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Abstract

We study the linear stability properties of the Barenblatt–Pattle (B–P) self-similar solutions of the porous medium equation
which models flow including viscous and porous media gravity currents. Grundy and McLaughlin [R.E. Grundy, R. McLaughlin,
Eigenvalues of the Barenblatt–Pattle similarity solution in nonlinear diffusion, Proc. Roy. Soc. London Ser. A 383 (1982) 89–100]
have shown that, in both planar and axisymmetric geometries, the B–P solutions are linearly stable to symmetric perturbations.
Using a new technique that eliminates singularities in the linear stability analysis, we extend their result and establish that the
axisymmetric B–P solution is linearly stable to asymmetric perturbations. This suggests that the axisymmetric B–P solution pro-
vides the intermediate asymptotics of gravity currents that evolve from a wide range of initial distributions including those that
are not axisymmetric. We use the connection between the perturbation eigenfunctions and the symmetry transformations of the
B–P solution to demonstrate that the leading order rate of decay of the perturbations can be maximised by redefining the volume,
time and space variables. We show that, in general, radially symmetric perturbations decay faster than asymmetric perturbations of
equal amplitude. These theoretical predictions are confirmed by numerical results.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The need to understand flow of fluids through porous media is motivated by the pivotal role it plays in many fields
of science and engineering such as agriculture, groundwater hydrology, and petroleum engineering. Mathematical
studies of porous media flows date back to the nineteenth century. In particular, the flow of fluid through saturated
porous media is well established (e.g. Bear [1], Dullien [2]) and the steady-state flow through isotropic homogeneous
porous media is governed by Laplace’s equation. For unsteady flows, the motion is governed by a coupled system
of equations involving the field variables and the position of the moving interface. The system is nonlinear because
the position of the interface is not known beforehand, and is determined as part of the solution. This means that,
in general, analytical solution is difficult if not impossible. Different approaches have been used to derive limits in
which analytical solution of the system is possible. One of the most successful and extensively used of these is the
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shallow-water approximation (see, for example, Bear [1], Huppert and Woods [3], Barenblatt [4], Fowler [5]). Under
this approximation, the horizontal length scale of the flow is assumed to be much larger than the vertical length
scale, which amounts to assuming that the flow is essentially horizontal with a hydrostatic pressure distribution.
The field variables then become functions of the horizontal space coordinates and time only, and the position of
the interface can be decoupled from them. For flows where the motion is driven by the gravitational force due to
density gradients between the fluids, the position of the interface then satisfies a nonlinear diffusion equation called
the porous medium equation (PME). For a gravity current caused by the finite release of a dense fluid along an infinite
horizontal boundary in a porous medium saturated with a less dense fluid, a self-similar solution of the PME has
been found by Barenblatt [6]. This solution had been identified earlier, in the context of concentration-dependent
diffusion by Zel’dovich and Kompaneets [7], and later by Pattle [8], and is widely known as the Barenblatt–Pattle
(B–P) solution. The analytical predictions provided by the B–P solution have been shown to be in excellent agreement
with experimental results (see, for example, Huppert [9]). Important examples where this model is applicable include
the dispersal of pollutants through groundwater subsequent to contamination and the spreading of chemical-laden
water injected to sweep oil through the reservoir, after the injection period.

Analytical self-similar solutions are useful tools for scientists and engineers. They provide both significant insight
into the dynamical balances that govern the evolution of physical systems and a standard against which experimental
and numerical results may be tested. They also provide the asymptotics of classes of physical systems in the interme-
diate regime when the systems are independent of their initial conditions but have not reached their final equilibrium
states. These functions served by self-similar solutions require that they be stable in the sense that the systems evolve
towards the self-similar state from arbitrary conditions.

Grundy and McLaughlin [10] (referred to as GM hereafter) have shown that the B–P self-similar solutions in
two-dimensional and axisymmetric geometries are linearly stable to disturbances (perturbations) that possess two-
dimensional and radial symmetry, respectively. They demonstrated that in both geometries small perturbations im-
posed on the self-similar solution decay in time. Witelski and Bernoff [11] have also studied the two-dimensional
problem and obtained similar results to GM. King [12] constructed exact solutions of the multidimensional PME in
the form of quadratic polynomials in terms of Cartesian coordinates. Solutions that have bounded spatial domains
are shown to decay to the radially symmetric B–P solution at large times, and the rates of decay are determined by
utilising integral moments of the motion that remain constant throughout the evolution.

Other studies involving linear stability analyses of self-similar solutions of nonlinear diffusion equations include
the following: Halfar ([13] and [14]) has shown the linear stability of self-similar solutions of an equation which
describes the evolution of ice sheets. Bernoff and Witelski [15] have shown the linear stability of a self-similar solution
of the generalised lubrication equation which models the flow of thin viscous films dominated by surface-tension.
Chertock [16] has shown the linear stability of the self-similar solution of an equation which describes the motion
of gravity currents that flow through a fissurised porous medium. These nonlinear diffusion equations are usually
degenerate at the leading edges where the dependent variable vanishes and the corresponding self-similar solutions are
generally characterised by infinite gradients there. This property of the self-similar solutions usually leads to singular
terms in the linear stability calculations. GM and Halfar resolved the singularities by using the method of strained
coordinates while Witelski and Bernoff [11] transformed the governing equations to self-adjoint form choosing the
weight function to absorb the singularities.

In this paper, we introduce a new approach which circumvents these problems by transforming the dependent vari-
able so that the slope of the self-similar solution remains finite at the edges and hence no singularities arise in the
linear stability calculations. We extend the analysis of GM by considering the general case where the perturbations
imposed on the axisymmetric B–P solution are not necessarily radially symmetric. We show that the self-similar so-
lution is linearly stable to perturbations that depend on both the radial and azimuthal coordinates. This result supports
the assertion that the axisymmetric B–P solution provides the intermediate asymptotics of gravity currents evolving
from a wide range of initial conditions including those that are asymmetric. By appealing to the connection between
the disturbance eigenfunctions and the symmetry transformations of the self-similar solution, we demonstrate that the
leading order rate of decay of the disturbance can always be maximised by redefining the volume, time and space
variables. The variables in terms of which the rate of decay is maximal are called optimal variables (e.g. Witelski
and Bernoff [11]). We show that, both in terms of primitive and optimal variables, volume-preserving disturbances
that are axisymmetric in shape typically decay faster than asymmetric disturbances of equal amplitude. The rates of
convergence to the self-similar states, which we derive for currents evolving from profiles of arbitrary shapes, reduce
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to the rates obtained by GM in the absence of azimuthal dependence, and are in accord with those found by King [12]
for certain exact solutions.

