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Abstract

For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic

field generates an electric current - this is the Chiral Magnetic Effect (CME). We study the dy-

namical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge

density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the

CME induces the inverse cascade of magnetic helicity towards the large distances, and that at late

times this cascade becomes self-similar, with universal exponents. We also find that in terms of

gauge field topology the inverse cascade represents the transition from linked electric and magnetic

fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states).

The magnetic reconnections are accompanied by the pulses of the CME current directed along

the magnetic field lines. We devise an experimental signature of these phenomena in heavy ion

collisions, and speculate about implications for condensed matter systems.
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I. INTRODUCTION

The anomaly-induced transport of charge in systems with chiral fermions has attracted

a significant interest recently. This interest stems from the possibility to study a new kind

of a macroscopic quantum dynamics. While the macroscopic manifestations of quantum

mechanics are well known (for example, superfluids, superconductors and Bose-Einstein

condensates), so far they have been mostly limited to systems with broken symmetries

characterized by a local order parameter, e.g. the density of Cooper pairs in superconductors.

The effects induced by quantum anomalies in systems with chiral fermions are of different

nature.

Let us consider as an example the Chiral Magnetic Effect (CME) in systems with charged

chiral fermions – the generation of electric current in an external magnetic field induced by

the chirality imbalance [1], see Refs. [2–6] for recent reviews and references. In this case, no

symmetry has to be broken, and the system is in its normal state. However the chirality

imbalance is linked by the Atiyah-Singer theorem to the non-trivial global topology of the

gauge field. Since the global topology of the gauge field cannot be determined by a local

measurement, there is no corresponding local order parameter, and we deal with “topological

order”.

This has very interesting implications for the real-time dynamics of a system composed

by charged chiral fermions and a dynamical electromagnetic field. Indeed, let us initialize

the system by creating a lump of chirality imbalance localized within a magnetic flux that

forms a closed loop, see Fig. 1(a) . Magnetic field will induce the CME current flowing along

the lines of magnetic field B (note that this effect is absent in Maxwell electromagnetism).

Because the vector CME current acts as a source for the magnetic field, the current flowing

along B will twist the magnetic flux (see Fig. 1(b) ) and induce a non-zero expectation

value for the magnetic helicity known since Gauss’s work in XIX century and introduced in

magnetohydrodynamics by Woltjer [7] and Moffatt [8], see also [9]:

hm ≡

∫

d3x A ·B , (1.1)

where A is the vector gauge potential. Magnetic helicity is a topological invariant (Chern-

Simons three-form) characterizing the global topology of the gauge field. It is mathematically

related to the knot invariant, and measures the chirality of the knot formed by the lines of
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magnetic field. Because of this, the generation of magnetic helicity will create the chiral

knot out of the closed loop of magnetic flux – so the topology of magnetic flux will change.

In this paper we will quantify this statement, and study how the topology of magnetic flux

changes in real time. We will find that as a consequence of chiral anomaly and the CME,

the magnetic field evolves to the self-linked Chandrasekhar - Kendall states (see Fig. 1(d)

). During the evolution, the size of the knot of magnetic flux increases. Moreover, at late

times this evolution becomes self-similar, and is characterized by universal exponents.

The evolution of magnetic helicity has been studied previously in the framework of the

Maxwell-Chern-Simons theory in Refs. [10–12] (see Ref. [13] for study with Maxwell theory).

The anomaly-driven inverse cascade is discussed in Refs. [14–16]. However the self-similar

evolution of magnetic helicity has not been reported in these papers. The closest to our

present study is the paper [17] by Tashiro, Vachaspati and Vilenkin , where a simplified

version of the anomalous magneto-hydrodynamic equation has been applied to cosmic mag-

netic fields. The authors found the power law decay (in terms of conformal time) of the

chiral chemical potential at the late stage of evolution (see also Ref. [15]).

