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ABSTRACT 
We derive similarity solutions which describe the collapse of cold, collisionless matter in a perturbed 

Einstein-de Sitter universe. We obtain three classes of solutions, one each with planar, cylindrical, and spher­
ical symmetry. Our solutions can be computed to arbitrary accuracy, and they follow the development of 
structure in both the linear and nonlinear regimes. 
Subject headings: cosmology - relativity 

I. INTRODUCTION 

Understanding the formation of structure in an expanding 
universe is one of the outstanding problems of modern cosmol­
ogy. Zel'dovich (1970) was the first to emphasize that aniso­
tropic collapse characterizes the evolution of structure in a 
universe filled with pressureless matter. High-density regions 
exhibiting approximate planar, cylindrical, and spherical sym­
metry commonly form in three-dimensional N-body simula­
tions (Klypin and Shandarin 1983; Frenk, White, and Davis 
1983; Centrella and Melott 1983). 

We investigate self-similar collapse solutions with planar, 
cylindrical, and spherical symmetry. Study of these solutions 
provides considerable insight into the more complicated 
results obtained from numerical simulations. Of course, the 
restriction to specialized initial conditions is the price we must 
pay to obtain similarity solutions. It is convenient to treat the 
three symmetries in parallel. We use the parameter n to dis­
tinguish among them; n equals 1, 2, and 3 for planar, cylind­
rical, and spherical symmetry, respectively. 

The plan of the paper is as follows. In § II we derive the 
equations which govern the evolution of the similarity solu­
tions. In§ III we obtain analytic expressions for the asymptotic 
properties of the solutions. The results of numerical integra­
tions of the similarity equations are presented in § IV. The 
relation of our solutions to previous work is discussed in § V. 
The scale factors used for the three different symmetries are 
calculated in the Appendix. 

II. DERIVATION OF SIMILARITY EQUATIONS 

As the scale of the perturbations which we are investigating 
is always small compared with that of the horizon, Newtonian 
cosmology is an adequate approximation (Peebles 1980). The 
equation of motion of a test particle reads 

d2r(t) 4n dtl = - 3 Gpb(t)r + l>g(r, t) . (1) 

The first term on the right-hand side of the equation is the 
deceleration due to the unperturbed Einstein-de Sitter back­
ground density 

(2) 

1 Contribution No. 3992 of the Division of Geological and Planetary Sci­
ences, California Institute of Technology. 

The second term is. the peculiar acceleration caused by the 
perturbation density 

l>p(r, t) = p(r, t) - Pb(t) . (3) 

The position of a particle is denoted by its distance from the 
center of symmetry x. For planar, cylindrical, and spherical 
symmetry, x denotes the distance from the symmetry plane z, 
the distance from the symmetry axis m, the distance from the 
symmetry point r. 

We define the mass M(x, t) and excess mass l>M(x, t) within x 
by 

M(x, t) = fdx'x'"- 1p(x', t). (4) 

For planar symmetry, 

M(z, t) = rdz'p(z', t), (5) 

the mass per unit area. For cylindrical symmetry, 

M(m, t) = i"' dm'm' p(w', t) , (6) 

the mass per unit length per unit angle. For spherical sym­
metry, 

M(r, t) = J: dr'r' 2 p(r', t) , 

the mass per unit solid angle: 
The peculiar acceleration is related to l>M by 

4n:Gl>M 
l>g(x, t) = - n 1 • 

X 

Inserting this expression into the equation of motion yields 

(7) 

(8) 

d2x 2 x 4n:Gl>M 2 (3- n) x 4nGM 
dt 2 = - 9 f2- x" 1 = 9 --n- f- x"- 1 · (9) 

We choose initial conditions such that at timet; the unper­
turbed Hubble law 

(10) 

is exactly satisfied. We can imagine that t; corresponds to the 
time of decoupling of radiation and matter. The initial position 
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2 FILLMORE AND GOLDREICH Vol. 281 

of a test particle is denoted either by its initial distance from the 
center of symmetry, xi, or by the initial mass, Mi, between it 
and the center of symmetry; Mi = M(xi, tJ 

The initial perturbation is characterized by the profile of 
{!Mi. We express {!Mi as a function of Mi. The search for simi­
larity solutions dictates that the initial perturbation be scale 
free; thus bMi(Mi) must be a power law. We write 

() = {!Mi = (Mi)-•, (ll) 
Mi Mo 

where M 0 is a reference mass; the corresponding reference 
position is x 0 • The parameter E is restricted to values between 
zero and unity by the requirements that the initial mass pertur­
bation increase and the initial density perturbation decrease 
away from the center of symmetry. 