The paper also contains results of the development of gravity currents obtained by numerically integrating from
arbitrary initial profiles. The results confirm that currents evolving from arbitrary initial profiles that are sufficiently
localised approach the axisymmetric B–P solution in the intermediate regime. Moreover, currents evolving from asym-
metric initial profiles are shown to take longer to adjust to self-similar state than those evolving from axisymmetric
profiles. The numerically determined rates of convergence to self-similar state are found to be in excellent agreement
with those predicted by the linear theory.

The paper is organised as follows: we formulate the problem and present the B–P solution in Section 2. Then, in
Section 3, we analyse the evolution of the B–P solution subsequent to the introduction of an asymmetric perturbation.
In Section 3.1, we perform a linear stability analysis and derive leading order expressions for the perturbation quanti-
ties. The connection between the perturbation eigenfunctions and the symmetry transformations of the B–P solution
is discussed in Section 3.2. We present numerical results and compare with theoretical predictions in Section 3.3, after
which we give concluding remarks in Section 4. The paper also contains two appendices: Appendix A gives details
of the numerical methods that have been used, and Appendix B contains a theoretical derivation of expressions that
describe the evolution of the perturbations.

2. Formulation and self-similar solution

We study the motion of a radially symmetric gravity current produced by the finite release of fluid of density
ρ + �ρ in a porous medium which is saturated with fluid of density ρ over an impermeable horizontal boundary. We
employ cylindrical polar coordinates r , θ , z defined as shown in Fig. 1. We assume that the properties of the porous
medium are homogeneous in horizontal directions and, following Huppert and Woods [3], take the porosity to vary
linearly in the vertical direction according to

φ(z) = φ0 + φ1z/h0, (2.1)

where h0 is the typical initial height of the current, and φ0 > 0 and φ1 are constants. We adopt a power law relationship
between permeability and porosity, given by

K(φ) = K0φ
2α, (2.2)

where K0 > 0 and α > 0 are constants. Empirical formulas of this form are used commonly for natural soils and rocks
and, for these porous media, the typical value of the exponent falls in the range 1 � α � 5 (Dullien [2], Fowler [5]).

The low Reynolds number flow of fluid through the porous medium is then governed by Darcy’s law and the
continuity equation:

u = (u,w) = −K(z)

µ

{∇p + ρgk̂
}
, (2.3)

∇ · u = 1

r
∂r (ru) + ∂zw = 0, (2.4)

Fig. 1. Definition diagram for a gravity current flowing along a horizontal boundary through a porous medium.
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where u and w are the r- and z-components of the transport velocity, respectively, µ is the dynamic viscosity, p(r, z, t)

is the fluid pressure, g is the gravitational acceleration, ∂r ≡ ∂/∂r , and k̂ is the unit normal in the vertical direction.
The boundary conditions are

φ(h)∂th + u∂rh = w, at z = h, (2.5)

∂rh = 0, at r = 0, (2.6)

where (2.5) represents the kinematic condition at the interface and (2.6) is the symmetry condition. At z = 0, we have
zero normal flux, w = 0, and vanishing height, h(rF , t) = 0, where rF is the position of the front.

We further assume that the vertical lengthscale of the current is much smaller than both its horizontal lengthscale
and the depth of the ambient fluid. This is the primary assumption of the shallow-water approximation, a technique
which has been used extensively to study flows in porous media, and shown to be remarkably effective (see, for
example, Bear [1], Huppert and Woods [3], Pritchard et al. [17]). Scaling arguments then indicate that, to leading
order, the motion of the current is horizontal and the pressure is hydrostatic, given by

p(r, z, t) = pH + �ρg(h − z) + ρg(Hs − z), 0 < z < h, (2.7)

where the constant pH is the pressure at the surface z = Hs of the ambient fluid. The evolution equation for the
height of the current can now be derived by expressing the kinematic condition (2.5) in terms of h using (2.7), the
r-component of (2.3), (2.4), and it is given by

(1 +Kh)∂th = R
r

∂r

{[
(1 +Kh)2α+1 − 1

]
r∂rh

}
, (2.8)

where K = φ1/(φ0h0) and R= (K0�ρgh0φ
2α
0 )/[(2α +1)φ1µ]. This equation is to be solved subject to the following

boundary conditions

h(rF , t) = 0, (2.9)

∂rh(0, t) = 0. (2.10)

Global conservation of volume indicates that

φ0

rF∫
0

r
(
2h +Kh2)dr = 2Ṽ , (2.11)

where 2πṼ is the total volume of fluid in the current.
The limit φ1/φ0 → 0 corresponds to the case of a porous medium with constant permeability and porosity and has

been studied extensively (see, for example, Bear [1], Huppert and Woods [3]). The height of the current in this case
satisfies the equation

∂th = R0

(
∂r∂r + 1

r
∂r

)(
1

2
h2

)
, (2.12)

where R0 = K0φ
2α−1
0 �ρg. This equation is due to Boussinesq [18].