We extend the previous studies by elucidating the topology of magnetic flux throughout

the evolution of magnetic helicity. This is made possible by the use of the eigenfunctions

of the curl operator in a spherically symmetric domain. Previous studies [11, 15] have used

the eigenfunctions of curl operator in a free-space, i.e. the polarized plane waves. In our

treatment we can track the magnetic reconnections that transfer helicity from linked to self-

linked configurations of magnetic flux. We also identify the final state of the system as the

Chandrasekhar-Kendall state that minimizes the magnetic energy at fixed helicity.

This paper is organized as follows. In Sec. II we describe the topology of magnetic flux and

describe the corresponding solutions. In Sec. III, we introduce magnetic helicity spectrum

and present a qualitative picture of the inverse cascade of magnetic helicity and the role

played by anomaly. In Sec. IV, we introduce the Maxwell-Chern-Simons equations which

we will use to study the evolution of magnetic helicity and axial charge density. The results

of evolution are presented in Sec. V. In Sec. VI, we discuss the relevance of our findings for

heavy-ion collision experiment. We conclude and discuss possible extensions of the current

work in Sec. VII.
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II. THE CHIRAL ANOMALY AND TOPOLOGY OF MAGNETIC FLUX

Consider a link K of N knots of magnetic field with fluxes φi. The corresponding magnetic

helicity (1.1) of this link is given by [8, 18–20]

hm(K) =
N
∑

i=1

φ2
i Si + 2

∑

i,j

φiφj Lij , (2.1)

where Si is the Călugăreanu-White self-linking number, and Lij is the Gauss linking num-

ber1. The linking numbers in (2.1) do not always detect the topology of the link; the

development of the appropriate knot invariants is a very active area of modern mathemat-

ics. The link between the Jones invariant of the knot and Chern-Simons theory has been

uncovered by Witten [21]. The recent progress includes the HOMFLY knot polynomials,

Vasiliev invariants, Khovanov and Heegaard-Floer homologies, but the ultimate solution is

still lacking. In view of this, we will base our discussion on formula (2.1).

In MagnetoHydroDynamics (MHD), the lines of magnetic field are “frozen” into the fluid,

and so the magnetic helicity (2.1) is conserved. Moreover, in the absence of dissipation the

reconnections of magnetic field are absent, and so the topology of the knotted configuration

is preserved as well – so the two terms in (2.1) are conserved separately. As we will now

discuss, in fluids with charged chiral fermions the situation changes dramatically due to the

presence of chiral anomaly. Indeed, the anomaly relation

∂µj
µ
A = CAE ·B (2.2)

describes the generation of chirality by electric E and magnetic B fields in a topologically

non-trivial configuration characterized by Chern-Pontryagin number density E · B. The

anomaly coefficient CA for the case of QCD plasma containing Nc colors and Nf flavors of

quarks is given by CA = NcCEMe
2/2π2, with CEM =

∑

f q
2
f . The Chern-Pontryagin number

is easily seen to be equal to the time derivative of magnetic helicity:
∫

d3x E ·B = −
1

2

∂hm

∂t
. (2.3)

This means that when chirality of the fermions is changed, this change is accompanied by

the change of magnetic helicity, implying the reconnection of magnetic flux. Reconnections

1 The same formula applies to the helicity of vortex flows, with the substitution of gauge potential A by

the velocity field v, magnetic field B by vorticity ω = ∇× v, and the flux φi by the circulation κi.
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of magnetic flux in particular can cause transitions between the self-linked (see Figs. 1(c)

and 1(d)) and linked configurations of magnetic field described by the first and the second

terms in (2.1) respectively. Below we will show that such transitions indeed happen as a

consequence of the anomaly, and the system evolves towards the state in which magnetic

flux is self-linked, i.e. the entire magnetic helicity is given by the first term of (2.1).

Before proceeding to the calculations, let us discuss the possible topologies of magnetic

flux. The Maxwell equations in free space allow for simple solutions with non-zero magnetic

helicity – these solutions are just circularly polarized plane waves. This is intuitively clear

since magnetic helicity is parity-odd, and left- and right-circularly polarized waves are the

simplest P -odd states of electromagnetic field. Since we are interested in describing the

plasma of a final extent in space, we have however to impose the boundary conditions on

electromagnetic field. In this case the solutions of Maxwell equations are given by Hopfions

[22] – configurations in which the loops of magnetic and electric fields are linked.