Our choice of initial conditions is clearly incompatible with 
exact self-similarity; at ti there is no collapsed material 
although the overdensity in the inner regions diverges. It is a 
plausible assumption that the trajectories of the material with 
small {! will approach a self-similar solution. This would be 
satisfactory since for t ~ ti almost all of the collapsed material 
has small b. 

Because the initial density exceeds the critical value pb(t), the 
trajectory of each particle will ultimately oscillate through the 
center of symmetry. We refer to the events corresponding to 
the local maxima of x(t, Mi) as apapsis passages. The first 
apapsis passage is of special significance, and we reserve the 
name of turnaround for it. The turnaround distance and time 
are denoted by x*(Mi) and t*(Mi). Prior to reaching turn­
around, a particle does not cross the orbits of other particles. 
Thus, fort < t*, 

M(x, t) = (!..!)2(3 -n)/3 
Mi t ' 

(12) 

where the (tJt) 2 <3 -n>/3 factor is a consequence of the unper­
turbed Hubble expansion along 3- n of the coordinate axes. 
Using this simple expression for M(x, t), we solve the equation 
of motion in the interval ti < t::;; t* (cf. Appendix), to obtain 

~-ex 
xi - {! , (13) 

~ = (c')3t2 
ti {! 

(14) 

Equations (13) and (14) are valid to lowest order in{! ~ L The 
appropriate values of ex and e, for the three symmetries are 

ex= fz, 0.74, 1 . , 

1.39, ( 341!:)2/3 

Inserting equation (11) into equations (13) and (14) yields 

~= ex(::~y, (15) 

~ = e~t2(Mi)3<t2 
ti Mo 

(16) 

With the aid of equation (4), we find 

[ nM0 ] 1/"(Mi)•+ l/n X*=e -- --
X Pb(ti) Mo 

(17) 

We denote the current turnaround distance by X(t) and the 
corresponding initial mass by M,. From equations (16) and (17) 
it follows that 

_ _s__ [nM o] lfn(!._)2/3 + 2/(3n<) 
X(t) - et + 1/n• p (t·) t. , 

t b l l 

(18) 

M(X, t) = _1_(!._)2!<3•>-2<3-nl/3 
Mo e,tt• ti 

(19) 

We define dimensionless coordinate and time variables 

X t 
A.=-, r=-. 

X* t* 
(20) 

We now prove that, expressed in terms of these scaled vari­
ables, the equation of motion is independent of Mi. 

Sometime after turnaround a particle crosses the trajectory 
of other particles, so the simple relation (eq. [12]) for M(x, t) is 
no longer valid. The major step in the derivation of the simi­
larity equation is to express M(x, t) as a functional of A.(r). We 
appeal to self-similarity and write 

M(x, t) = M(X, t)vlt(x/X), (21) 

where vlt is the dimensionless mass profile function given by 

v~t(;) =: iM, d::,; H[x(t; Mi)- x(t; M;)], .(22) 

for xjX ::;; 1. Here H[u] is the Heaviside function; H[u] = 0 for 
u < 0, and H[u] = 1 for u ~ 0. Changing the variable of inte­
gration from Mi tor with the help of equation (16) yields 

( A.) 2 foo d~ [A. A.(~)] 
vlt A = 3E J1 ~I +2/(3<) H A- A(~) , (23) 

where A is defined by 

A(r) = r2/3+2/(3n<). (24) 

Finally, we use equations (17), (18), and (20) to rewrite the 
equation of motion (9) in terms of the scaled vs-iables: 

d2A. _ 2(3 _ n) _! _ 2_(e•)" !2/(3<)-2(3-n)/3 (3.) 
dr2 - 9n r2 3n ex A." 1 vlt A . (25) 

Equation (25) governs the evolution of the similarity solutions 
for all values of r. It requires the boundary conditions 

A.(1) = 1 dA.(1) = 0 
' dr ' 

(26) 

which reflect that turnaround occurs at r = 1, A. = 1. 
Proper application of Newtonian cosmology requires that 

the linear dimensions of the structures be small compared with 
the distance to the horizon. This restricts the interval of time 
over which the similarity solutions are valid in two respects. 
First, it implies that the planar and cylindrical solutions must 
be thought of as possessing edges along 3 - n symmetry direc­
tions. Our analysis neglects edge effects, but they must become 
important when the turnaround distance approaches the 
system's dimensions along the symmetry directions. This is 
inevitable since, for all cases, the turnaround di~tance grows 
more rapidly than t213 , the rate of expansion along the sym­
metry directions. Second, for spherical solutions withE < i, the 
turnaround distance grows faster than t and must eventually 
approach the horizon scale. 
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III. ASYMPTOTIC BEHAVIOR OF SIMILARITY SOLUTIONS 

The similarity solutions describe a basic type of motion. 
There is an initial period of expansion which ends at turn­
around. After turnaround, the trajectory oscillates through the 
center of symmetry. With the passage of time, the ratio of the 
apapsis distance to the current turnaround distance decreases 
as does the ratio of the oscillation period to the time scale for 
halo evolution. Thus the trajectory is asymptotically buried 
ever more deeply in the halo of collapsed material. 