If φ1/φ0 � 1, which corresponds to highly variable permeability and porosity, the system of equations (2.8)–(2.11)
takes the following approximate form

h2α−1
0 ∂t

(
h2) = R1

(
∂r∂r + 1

r
∂r

)(
h2α+2

α + 1

)
, (2.13)

h(rF , t) = 0, (2.14)

∂rh(0, t) = 0, (2.15)

φ1

rF∫
rh2 dr = 2Ṽ h0, (2.16)
0
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where R1 = (K0�ρgφ2α−1
1 )/[(2α + 1)µ] and it has been assumed that Kh � 1. We nondimensionalise lengths with

h0 and times with h0/R1, and rescale the height according to h2 = H. The rescaled height satisfies the following
equation

∂tH =
(

∂r∂r + 1

r
∂r

)(Hα+1

α + 1

)
, (2.17)

with the boundary conditions

H(rF , t) = 0, (2.18)

∂rH(0, t) = 0, (2.19)
rF∫

0

rHdr = V, (2.20)

where the dimensionless volume V = 2Ṽ /(φ1h
3
0). Eq. (2.17) is a degenerate nonlinear diffusion equation called the

porous medium equation (PME) because it was first derived in the study of percolation of gases through porous media
(Muskat [19]).1 It is degenerate because the coefficient of the highest derivative (Hα) goes to zero at the edges and
hence, while it is of second-order parabolic type in 0 � r < rF , Eq. (2.17) degenerates to first order at r = rF . We
remark that the PME has the same structure as the (Boussinesq) equation (2.12) and setting α = 1 in (2.17) reduces
it into an equation of the same form as Eq. (2.12) governing the flow of fluid through a porous medium of constant
permeability.

The PME has also been derived in a number of other applications from different fields including the following: the
case α = 3 describes the height of a viscous free-surface gravity current which propagates on a solid boundary (e.g.
Huppert [9]). In high temperature physics, thermal conduction in plasmas is characterised by α = 5

2 (Zel’dovich and
Raizer [20]) and the radiative transfer of heat by Marshak waves during the initial stages of an intense explosion is
described by α = 6 (Larsen and Pomraning [21]), where in these two examples H denotes temperature. In population
dynamics, the evolution of the population of a species in space can also be modelled by (2.17), where H represents
the population density (Murray [22], Witelski [23]). More examples of the application of the porous medium equation
are described in, for example, Peletier [24] and Aronson [25]. In this paper, we study the linear stability properties of
the self-similar solution of PME.

The problem described by the system (2.17)–(2.20) admits a self-similar solution given by (Barenblatt [4])

HS(r, t) = t−1/(α+1)Ψ (ξ) (2.21)

where

Ψ (ξ) =
[

α

4(α + 1)

(
ξ2
F0 − ξ2)

+

]1/α

, (2.22)

the similarity variable ξ = r/t1/(2α+2), ξ+ ≡ max(ξ,0) and the position of the front is given by ξ2α+2
F0 = {4(1 +

1
α
)}α+1( 1

2V )α . The predictions of this solution have been found to be in excellent agreement with experimental results
(see, for example, Huppert [9] for the case α = 3). This confirms the assertion that the self-similar solution, even
though singular at t = 0, describes the intermediate asymptotic behaviour of systems evolving from a wide range of
initial conditions. Thus flows with the same volume but different initial distributions evolve towards the same profile
given by (2.21) in the intermediate regime. The flows are said to have “forgotten” their initial conditions in this regime.

GM have shown that this solution is linearly stable to radially symmetric disturbances. In their analysis, which
involved dealing with singular terms at the front, they found an eigenfunction expansion of the disturbance function
in terms of hypergeometric functions and demonstrated that the disturbance decays in time. We extend the analysis of
GM to the case of a disturbance which depends on both the radial and azimuthal coordinates. We avoid singularities
associated with infinite gradients at the front by introducing an approach in which the problem is transformed into a
system of dependent variables for which the gradient of the height remains finite at the front.

1 The equation as derived in this context models the two-dimensional adiabatic flow of a gas through a porous medium of constant permeability.
The exponent α is a function of the heat capacity ratio γ = CP /CV , where CP is the specific heat of the gas at constant pressure and CV is the
specific heat of the gas at constant volume.
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3. Perturbation of self-similar solution

We study the development of the solution (2.21) subsequent to the introduction, at some reference time t0, say, of
a disturbance that depends on both r and θ . For times t > t0, derivatives with respect to θ are no longer identically
equal to zero and the governing equation (2.17) is replaced by

∂tH = ∇2
rθ

(Hα+1

α + 1

)
, (3.1)

where ∇2
rθ = ∂r∂r + r−1∂r + r−2∂θ∂θ . The boundary conditions are now given by

2π∫
0

rF∫
0

rH(r, θ, t)dr dθ = 2πV, (3.2)

H(rF , θ, t) = 0, (3.3)

where rF = rF (θ, t). At the origin, the disturbed distribution is not necessarily symmetric and the condition ∂rH = 0
is replaced by the requirement that H(r, θ, t) must remain finite.

3.1. Linear stability analysis

The gradient of the self-similar solution (2.21) becomes infinite at the front when α > 1. This property of the self-
similar solution leads to singular terms in the equations governing the perturbation and GM have remedied this by
using the method of strained coordinates. We introduce an approach that scales out the singularities by transforming
the dependent variable so that the gradient of the self-similar height at the front is finite for all values of α. Thus, we
write

Hα = αt−α/(α+1)Φ(ξ, θ, t). (3.4)

While this type of transformation has been used in several studies of the PME (e.g. Gilchrist [26]), we are not aware
of work in which it has been used in the context of linear stability analysis.

Substituting (3.4) into (3.1) gives an equation which describes the evolution of Φ

t∂tΦ = αΦ∇2
ξθΦ + (∇ξθΦ)2 +

(
1

2
ξ∂ξΦ + αΦ

)/
(α + 1). (3.5)

We look for a solution of the perturbed problem, HP , by expanding Φ and ξF about the self-similar quantities as
follows:

Φ(ξ, θ, t) = Φ0(ξ) + δΦ1(ξ, θ, t) + · · · , (3.6)

ξF (θ, t) = ξF0 + δξF1(θ, t) + · · · , (3.7)

where δ � 1 is the amplitude of the disturbance. Substituting these expressions into (3.5) and comparing powers of δ

yields, at O(1),

0 = αΦ0Φ
′′
0 + αΦ0Φ

′
0/ξ + Φ ′

0
2 +

(
1

2
ξΦ ′

0 + αΦ0

)/
(α + 1),

= 1

ξ

(
αΦ0

d

dξ
+ Φ ′

0

)(
ξΦ ′

0 + ξ2

2(α + 1)

