

The conformation of a nonconcatenated entangled ring is described as a fractal loopy 

globule (FLG) with fractal dimension df = 3, in which loops at different length scales 

overlap with each other in a self-similar manner with constant Kavassalis–Noolandi overlap 

parameter OKN = 10–20. A scaling model of the self-similar dynamics of rings as FLGs 

confined in tubes undergoing dilation has been developed. In our model, the tube diameter 

increases during the relaxation of entangled rings in such a way that it is comparable to both 

the root-mean-square center-of-mass displacement and the root-mean-square end-to-end 

distance of a characteristic loop. This picture corresponds to complete tube dilation and has 

been confirmed by our analysis of the primitive paths of entangled rings in molecular 

dynamics simulations. We derive a scaling theory of the entangled dynamics of 

nonconcatenated ring polymers with the extent of tube dilation characterized by the 

parameter θ. In the case of complete tube dilation with θ = 1, the fractal dimension dp of the 

primitive path is not a relevant parameter, as a characteristic loop with its size on the order of 

tube diameter does not feel the fractal structure of the primitive path at length scales larger 

than the tube diameter. We show that traditional extensions of dynamic models without tube 

dilation to multi-ring dynamics with complete tube dilation are not self-consistent due to the 

lack of a renormalization of the friction coefficeint. In the traditional approach, complete 

tube dilation is put in artificially “by hand” as an afterthought and alters neither the 

relaxation time τrelax nor the self-diffusion coefficient D3d (see section 2.2.2) but affects the 

stress relaxation function G(t) and the melt viscosity η (see section 2.2.3). We propose a 

self-consistent FLG model with an appropriate renormalization of the friction coefficient 

during complete tube dilation. The predictions of the self-consistent FLG model with df = 3 

and θ =1 are in the best agreement with the results of molecular dynamics simulations (see 

Table 1 and Figure 6).

In experiments,38,57 the power-law stress relaxation of entangled ring polymers has been 

observed with the apparent values of the stress relaxation exponent scattered between 0.4 

and 0.5 for melts of polystyrene and polyisoprene rings with N/Ne,0 = 6–13 entanglements 

per ring. To determine the stress relaxation exponent more precisely, one needs to use much 

longer ring polymers to reduce the effects of finite polymer size as discussed in section A1 

of the Supporting Information. The molecular weight dependence of ring melt viscosity η ~ 

N2.2±0.3 identified in recent experiments57 is stronger than both molecular dynamics 

simulation results48 and various scaling model predictions (see Table 1). This discrepancy is 

likely due to minute contaminants of linear polymers in a ring melt, which enhance the melt 
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viscosity with respect to that of pure rings. More systematic purification and characterization 

of ring polymers are needed to investigate the long time “foot” in the stress relaxation 

function and obtain a more accurate estimate of the molecular weight dependence of pure 

ring melt viscosity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Derivation of Stress Relaxation Function G(t) and Viscosity

We describe the self-similar dynamics of ring polymers in entangled melts with a 

quantitative characterization of tube dilation. A characteristic loop at time t consists of g(t) 
monomers and has just diffused by a distance of its size

(A.1)

An entanglement strand at time t contains

(A.2)

monomers with 0 ≤ θ ≤ 1. The parameter θ quantifies the extent of tube dilation. There is no 

tube dilation with Ne(t) ≈ Ne,0 in the limit θ = 0, while complete tube dilation with Ne(t) ≈ 

g(t) corresponds to the limit θ = 1. The average spacing between topological constraints 

contributing to the tube at time t is equal to the size of the corresponding entanglement 

strand

(A.3)

which is a(t) ≈ a0 for no tube dilation with θ = 0 and a(t) ≈ r(t) for complete tube dilation 

with θ = 1.

The tube dilation between times t1 and t2 > t1 with t2/t1 on the order of unity is illustrated in 

Figure 7a,b. The characteristic loop size increases from r(t1) to r(t2). Meanwhile, the number 
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of monomers in an entanglement strand increases from Ne(t1) to Ne(t2), and the average 

spacing between the topological constraints contributing to the tube increases from a(t1) to 

a(t2). Using eqs A.1–A.3, we obtain the following relations

(A.4)

(A.5)

(A.6)

The dynamics of a loop is described as the curvilinear diffusion of its center of mass along 

the primitive path (see red dashed lines in Figure 7a,b). Similar to the dynamics in the DFLA 

model shown in Figure 2b, effective curvilinear diffusion along the primitive path arises 

from the motions of only a small fraction of entanglement strands (see blue strands in Figure 

7a,b) of the loop. We replace the monomer number g of the loop in Figure 2b and the 

corresponding monomer number Ne per entanglement strand respectively by g(t) and Ne(t) 
and then use eq 19 to obtain the time it takes a loop to move by its size (eq A.1) and thus 

rearrange

(A.7)

where τe(t) is the relaxation time of an entanglement strand at time t and dp is the fractal 

dimension of the primitive path of the loop. For the tube dilation between times t1 and t2 in 

Figure 7

(A.8)

which is obtained based on eqs A.5 and A.7.