On the other hand, the dynamics of electromagnetic fields in the presence of chiral

anomaly is described by Maxwell-Chern-Simons theory. In particular, the chiral imbal-

ance between the left- and right-handed fermions quantified by the chiral chemical potential

µA leads to the generation of electric CME current [1] along the magnetic field:

jCME = CA µA B = σAB , (2.4)

where we introduced the “chiral magnetic conductivity” σA to allow for the frequency de-

pendence [23]. Unlike the usual Ohmic current, the CME current is topologically protected

and hence non-dissipative. Hence at late times when Ohmic currents have already dissipated

away, the r.h.s. of the Maxwell equation ∇×B = j will contain only the CME current and

will thus acquire the form

∇×B = σA B . (2.5)

The solutions of (2.5) have been found independently2 by Chandrasekhar and Kendall [24];

we will refer to them as CK states, and illustrate their structure in Fig. 1(d) ). It has been

found by Woltjer [7] that these “force-free” configurations of magnetic field that obey (2.5)

2 The Editor of their paper [24] wrote: “The results in this paper were derived independently by the two

authors, and they agreed to write it as one.”.
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(a) (b)

(c) (d)

FIG. 1. The topology of Abelian magnetic flux: (a) upper left – untwisted loop; (b) upper right –

twisted magnetic flux; (c) lower left – the self-linked magnetic flux (trefoil knot shown); (d) lower

right – the self-linked Chandrasekhar-Kendall state.

minimize the total magnetic energy

EM ≡
1

2

∫

d3x B2 (2.6)

at a given magnetic helicity (1.1). We thus expect that the CME currents will lead to the

transition from Hopfion states to CK states at late times, once the Ohmic currents have

dissipated. We will see below that explicit computations indeed yield this result.
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III. INVERSE CASCADE OF MAGNETIC HELICITY DRIVEN BY ANOMALY

A. Magnetic helicity spectrum and Chardrasekhar-Kendal (CK) states

To discuss the spatial distribution and the inverse cascade of magnetic helicity, let us

specify the structure of CK states Ref. [24] that are defined as eigen-functions of the curl

operator, see (2.5). In a free space, a CK state is nothing but a circularly polarized plane

wave. In this work however, we are interested in EM field in a finite closed system. Let us

thus consider CK states W±

lm(x; k) in a spherical domain:

∇×W±

lm(x; k) = ±kW±

lm(x; k) , ∇ ·W±

lm(x; k) = 0 , (3.1)

where l = 0, 1, . . . ,m = −l,−l + 1, . . . l. The explicit expressions for W±

lm(x; k) in terms

of spherical harmonics and spherical Bessel functions are given in Appendix. A. For the

purposes of the present discussion, we only need to keep in mind that they form a complete

basis for any divergence-less vector and satisfy the orthogonality relation:

∫

d3xW a
lm(x; k) ·W

b
l′m′(x; k′) =

π

k2
δ(k − k′)δll′δmm′δab , a, b = +,− . (3.2)

Let us now expand magnetic field B in terms of CK states W±

lm(x; k):

B(x, t) =
∑

l,m

∫

∞

0

dk

π
k2

[

α+
lm(k, t)W

+
lm(x; k) + α−

lm(k, t)W
−

lm(x; k)
]

. (3.3)

Using ∇×A = B, we also expand A(x, t) as3:

A(x, t) =
∑

l,m

∫

∞

0

dk

π
k
[

α+
lm(k, t)W

+
lm(x; k)− α−

lm(k, t)W
−

lm(x; k)
]

. (3.4)

Consequently, the magnetic helicity hm

hm ≡

∫

d3x A ·B , (3.5)

is now given by:

hm(t) =

∫

∞

0

dk

π
kg(k, t) , g(k, t) ≡ g+(k, t)− g−(k, t) . (3.6)