)
, (3.8)

where prime denotes differentiation with respect to ξ . The boundary conditions are

ξF0∫
0

ξ(αΦ0)
1/α dξ = V, (3.9)

Φ ′
0(0) = 0, (3.10)

Φ0(ξF0) = 0. (3.11)
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Solving the system (3.8)–(3.11) recovers the self-similar solution, given by

Φ0(ξ) = 1

4(α + 1)

(
ξ2
F0 − ξ2). (3.12)

At O(δ), the equation governing the development of Φ1 is found to be

4

(
1 + 1

α

)
t∂tΦ1 = (

ξ2
F0 − ξ2)∇2

ξθΦ1 − 2

α
ξ∂ξΦ1, (3.13)

where the expression (3.12) has been substituted for Φ0. The boundary conditions are given by

2π∫
0

ξF0∫
0

ξΦ
1/α−1
0 Φ1 dξ dθ = 0, (3.14)

Φ1(ξF0, θ, t) = 1

2
ξF0ξF1/(α + 1), (3.15)

and the requirement that the function Φ1 must remain finite at the origin. The condition (3.14) expresses volume
conservation for volume-preserving perturbations and (3.15) expresses the variation in the position of the front caused
by the perturbations.

It is convenient to introduce the transformations η = ξ/ξF0 and τ = ln(t/t0), in terms of which the time at which
the self-similar solution is disturbed becomes τ = 0 and the position of the front is η = 1, to leading order. The
governing equation (3.13) becomes

4

(
1 + 1

α

)
∂τΦ1 = (

1 − η2)∇2
ηθΦ1 − 2

α
η∂ηΦ1. (3.16)

Since this is a linear homogeneous equation, we use the method of separation of variables and look for a solution in
separable form

Φ1(η, θ, τ ) =
∞∑

n=0

∞∑
m=0

amneimθ−λmnτFmn(η;λmn), (3.17)

ηF1(θ, τ ) =
∞∑

n=0

∞∑
m=0

bmneimθ−λmnτ , (3.18)

where i = √−1, amn and bmn are constants, and λmn are the eigenvalues of the problem. Thus, establishing lin-
ear stability of the self-similar solution (2.21) involves showing that none of the eigenvalues λmn are negative. The
eigenfunctions Fmn satisfy the ordinary differential equation

η2(1 − η2)F ′′
mn + η

{
1 −

(
1 + 2

α

)
η2

}
F ′

mn +
{[

m2 + 4

(
1 + 1

α

)
λmn

]
η2 − m2

}
Fmn = 0. (3.19)

Then, making the substitutions s = η2, Fmn(s) = s
1
2 mXmn(s) and 2s = ζ + 1 in succession transforms the Eq. (3.19)

into a Jacobi differential equation (Abramowitz and Stegun [27])(
1 − ζ 2)X ′′

mn +
{

1 + m −
(

1 + m + 1

α

)
ζ

}
X ′

mn +
{(

1 + 1

α

)
λmn − m

2α

}
Xmn = 0 (3.20)

defined in the interval −1 � ζ � 1. The end points ζ = ±1 are regular singular points of (3.20) and solutions which
are continuous in the whole interval exist only when the coefficient multiplying Xmn equals n(n + a + b + 1), and are
given by

Xmn(ζ ) = P (a,b)
n (ζ ), (3.21)

where P
(a,b)
n denotes a Jacobi polynomial of degree n, and a = (1 − α)/α, b = m. The first three Jacobi polynomials

are given by
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P
(a,b)
0 (ζ ) = 1,

P
(a,b)
1 (ζ ) = 1

2
(a − b) + 1

2
(2 + a + b)ζ,

P
(a,b)
2 (ζ ) = 1

8

[
(a − b)2 − (4 + a + b)

] + 1

8
(3 + a + b)

[
2(a − b)ζ + (4 + a + b)ζ 2].

Higher degree polynomials can then be calculated using the recurrence relation

2B(n + 1)(B − n + 1)Pn+1 = {
(B + 1)

(
a2 − b2) + (B)3ζ

}
Pn − 2(n + a)(n + b)(B + 2)Pn−1,

where Pn ≡ P
(a,b)
n (ζ ), B = 2n + a + b and the Pochhammer symbol (m)n = (m − n + 1)!/(m − 1)!. An important

feature of the Jacobi polynomials is that they form a complete set of orthogonal functions in −1 � ζ � 1 with respect
to the weight function (1 − ζ )a(1 + ζ )b . This implies that any piecewise continuous function in −1 � ζ � 1 can be
represented by a unique series of Jacobi polynomials.

By demanding that the solution exist throughout −1 � ζ � 1, we deduce that the eigenvalues are given by

λmn = 1

α + 1

{
αn(n + m) + n + 1

2
m

}
, n,m = 0,1,2, . . . . (3.22)

This formula indicates that small θ -dependent disturbances imposed on the self-similar solution (2.21) decay in time
because all eigenvalues λmn are nonnegative, and hence (2.21) is linearly stable to asymmetric disturbances. The
eigenvalue λ00 = 0 is associated with symmetry transformations of the problem which alter the volume of the current
and we demonstrate below that it does not negate the stability.

Setting m = 0 in (3.22) recovers the formula obtained by GM for radially symmetric disturbances, namely

λ0n = n(αn + 1)

α + 1
, n = 0,1,2, . . . .

The eigenfunction associated with λmn is then given by

Fmn(η) = ηmP (a,b)
n

(
2η2 − 1

)
, a = 1

α
− 1, b = m, (3.23)

and its form, for various values of m and n, is illustrated in Fig. 2. The conservation of volume integral (3.14) is
automatically satisfied by all eigenfunctions except F00. Applying the condition (3.15) at the front yields

bmn = 2amn(α + 1)P (a,b)
n (1)/ξ2

F0. (3.24)

At the origin, while the eigenfunctions are not necessarily symmetric, as expected, they all satisfy the requirement of
being finite. The perturbation quantities are therefore given by

Φ1(η, θ, t) =
∞∑

m=0

∞∑
n=0

amn

(
t0

t

)λmn

eimθFmn(η), (3.25)

ηF1(θ, t) = 2(α + 1)

∞∑
m=0

∞∑
n=0

amnP
(a,b)
n (1)

(
t0

t

)λmn

eimθ/ξ2
F0, (3.26)

and the perturbed height is given by

HP (η, θ, t) = t−1/(α+1)

{
G1/α + δG1/α−1

α

∞∑
m=0

∞∑
n=0

amn

(
t0

t

)λmn

eimθFmn(η) + O
(
δ2)}, (3.27)

where

G = αξ2
F0

4(α + 1)

(
1 − η2).