We determine the relation between the two entanglement times τe(t1) and τe(t2) by relating 

the dynamics of entanglement strands at t1 and t2. An entanglement strand at t1, which is 

termed as a t1-entanglement-strand, moves by its size a(t1) during time τe(t1). Such a motion 

of a t1-entanglement-strand acts as an elementary step of the dynamics of an entanglement 

strand at t2, which we term as a t2-entanglement-strand. The dynamics of a t2-entanglement-

strand can be described as the center-of-mass motion along its primitive path, which is a 

straight segment of size a(t2). Effective center-of-mass motion of a t2-entanglement-strand 

only arises from the elementary steps of t1-entanglement-strands along the primitive path of 

the t2-entanglement-strand. The average number of t1-entangle-ment-strands contributing to 

the effective center-of-mass motion of a t2-entanglement-strand is
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(A.9)

Each of the n t1-entanglement-strands causes mean-square center-of-mass displacement of 

the t2-entanglement-strand along its primitive path by [a(t1)Ne(t1)/Ne(t2)]2 in an elementary 

time interval τe(t1). As a result, the diffusion coefficient for the center-of-mass motion of a 

t2-entanglement-strand along its primitive path is

(A.10)

The entanglement time τe(t2), during which a t2 entanglement strand moves by its size a(t2), 

is

(A.11)

where eqs A.3, A.9, and A.10 were used. Combining eqs A.5, A.8 and A.11, one obtains

(A.12)

From the relation in eq A.12, the time for a loop with g monomers to diffuse by its size is

(A.13)

and the time for the entire ring containing N monomers to diffuse by its size is

(A.14)

At time τe,0 < t < τd, a characteristic loop that has just diffused by its size contains

(A.15)

monomers with ρ ≈ df/[2df + (1 − θ)dp + θ] according to eq A.13. Based on eq A.5, the 

number of monomers per entanglement strand increases with time as

(A.16)

The scaling relations in eq A.15 and A.16 are schematically shown in Figure 7c.
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The number of tube segments along the primitive path of a characteristic loop containing 

g(t) monomers is  similar to l/a in eq 13, and the stress relaxation modulus

(A.17)

where each unrelaxed tube segment contributes kT per volume vg(t) of the g-loop. Using eqs 

A.15–A.17, one obtains the stress relaxation modulus

(A.18)

where Ge ≈ kT/(vNe,0) is the entanglement plateau modulus. The terminal relaxation of the 

remaining tube segments is analogous to the terminal relaxation of entangled linear 

polymers after the entanglement stress plateau. The diffusion time τd and the time it takes 

for the tube segments remained at t ≈ τd to relax are comparable to each other, as they both 

correspond to the diffusion by the contour length of the primitive path at t ≈ τd. Therefore, 

the terminal relaxation time of a ring (see eq A.14) is

(A.19)

At t > τrelax, the stress relaxes exponentially with

(A.20)

where the terminal modulus

(A.21)

based on eqs A.18 and A.19. Combining eqs A.18 and A.20, the stress relaxation function 

applicable to the entire time range above the entanglement time τe,0 is

(A.22)

For the original DFLA model with df = 4, dp = 2, and θ = 0, the single-ring terminal 

relaxation is schematically shown by the red line in Figure 3. Note that the number of 

remaining tube segments is (N/Ne,0)1/2 at τd ≈ τe,0(N/Ne)5/2.

Viscosity of nonconcatenated rings is calculated as an integral of the stress relaxation 

function in eq A.22

(A.23)
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Using eqs A.19 and A.21, we obtain the viscosity of rings

(A.24)

where ηe ≈ τe,0Ge.

There is an appropriate renormalization of monomeric friction during the tube dilation in 

entangled ring dynamics. Based on eqs A.6, A.9, and A.10, the curvilinear diffusion 

coefficient for a t2-entanglement-strand De(t2) is related to the curvilinear diffusion 

coefficient for a t1-entanglement-strand De(t1) ≈ [a(t1)]2/τe(t1) as

(A.25)

Using the Einstein relation eq 3, one obtains the relation between the frictions ζe(t1) and 

ζe(t2) of a t1-entanglement-strand and a t2-entanglement-strand

(A.26)

The monomeric frictions at times t1 and t2 are ζ0(t1) ≈ ζe(t1)/Ne(t1) and ζ0(t2) ≈ ζe(t2)/

Ne(t2), respectively. Thus, the monomeric friction is renormalized as

(A.27)

Furthermore, using eqs A.16 and A.27, we obtain the time dependence of monomeric 

friction coefficient

(A.28)