The above picture implies that there is an adiabatic invari­
ant associated with buried trajectories. Furthermore, the scale­
free nature of the similarity solutions suggests that the mass 
profile in the halo might be approximated by a power law in 
the distance from the center of symmetry. These features enable 
us to deduce the asymptotic properties of the similarity solu­
tions. 

We parameterize the halo mass profile by 

M(x, t) = K(t)xY , (27) 

and the variation ofthe apapsis distance xa by 

X ( t )q x: = t:: (28) 

Our goal is to relate y and q to E. 
The equation of motion of a halo particle may be written as 

d2x 
dt2 = -4n:GK(t)xy-n+ 1 . (29) 

Orbits for which xa ~ X have periods which are much shorter 
than t. Thus it is a good approximation to treat K as constant 
over one orbit period. For constant K, equation (29) has the 
energy integral 

8n:GK(t) ( y-n+2 y-n+2) 
( 2) Xa -X . 
y-n+ 

(30) 

The gradual variation of the apapsis distance due to the time 
dependence of K is obtained from the action 

J = 4 f"dx(~) 
= 8[ 2n:GK(t) ]1/2 x(r-n+4)/2 l1 du(1 - urn+2)112, (31) 

')'- n + 2 a Jo 
which is an adiabatic invariant. We define the auxiliary par­
ameters by K(t) = ct-s. Thus q = sj(y- n + 4). We use equa­
tions ( 18), (19), and (27) to express s in terms of y and E as 

2 [(y- n) J s = - -- + (y - n + 3)E . 
3E n 

(32) 

Hence 

2 [(y- n) J 
q = 3E(y - n + 4) -n- + (y - n + 3)E · (33) 

We define P(xfxa) to be the fraction of time a particle with 
apapsis X a spends inside x: 

I(v) 
P(v) = !(1) (v ::s; 1), 

P(v) = 1 (v > 1) , (34) 

where 

I(v) = r (1- u:un+2)1!2. (35) 

Self-consistency demands that 

( x)r M(x, t) [M' dM; [ x J 
X = M(X, t) = Jo M, p x.(t; M;) · 

(36) 

Transforming the integration variable from M; to u = xfxa 
using equations (17), (18), and (28), we obtain 

(x)y-p 1 ioo du 
- =- - P(u), 
X p x;xU1+p 

(37) 

where 

2n 
p = -=---=---::--:-

2 + n(2 - 3q)E · 
(38) 

Now we have arrived at the crucial point. For u ~ 1, 
P(u) ~ u/1(1). Thus the integral in equation (37) converges or 
diverges as xjX approaches 0 according to whether p is less 
than or greater than 1. In the former case, 

p::s;1, y=p, 

whereas, in the latter, 

p~1, y=l. 

The physical distinction between the two cases is clear. For 
p < 1, the mass in the inner halo is dominated by particles with 
small' apapsides, xa/X ~ 1, which passed their turnaround 
events a long time ago. On the other hand, for p > 1, the mass 
in the inner halo comes from particles whose apapsides are 
spread throughout the halo. 

Completing the allowable solutions with the aid of equations 
(33) and (38), we find 

n = 1: 

n = 2: 

')' = 1, 

n = 3: 

3 
P=--> 1 

2 + E- ' 

2 
forE ::s; 3 ; 

2 
forE~ 3. 

IV. NUMERICAL INTEGRATION OF SIMILARITY EQUATIONS 

(39) 

The similarity solutions are determined by numerical inte­
gration of the second-order differential equation (25} subject to 
the boundary conditions given by equations (26). Backward 
integration is straightforward because Jlt = T- 21(3 '> for T ::s; 1. 
For" ~ 1, Jlt is a functional of A., so an iterative method must 
be employed. Following an initial guess for Jlt, we alternately 
integrate equation (25) over the selected domain of " ~ 1 and 
then compute Jlt over the same domain of" from equation (23). 
This procedure is continued until the desired level of con­
vergence is achieved. The solutions are quite robust, and 
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FIG. 1.-Planar symmetry: particle trajectory forE = 0.6 
FIG. 2.-Planar symmetry: instantaneous location of all particles in phase space forE = 0.6. 
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FIG. 3.-Planar symmetry: ratio of actual to background density forE = 0.6. 
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FIG. 4.-Planar symmetry: profile of mass per unit area forE = 0.6. Dashed line shows predicted power-law slope. 
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FIG. 5.-Cylindrical symmetry: particle trajectory for (a) E = 0.2, (b) E = 0.8 
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FIG. 6.-Cylindrical symmetry: instantaneous location of all particles in 
phase space for E = 0.8. 