The constants amn are determined from the initial conditions at t = t0 by making use of the orthogonality and com-
pleteness properties of the eigenfunctions.

Thus we have established that the axisymmetric B–P solution is linearly stable to asymmetric perturbations without
having to resolve singularities associated with infinite gradients at the front of the current. This result supports the
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Fig. 2. The first sixteen eigenfunctions of the disturbance function Φ1 plotted as functions of the radial similarity variable η, calculated for α = 3.
The positive and negative η-axes represent the θ = 0 and θ = π directions, respectively.

assertion that the axisymmetric B–P solution represents the intermediate asymptotic development of currents evolving
from a wide variety of initial distributions including those that do not possess axis symmetry. We note that the approach
of transforming the dependent variable so that the gradient of the profile at the front remains finite is applicable to
other self-similar solutions of nonlinear diffusion equations with infinite gradients at the edges. We have used the
approach to study the linear stability of the planar B–P solution to perturbations that possess planar symmetry. We
have found a perturbation eigenfunction expansion in terms of Gegenbauer polynomials and all eigenfunctions are
shown to decay in time. Hence, the analysis recovers the results presented by GM and Witelski and Bernoff [11]
without having to deal with singular terms at the leading edge.

3.2. Connection with symmetry transformations

It is convenient to express the self-similar solution in terms of the primitive variables

HS(r, t) =
{

α

4(α + 1)

[
ξ2
F0

tα/(α+1)
− r2

t

] }1/α

. (3.28)

+
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This solution describes the evolution of a gravity current with volume 2πV initially concentrated at r = 0 at time
t = 0. However, these choices of the origin in space and time, and the value of the initial volume are arbitrary and
have been made for convenience. We expect the solution of a system of volume 2πV̂ , initially centered at r = r̂eiθ

at time t = t̂ , to have the same qualitative features as (3.28). In fact, it is straightforward to show that the solution of
such a system is also given by (3.28) with r , t and V replaced by r − r̂eiθ , t − t̂ and V̂ , respectively. This indicates
that the self-similar solution (3.28) is invariant under transformations that translate the spatial origin, shift time, or
alter the volume. We note that, while the distribution remains axisymmetric under the action of volume-altering and
time-shifting transformations, the action of space-translating transformations introduces θ -dependence.

Let Hσ (r, t;σ) be the image of the similarity solution HS(r, t) under the action of a family of point transformations
depending on a real continuous parameter σ . For sufficiently small σ , Hσ can be approximated by a Taylor series
expansion about HS as

Hσ (r, t;σ) = Hσ (r, t;0) + σ
∂Hσ

∂σ

∣∣∣∣
σ=0

+ O
(
σ 2), (3.29)

where Hσ (r, t;0) = HS(r, t). This first-order approximation is known as the infinitesimal transformation and the
function [∂Hσ /∂σ ]σ=0 is called the coefficient of the infinitesimal transformation (see, for example, Dresner [28]).

We demonstrate that the eigenfunctions corresponding to λ00 = 0, λ01 = 1 and λ10 = 1/(2α + 2) are equivalent to
the coefficients of volume-altering, time-shifting, and space-translating infinitesimal transformations, respectively.

Transformations that alter the volume are defined by V 
→ V + σ and the image of the self-similar solution (3.28)
is given by

Hσ (r, t;σ) =
{

α

4(α + 1)

[
4

(
1 + 1

α

)(
V + σ

2t

)α/(α+1)

− r2

t

]
+

}1/α

,

= t−1/(α+1)

{
G1/α + σG1/α−1 αξ2

F0

4(α + 1)2V
+ O

(
σ 2)}.

The coefficient of the infinitesimal transformation is a constant and thus equivalent to the λ00-term in the expan-
sion (3.27).

Transformations that shift time are defined by t 
→ t + σ and the image of (3.28) becomes

Hσ (r, t;σ) =
{

α

4(α + 1)

[
ξ2
F0

(t + σ)α/(α+1)
− r2

t + σ

]
+

}1/α

,

= t−1/(α+1)

{
G1/α + σG1/α−1 αξ2

F0

(α + 1)2t

[(
1 + 1

α

)
η2 − 1

]
+ O

(
σ 2)}.

The coefficient of the infinitesimal transformation is equivalent to the λ01-term in (3.27).
Fig. 3 shows perturbed profiles produced by adding axisymmetric eigenfunctions F0n onto the self-similar pro-

file Φ0. The graphs illustrate that adding the eigenfunction F00 results in a simple vertical translation of the self-similar
profile, an effect which is similar to that of an increase in the volume of the current. The effect produced by adding
the eigenfunction F01 is a flattening out of the profile, resembling the changes undergone by the profile HS(r, t) as
time evolves.

For radially symmetric disturbances (m = 0), there is no eigenfunction associated with space-translating transfor-
mations because these transformations introduce θ -dependence. Thus, for these disturbances, it is always possible to
redefine the volume and time variable so that F00 = F01 = 0 in the eigenfunction expansion. The variables in terms
of which the disturbance does not have projections onto F00 and F01 are called optimal similarity variables (Witelski
and Bernoff [11]). In terms of the optimal variables, therefore, the rate of decay of the disturbance is maximised. The
leading order eigenfunction is, then, F02 which decays like t−4+2/(α+1).