For partial and complete tube dilation with θ > 0, the renormalized monomeric friction 

increases as tube dilates because θρ(1 − 1/df) > 0. Moreover, the renormalized monomeric 

friction increases more rapidly for a larger extent of tube dilation with a larger θ. In the case 

of no tube dilation with θ = 0, there is no renormalization of monomeric friction, and ζ0(t) ≈ 

ζ0(τe,0) ≈ ζ0, where ζ0 is the bare monomeric friction.
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Figure 1. 
(a) Temporary entanglements between linear chains. (b) Permanent self-knot of a ring. (c) 

Permanent links between rings. (d) Permanent topological constraints between 

nonconcatenated rings.
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Figure 2. 
(a) Double-folded lattice animal model of a non-concatenated ring in an array of fixed 

obstacles. Primitive path AB of ring section of g monomers (green) is denoted by the red 

line. (b) Small fraction of elementary loops (cyan) move along the primitive path AB (red) 

leading to effective mass transport, while most of elementary loops (magenta) move along 

the double-folded sections (green), resulting in the change of conformations of these larger 

loops. The size of an elementary loop is on the order of the spacing a between fixed 

obstacles, while the size of the primitive path AB with contour length l is r ≈ a(l/a)1/2 ≈ 

a(g/Ne)1/4.
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Figure 3. 
Single-ring stress relaxation modulus Gs (red line) in the DFLA model and the 

corresponding multi-ring stress relaxation modulus G (blue line) obtained by double 

reptation. Both Gs and G are normalized by the entanglement plateau modulus Ge and are 

shown as functions of the time t normalized by the entanglement time τe. Both axes are 

logarithmic.
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Figure 4. 
(a) Schematic sketch of the fractal loopy globule (FLG) conformation of a ring (black line) 

in a melt of nonconcatenated rings. Regular circles of different colors indicate the length 

scales where loops of various sizes overlap with similar size neighbors at the same overlap 

parameter OKN. Circles associated with other rings are shown as the dimmed background. 

(b) Fractal structure in the FLG model: root-mean-square size r of ring section with g Kuhn 

segments on logarithmic scales. (c) Snapshot of a ring in a melt of nonconcatenated rings in 

molecular dynamics simulations47,48 and the primitive paths obtained through pulling out 

loops consisting of less than s monomers.
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Figure 5. 
Average size r of a primitive path segment as a function of the contour length l of the 

segment along (a) s-PP at indicated s and (b) t-PP at indicated t. Results are obtained based 

on a molecular dynamics simulation47,48 of M = 200 rings each with N = 1600 beads. The 

insets show the primitive path segment contour length l and size r normalized by their 

respective crossover values lc and rc. For both s-PP and t-PP, all normalized data points 

collapse onto corresponding master curves (orange lines). (c) Primitive path segment sizes r 
normalized by the crossover values rc as functions of the primitive path segment contour 

lengths l normalized by the crossover values lc for different s-PPs and t-PPs. (d) Crossover 

segment size rc for t-dependent primitive paths (red squares) and the characteristic loop size 

r(g,t) (black triangles) as functions of t. The inset shows the ratio δ/rc (blue circles) as a 

function of t, where δ is the root-mean-square deviation between pairs of s-PP and t-PP that 

have the same crossover segment size rc.
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Figure 6. 
(a) Stress relaxation modulus G(t) in molecular dynamics simulations47,48 of 

nonconcatenated rings with different numbers of monomers per ring (empty symbols). The 

function in eq 49 is used to simultaneously fit all the simulation data for different N. The 

least-squares fit results are shown as lines. The best-fit value of the stress relaxation 

exponent describing the self-similar dynamics of rings in a melt is α = 0.42 ± 0.01, and 

accordingly the best-fit value of the relaxation time exponent is 1/α = 2.40 ± 0.06. (b) 

Viscosity η of simulated rings scales with the degree of polymerization N as η ~ N1.33±0.04.
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Figure 7. 
(a) A characteristic loop of size r(t1) at time t1 and (b) a characteristic loop of size r(t2) at 

time t2 > t1 with the corresponding topological constraints (black circles) and primitive paths 

(dashed red lines). Chain section within the dashed-line cyan frame in (b) corresponds to the 

characteristic loop in (a). The topological constraints relevant to the confining tube at t1 but 

irrelevant to the one at t2 are shown as dimmed black circles in (b). The average spacing 

between topological constraints increases from a(t1) to a(t2). In both (a) and (b), only a small 

fraction of entanglement strands (blue) contribute to the effective diffusion along the 

primitive path (dashed red line), while most entanglement strands (magenta) do not make 

contributions. (c) Time dependences of the size r(t) of a characteristic loop (green line) and 

the average spacing a(t) between topological constraints (red line) for τe,0 < t < τd. 

Logarithmic scales.
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