almost any monotonic function of J./ A which satisfies vlt(O) = 0 
and vlt(1) = 1 provides an adequate input guess, 

The integral giving A is calculated at a discrete grid of 
points; typically 500 are used. It is evaluated between these 
points by linear interpolation. A higher order spline inter­
polation is unsuitable because A is not a smooth function. The 
ratio of the particle's apapsis distance to the current turn­
around distance, A0 /A, decreases with increasing r. The simi­
larity solution is generally determined out to the value of r at 
which J.JA falls below the lowest grid point. 

At small values of ). the acceleration is proportional to 
;.<r-n+o. Thus, near the origin it vanishes in the planar case, 
equals unity in the cylindrical case, and diverges in the spher­
ical case. In the last two cases the trajectory is integrated ana­
lytically through the origin. 

The principal features of each solution are illustrated in a 
sequence of four figures. There are three such sequences (Figs. 
1-12), one for each symmetry. The first figure of each sequence 
depicts the oscillatory behavior of J.(r). The second figure of 
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FIG. 7.-Cylindrical symmetry: ratio of actual to background density for 
€ = 0.8. 
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FIG. 8.-Cylindrical symmetry: profiles of mass per unit length per unit 
angle forE = 0.2 and 0.8. Dashed line shows predicted power-law slope. 
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FIG. 9.-Spherical symmetry: particle trajectory for (a) E = 0.2, and (b) E = 1.0 
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0.6 0.8 

r/R 

FIG. 10.-Spherical symmetry: instantaneous location of all particles in 
phase space for<:: = 0.8. 

each sequence shows the simultaneous location of all particles 
on the dx/dt - x plane and demonstrates the existence of a 
denumerably infinite set of points along the phase plane curve 
at which ox(t, Mi)/8Mi = 0. These points are associated with 
the density spikes seen in the third figure of each sequence. The 
spikes are contributed by particles which are approaching 
apapsis, with the exception that the first apapsis passage, turn­
around, is not associated with a spike. The infinite-density 
spikes are truncated in the figures because the density is aver­
aged over bins. The fourth and final figure in each sequence 
displays log (..,H) versus log (x/X) and illustrates the power-law 
nature of the mass profiles. 

By and large, the detailed numerical solutions confirm the 
predictions of the asymptotic analytic theory which are sum­
marized in equations (39). The largest discrepancy is that the 
value of y obtained from the analytic theory does not accu­
rately estimate the rate at which ..,H increases with x. This may 
be seen by comparing the slopes of the log (..,H) versus log 
(x/X) plots with the theoretically predicted power laws given 
by the dashed lines. 

V. COMPARISON WITH PREVIOUS CALCULATIONS 

a) Planar Simulations 

Other planar similarity solutions may be compared with 
numerical calculations done by Melott(1983), who used a one­
dimensional cloud-in-cell method to simulate the large-scale 
clustering of 10,000 collisionless particles. Melott began his 
calculation at redshift z = 10,000 and terminated it at z = 0. 
His initial density perturbation was produced by a sinusoidal 
variation of amplitude 10- 3 in the spacing of the particles. The 
entire system extended over one wavelength. Our similarity 
solutions demand different initial conditions. Nevertheless, 
they display the same qualitative features found in Melott's 
simulations. For example, compare the dxjdt versus x plot 
shown in our Figure 2 with Melott's Figure Sa. 

b) Spherical Simulations 

Interest in galaxy formation stimulated many investigations 
of spherically symmetric gravitational collapse. Early studies 
attempted to account for the approximate p ocr- 3 distribution 
of the luminous material in elliptical galaxies. It was found that 

€ 0.8 

log( r/R ) 

FIG. !I.-Spherical symmetry: ratio of actual to background density for 
E = 0.8. 