For θ -dependent disturbances, we demonstrate that the first term with m = 1, corresponding to the eigenvalue
λ10 = 1/(2α+2), is associated with spatial translations. Space-translating transformations are defined by r 
→ r+σeiθ

and the image of the self-similar solution (3.28) becomes
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Fig. 3. The self-similar profile Φ0 (solid) and perturbed profiles Φ0 + 0.2F0n (dashed) for n = 0,1,2,3, respectively, plotted as a function of the
rescaled similarity variable η. The positive and negative η-axes represent the θ = 0 and θ = π directions, respectively. In all cases α = 3.

Hσ (r, θ, t;σ) =
{

α

4(α + 1)

[
ξ2
F0

tα/(α+1)
− (r + σeiθ )2

t

]
+

}1/α

= t−1/(α+1)

{
G1/α + σG1/α−1 ξF0

2(α + 1)V α/(α+1)

ηeiθ

t1/(2(α+1))
+ O

(
σ 2)}.

The coefficient of the infinitesimal transformation is equivalent to the λ10-term in (3.27). Fig. 4 shows shapes of edges
of perturbed currents for θ -dependent perturbations. The plots indicate that the perturbed edge for m = 1 remains a
circle centred at a point different from the origin, which confirms that the λ01 eigenfunction is equivalent to space-
translating transformations. Thus, for θ -dependent disturbances, optimal variables can always be defined so that the
leading order eigenfunction corresponds to λ20 = 1/(α + 1) and decays like t−1/(α+1). Since α > 0, this demonstrates
that, in terms of optimal variables, perturbations that depend on both r and θ imposed on the self-similar solution
(2.21) will typically take longer to decay than radially symmetric perturbations of equal amplitude. In fact, even
in terms of non-optimal variables, axisymmetric volume-preserving perturbations, which decay like t−1, to leading
order, will decay faster than θ -dependent perturbations with a leading order rate of decay of t−1/(2α+2). We remark
that the rates of convergence to self-similar state, here derived for profiles of arbitrary shape, are in accord with those
found by King [12] for certain exact solutions of the PME.
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Fig. 4. The edge of the self-similar current ηF0 = 1 (solid line) plotted with perturbed edges 1 + 0.2eimθ (dashed line) for m = 1,2,3 and 4. Note
that the structure of the perturbed edges is not affected by the values of α.

3.3. Numerical solutions

We have performed numerical integrations of the governing equation (3.1) from arbitrary axisymmetric and asym-
metric distributions to investigate whether axisymmetric solutions converge to the self-similar solution (2.21) more
rapidly than asymmetric ones. We also analyse the rates of convergence to self-similar state and compare with theo-
retical predictions.

To avoid computational difficulties associated with moving boundaries, it is convenient first to transform the prob-
lem onto a fixed domain. Such an approach has been proposed by Gurtin et al. [29] and Berryman [30] who employed
a Lagrangian frame of reference to integrate the equations. The approach here differs in that we utilise a stretched
Eulerian grid. Thus we introduce a stretched radial coordinate R defined by

R = r

rF (θ, t)
. (3.30)

The governing equation (3.1) is then transformed into

∂tH = RṙF

r
∂RH+ 1

2
∇2

Rθ

(Hα+1

α + 1

)
, (3.31)
F rF
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where

∇2
Rθ =

(
1 + r ′

F
2

r2
F

)
∂2

∂R2
+

(
1 + 2r ′

F
2

r2
F

− r ′′
F

rF

)
1

R

∂

∂R
− 2r ′

F

rF

1

R

∂2

∂R∂θ
+ 1

R2

∂2

∂θ2
,

ṙF = ∂t rF , and r ′
F = ∂θ rF . In terms of the coordinate R, the edge of the current is a unit circle at all times and the

boundary condition there is

h(R = 1, θ, t) = 0. (3.32)

For a given height distribution, the evolution of the current is calculated by numerically integrating (3.31) subject
to (3.32). The rate of advance of the edge, ṙF , is obtained by evaluating (3.31) at R = 1, and it is given by

ṙF = − 1

rF

(
1 + r ′

F
2

r2
F

)
[∂RH]R=1. (3.33)

This equation is used iteratively to update the position of the edge during the numerical integrations. Further details
of the numerical procedure are presented in Appendix A.

All our numerical calculations have been made for the case α = 1 although we note that similar calculations can be
performed for other values of α. The position of the edge of the self-similar distribution is given by rF0 = (32V t)1/4.
In the (Λ, t) frame, where Λ = r/(32V t)1/4, the edge of the self-similar distribution is invariant in time and it is given
by the unit circle Λ = 1. For a current that evolves from an arbitrary non-self-similar profile at t = T0, say, the position
of the edge in the (Λ, t) frame, given by ΛF (θ, t) = rF (θ, t)/(32V t)1/4, will approach the unit circle Λ = 1 as the
current adjusts to self-similar state. We introduce a parameter that measures the deviation between ΛF and Λ = 1
defined by

DF (t) = 1

2π

2π∫
0

∣∣1 − ΛF (θ, t)
∣∣dθ. (3.34)

We use this parameter in our numerical calculations to analyse the rate of convergence to self-similar state from
different initial distributions. The advantage of the parameter DF (t), evaluated in the (Λ, t) frame, is that it can be
used to compare rates of approach to self-similar state of currents even if they have different volumes.

We have carried out integrations from initial distributions of arbitrary shapes. We present results for integrations
from two axisymmetric and three asymmetric initial profiles, given by

H(r) =
√

5

2
[1 − βr]+, (3.35)

H(r) =
√

5

2

{ [
5 − 54/5

]
βr, 0 � βr < 1

5 ,[
1 − (βr)1/5

]
, 1

5 � βr � 1,
(3.36)

and

H(r, θ) =
√

5

2

{
1 − βr

[
1 + e4 cos θ−4]}

+, (3.37)

H(r, θ) =
√

5

2

{
1 − βr

[
1 + 1

5
e4 cos θ−4

]}
+
, (3.38)

H(r, θ) =
√

5

2

{
1 − βr

[
1 + 1

5
sin2 θ

]}
+
, (3.39)

respectively, where β = ( 5
32 )1/4. All numerical calculations were started at time T0 = 1

10 .
Fig. 5(a) shows the development of the rescaled height profile as a function of R for the current that evolves

from (3.36). The height profile is shown to approach the self-similar profile in time. Fig. 5(b) shows the rescaled edge
ΛF plotted against θ , for the current that evolves from the asymmetric profile (3.37). The plot shows that as time
increases the curve of ΛF tends to Λ = 1 and thus the leading edge approaches a circular shape (but at a slow rate of
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Fig. 5. (a) The rescaled height profile H(R, t)/Hmax(t) plotted against R at different times as the current adjusts to self-similar shape from the
initial distribution (3.36). (b) The edge ΛF (θ, t) plotted against θ at different times as the current adjusts to a circular self-similar edge from the
asymmetric initial edge of the height profile (3.37), given by rF (θ) = [β + βe4(cos θ−1)]−1.

Fig. 6. The normalised deviation parameter ln[D̂F (t)] plotted as a function of ln t for currents evolving from the axisymmetric initial distributions
(3.35) – (a) and (3.36) – (b). The graphs of the theoretically derived formulas (3.40) and (3.41) are also shown (dashed) for comparison.

convergence–see discussion below). This indicates that the θ -dependence decays in time and the current approaches
self-similar state.

Fig. 6 shows the logarithm of the normalised deviation parameter ln[D̂F (t)], where D̂F (t) = DF (t)/DF (T0),
plotted as a function of ln t , for the currents evolving from the axisymmetric initial profiles (3.35) and (3.36). The
plots show that the value of D̂F (t) decays in time as the currents adjust to self-similar state. For both currents, the
ln[D̂F (t)] curves are shown to be essentially linear during the adjustment period, indicating a power law dependence
of D̂F (t) on time. Also plotted on the same graph are the theoretically derived formulas
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Fig. 7. The normalised deviation parameter ln[D̂F (t)] plotted as a function of ln t for currents evolving from the asymmetric initial distributions
(3.37) – (a), (3.38) – (b), and (3.39) – (c). The empirically determined straight line ln[D̂F (t)] = −0.25 ln t − 0.9 (dashed) is superimposed onto
curve (a), demonstrating that D̂F (t) decays like t−1/4.

ln
[
D̂F (t)

] = − ln t − 2.20, (3.40)

ln
[
D̂F (t)

] = − ln t − 1.57, (3.41)

describing the evolution of D̂F (t) for the currents starting from (3.35) and (3.36), respectively (details of the deriva-
tions of these formulas are presented in Appendix B). The agreement between the numerical and theoretical results
in the power-law regime is shown to be excellent, demonstrating that the linear theory not only predicts the correct
power-law dependence of deviations on time, but also yields coefficients that agree with numerically measured values.
Hence, these results confirm the theoretical assertion that volume-preserving, axisymmetric perturbations decay like
t−1 to leading order in terms of non-optimal variables.

Fig. 7 shows the graphs of ln[D̂F (t)] for the currents evolving from the asymmetric distributions (3.37)–(3.39).
Again the curves are shown to develop into linear functions of ln t after sufficiently long times. For the current starting
from (3.37), the linear part of the curve is empirically found to be ln[D̂F (t)] = −0.25 ln t − 0.9, implying a rate of
convergence to the self-similar solution of t−1/4. This is also in agreement with the theoretical predictions which
estimated that volume-preserving, θ -dependent perturbations to the B–P solution (in terms of non-optimal variables)
will decay like t−1/4 to leading order.

The graphs show that for the currents evolving from (3.38) and (3.39), the parameter D̂F (t) initially decays like t−1.
Then, at large times, the rate of decay is shown to be t−1/4 for the current evolving from (3.38) and t−1/2 for the current
evolving from (3.39). This behaviour can be explained as follows: for both profiles, the magnitude of the θ -dependent
term is significantly smaller than that of the axisymmetric term, and this is what makes (3.38) different from (3.37).
Thus, the initial development of D̂F (t) is determined by the axisymmetric component of the profile whose leading
order rate of convergence to self-similar state is t−1. Then, at large times, the rate of decay of D̂F (t) is determined
by the θ -dependent terms. Hence the long-term rate of decay becomes t−1/4 for the current evolving from (3.38).
For the current evolving from (3.39), the long-term rate of decay is t−1/2 because the eigenfunction expansion of
the θ -dependent component will involve only terms with m = 2, for which the leading order term is characterised by
λ20 = 1/2 and decays like t−1/2.

The foregoing numerical results were obtained by integrating the general initial-value problem (IVP) of the PME.
We note that we have also performed numerical integrations starting from perturbed B–P profiles, and the results were
essentially the same as above. This is to be expected because the perturbed B–P initial profiles represent a special case
of the general IVP.
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These results confirm that currents evolving from arbitrary initial conditions that are not necessarily axisymmetric,
approach the axisymmetric B–P solution in the intermediate regime. The rate of convergence to self-similar state
has been shown to be faster for currents that evolve from axisymmetric initial profiles than those that evolve from
asymmetric profiles in general. The numerical results confirm the theoretical predictions derived from the analysis of
the two previous Sections.

4. Concluding remarks

We have revisited the problem of the linear stability of the axisymmetric Barenblatt–Pattle self-similar solution
which was first studied by GM. We have reformulated the problem by transforming the dependent variable into a
system where the slope of the self-similar height profile at the front remains finite for all values of α. This approach
eliminates singularities in the linear stability analysis which arise as a result of infinite gradients at the front of the
height profile. We have extended the analysis to the case where the perturbations imposed depend of both the radial
and azimuthal coordinates, and have established that the axisymmetric B–P solution is linearly stable to asymmetric
disturbances. This is an important analytical result which represents a significant step towards showing that the B–P
solution provides the intermediate asymptotics of currents that evolve from a wide range of initial conditions including
those that are not axisymmetric.