the collapse of an initially static, uniform-density sphere 
resulted in a final configuration with p oc r- 3 (Henon 1964; 
Gott 1973). The secondary infall of bound but initially expand­
ing material onto a collapsed core was discussed by Gunn and 
Gott (1972). Gott (1975) made the first attempt to determine a 
final density profile due to secondary infall. He considered a 
central overdense core embedded in an Einstein-de Sitter uni­
verse, essentially our E = 1 case. Gott predicted that the 
asymptotic density profile would have p oc r- 914• However, his 
numerical simulations produced p oc r- 2 ·8 • The extended flat 
rotation curves of spiral galaxies (Rubin, Ford, and Thonnard 
1980; Krumm and Salpeter 1980) imply the presence of halos 
with p oc r- 2• This led Gunn (1977) to extend Gott's study to 
more general initial-mass profiles in an attempt to discover 
conditions compatible with a final halo with p oc r- 2 • Gunn's 
analytic treatment is in some respects similar to the asymptotic 
theory presented in § III of our paper. However, he explicitly 
assumed that each particle's apapsis reaches a final value which 
is a fixed fraction of the turnaround radius. We find this 

log( r/R) 

FIG. 12.-Spherical symmetry: profile of mass per unit solid angle for 
several £-values. Dashed lines show predicted power-law slopes forE < 1 and 
forE= 1.0. 
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assumption to be invalid for E < ~. precisely the range for E for 
which the asymptotic theory predicts y = 1. 

The evolution of an initially uniform-density region of finite 
radius surrounding a collapsed core was investigated by Dekel, 
Kowitt, and Shaham (1981) using a three-dimensional N-body 
code and by Pryor (1982) using a spherically symmetric code. 
Neither group produced models displaying extended flat rota­
tion curves, although the Dekel et al. results provided some 
support for Gunn's (1977) predictions. However, these investi­
gations were based on initial perturbations whose fractional 
excess masses b decrease rather rapidly with increasing M;; a 
relatively large fraction of the excess mass is contained in the 

collapsed cores as a consequence of the small radii at which the 
surrounding regions of uniform density are truncated. We find 
similarity solutions compatible with extended flat rotation 
curves for small e; these correspond to initial configurations 
for which b decreases slowly as M; increases. Of course, our 
similarity solutions include continuous infall. It remains to be 
seen how extended the flat rotation curves are in truncated 
versions of low-E models. 

Support for this research was provided by the National 
Science Foundation through a graduate fellowship awarded to 
J. A. F. and through grant 80-20005. 

APPENDIX 

We determine the turnaround timet* and turnaround distance x* in terms oft;, X;, and b. The calculations are straightforward 
since a particle does not cross the orbits of other particles before it reaches turnaround. 

a) Planar Symmetry 

The equation of motion reads 

d2z 4 z 
dt 2 = 9 f- 4nGM(z, t) . (A1) 

Inserting equations (5) and (12) into equation (9) yields 

d2z 4 z 2z. (t-)4 ' 3 

dt2 = 9?- 3(1 - 1b)t~ ~ ' 
(A2) 

fort< t*. Solving the linear equation (A2) subject to the initial condition of unperturbed Hubble expansion, we obtain 

.:. = ~ {(!..)2/3 - ~ [3(!..)4/3 + 2(!..) -1/3]} 0 

Z; (1 b) t; 5 t; t; 
(A3) 

From equation (A3), we find that to lowest order in b 4i 1, 

~-_2_ 
Z; - 12b ' 

~ = (2-)3/2 
t; 6[J 

(A4) 

b) Cylindrical Symmetry 

The equation of motion is written 

d2ro ro 2G 
-d 2 = -2 2 -- M(ro, t) . t t fl} 

(AS) 

Inserting equations (6) and (12) into equation (9) yields 

d2 ro ro 1 ro? (t·)2' 3 

dt2 = 9t2 - 3(1 - b) t~~ t ' (A6) 

fort < t*. Equation (A6) is nonlinear, and we have not been able to solve it analytically. However, numerical integrations imply that 

~ = 0.74 ~ = (1.39)3/2 (A7) 
fl1; b ' t; b 

c) Spherical Symmetry 

The equation of motion simplifies to 

d2r 4n G G 
-d 2 = - -3 Gpb(t)r- 2 bM(r, t) = - 2 M(r, t) . 

t r r 
(AS) 

Since M(r, t) is constant fort < t*' 

d2r 2rt 1 
dt 2 = - 9(1 - b)t~ r2 • 

(A9) 
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Although equation (A9) is nonlinear, it has an energy integral. We evaluate the energy constant by requiring that the velocity satisfy 
the unperturbed Hubble relation at t = t;. This procedure yields 

(~~y = 9(1 ~b)(~)\;- b). 
The turnaround parameters, to lowest order in b ~ 1, are 

Centrella, J., and Melott, A. L. 1983, Nature, 305, 196. 
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