The linear stability analysis has revealed that, for volume-preserving perturbations, axisymmetric and asymmetric
perturbations decay like t−1 and t−1/(2α+2), respectively, to leading order. A consideration of the connection between
the perturbation eigenfunctions and the symmetry transformations of the B–P solution has shown that the first two
axisymmetric eigenfunctions (F00 and F01) and the first asymmetric eigenfunction (F10) are equivalent to the co-
efficients of the infinitesimal volume-altering, time-shifting and space-translating transformations, respectively. This
means that, for a given perturbation function, it is always possible to redefine the volume, time and space variables
so that F00 = F01 = F10 = 0. In terms of these optimal variables, therefore, axisymmetric and asymmetric perturba-
tion decay like t−4+2/(α+1) and t−1/(α+1), respectively, to leading order. Thus, both in terms of primitive and optimal
variables, axisymmetric perturbations decay faster than asymmetric ones implying that currents evolving from axisym-
metric initial distributions will typically adjust to self-similar state more rapidly than those evolving from θ -dependent
distributions.

We have calculated numerical solutions for the development of currents evolving from arbitrary axisymmetric and
asymmetric distributions. The results confirm that currents evolving from both axisymmetric and asymmetric initial
distributions approach the axisymmetric B–P solution at large times. The rates of adjustment to self-similar state have
been found to be faster for currents with axisymmetric initial profiles compared to those of currents with asymmetric
initial profiles. Even though the initial distributions were arbitrary functions different from weakly perturbed B–P
profiles, the numerically determined rates of adjustment were found to be in excellent agreement with those predicted
by the linear theory.
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Appendix A. Numerical methods

The governing equation (3.31) (with α = 1) was integrated numerically on an R–θ grid, representing the semi-
circular region 0 � R � 1, 0 � θ � π , using an explicit forward-time, centred-space finite difference scheme (Press et
al. [31])

Hn+1
i,j = Hn

i,j + �t

rFj

Ri ṙFj ∂R

(
Hn

i,j

) + �t
1

r2
∇2

Rθ

[
1

2

(
Hn

i,j

)2
]
, (A.1)
Fj
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where Hn
i,j = H(Ri, θj , t) = H(i�R, j�θ,n�t). The values of rFj were updated at each time-step using the follow-

ing formula:

ṙFj = 1

rFj

(
1 + r ′

F
2

r2
Fj

)
[∂RH]R=1. (A.2)

The scheme (A.1) is stable provided �t � 1
2H−1(1/(�R)2 + 1/(�θ)2)−1 (Morton and Mayers [32]). It is second-

order in space and first-order in time. For example, when �R = 0.04 and �θ = 1
20π , the time step of �t = 0.00001

was found to be sufficiently small to maintain numerical stability. All integrations were performed from the initial
time T0 = 0.1.

Near R = 0. In the neighbourhood of R = 0, we expand H in a Taylor series keeping θ and t fixed:

H(i�R, θ, t) = Hi = G0(t) + i�RG1(θ, t) + 1

2
(i�R)2G2(θ, t) + · · · ,

where Gn = [∂nH/∂Rn]R=0. An O((�R)2) estimate of H0 in terms of H1, H2 and H3 is then given by

H0 = 3(H1 −H2) +H3. (A.3)

This expression was used to update H0 at each time-step and it is equivalent to requiring that the curvature of H at
the origin be equal to that at the neighbouring points.

The results of the numerical calculations were validated against the B–P self-similar solution. Integrations from the
B–P solution produced profiles that remained self-similar at subsequent times and conserved volume to a high degree
of accuracy. For example, when �R = 0.01, volume was conserved to within 99.99% throughout the computation.

Appendix B. Theoretical derivation of expressions for ln[D̂F (t)]

We present theoretically derived formulas which describe the evolution of the deviation parameter D̂F (t) for cur-
rents that start from the initial profiles (3.35) and (3.37), respectively.

Consider first the initial profile (3.35)

HP 1(r) =
√

5

2
[1 − βr]+. (B.1)

We assume that this profile, with volume V = ∫ rF
0 rHdr = 2

3 , is produced by a volume-preserving perturbation of
a B–P similarity solution HS , at time t = t0. We choose t = t0 to be the time at which the front of the unperturbed
profile HS matches that of HP 1, that is

rF = (32V t0)
1/4 = 1/β. (B.2)

This gives t0 = 3
10 . Then, writing HP 1 = t

−1/2
0 ΨP 1(η) and HS = t

−1/2
0 ΨS(η), yields

ΨP 1(η) = 1

2

√
3(1 − η)+, (B.3)

ΨS(η) = 1

3

√
3
(
1 − η2)

+, (B.4)

where η = r/rF . At t = t0, we have

ΨP 1(η) = ΨS(η) +
∞∑

n=0

anPn

(
2η2 − 1

)
from which the first four coefficients are found to be a0 = 0, a1 = − 1

30

√
3, a2 = 1

30

√
3 and a3 = − 1

45

√
3.

The numerical calculations were started at t = T0 = 1
10 so that t = T0 + T at subsequent times. The deviation

parameter can be written as

DF (t) =
∣∣∣∣1 − rF

1/4

∣∣∣∣ =
∣∣∣∣1 −

(
t0 + T

)1/4

ηF (t0 + T )

∣∣∣∣ =
∣∣∣∣1 −

(
t0 + T

)1/4(
1 + ηF1(t0 + T )

)∣∣∣∣.
(32V t) T0 + T T0 + T
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Expanding for T � 1 and using (3.26) then yields

D̂F (t) = DF (t)

DF (T0)
∼ |(T0 − t0) − 16a1t0/ξ

2
F0|

4|1 − (t0/T0)1/4|
1

T
, (B.5)

to leading order.
For the initial profile hP 1, with T0 = 1

10 , t0 = 3
10 , ξ4

F0 = 64
3 and a1 = − 1

30

√
3, the formula (B.5) gives

ln
[
D̂F (t)

] ∼ − lnT − 2.20. (B.6)

Similar calculations for the initial profile (3.36)

H(r) =
√

5

2

{ (
5 − 54/5

)
βr, 0 � βr < 1

5 ,

1 − (βr)1/5, 1
5 � βr � 1,

give T0 = 1
10 , V = 0.1692, t0 = 1/(5V ), ξ4

F0 = 32V and a1 = −0.046. The evolution equation for D̂F is thus found
to be

ln
[
D̂F (t)

] ∼ − lnT − 1.57. (B.7)

The expressions (B.6) and (B.7) have been shown to be in excellent agreement with numerical results.
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