3 We choose the gauge ∇ ·A = 0 ; the magnetic helicity hm is gauge invariant.
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Here we have defined the magnetic helicity spectrum g(k, t); the functions g±(k, t) describe

the relative weight of a single CK state W±

lm(x; k) with a definite helicity:

g±(k, t) ≡
∑

l,m

|α±

lm(k, t)|
2 . (3.7)

The energy of magnetic field can be related to g±(k):

EM ≡

∫

d3x
1

2
B2 =

1

2

∫

∞

0

dk

π
k2 [g+(k, t) + g−(k, t)] . (3.8)

Comparing (3.6) with (3.8), we find that the energy cost for a CK state W±(x, k) to carry

one unit of helcity is k.

B. Qualitative picture of the anomaly-driven inverse cascade of magnetic helicity

We now ready to discuss the qualitative picture of the inverse cascade driven by anomaly.

Let us first define the fermionic helicity:

hF ≡ C−1
A

∫

d3x nA , (3.9)

where nA = j0A is the density of axial charge. From the anomaly equation (2.2) and the

Maxwell equations, the total helicity of the system h0 is conserved:

h0 ≡ hm + hF = const . (3.10)

Therefore, the system will tend to minimize the energy cost at fixed helicity. From the

definition of “fermionic helicity” (3.9) and linearized equation of state nA = χµA where χ

is the susceptibility, we observe that the energy per fermonic helicity is σA. On the other

hand, as we discussed in Sec. IIIA, the energy per magnetic helicity for a single CK mode is

k. Therefore for a hard (positive, i.e. of right circular polarization) CK mode k > σA (where

without a loss of generality, we take σA to be positive as well), carrying helicity by chiral

fermions is energetically favorable and consequently the helicity will be transferred from hard

CK modes to chiral fermions. In contrast, the soft CK modes with k < σA are energetically

favorable compared to chiral fermions, and fermionic helicity will be transferred to the soft

components of magnetic helicity. Because the total helicity is conserved, this transfer will
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deplete the value of σA, and so the transfer of fermionic helicity will occur to softer and

softer CK modes – therefore, we find an inverse cascade of magnetic helicity.

We are now ready to extend our discussion of individual modes to the evolution of the

entire helicity spectrum g(k, t). For definiteness, let us assume that the total helicity of the

system h0 is positive. It is convenient to introduce a characteristic energy scale kh associated

with total helicity:

kh ≡
C2

Ah0

χV
, (3.11)

with V the volume. The quantity kh can be interpreted as the energy per helicity if the entire

helicity h0 is carried by chiral fermions. The fate of the system depends on the values of kh

and kmin, the lowest possible eigenvalue of a CK state allowed by the boundary conditions.

If kh < kmin, eventually all magnetic helicity will be transferred to fermonic helicity. In

contrast, if kh > kmin, the helicity will eventually be carried by magnetic fields and the

configuration of magnetic field will approach a single CK state W+
lm(kmin) that minimizes

the energy at a fixed helicity. We will confirm this scenario by a quantitative analysis in the

next section.

IV. MAXWELL-CHERN-SIMONS EQUATIONS

The CME current can be described by adding the Chern-Simons term to the Maxwell

theory [25]. Assuming that the gradients of chirality distribution are small, the resulting

sourceless Maxwell-Chern-Simons (MCS) theory acquires the usual Maxwell form with an

extra term in the current describing the CME:

∇×B =
∂E

∂t
+ jEM , (4.1a)

∇×E = −
∂B

∂t
. (4.1b)

∇ ·B = 0 , ∇ ·E = 0 . (4.1c)

Here, the electric current jEM includes the Ohmic and CME components:

jEM = σE + σAB , (4.2)

where σ is the usual electrical conductivity. Let us now take the curl of the equation (4.1a)

and use (4.1b) and (4.1c) to obtain

σ∂tB(t,x) = ∇2B + σA (∇×B) . (4.3a)
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In (4.3a), we have neglected ∂2
tB term – this should be a good approximation for time

scales larger than 1/σ. Here, as mentioned above, we also neglect the spatial dependence of

nA and relate µA to nA via the linearized equation of state µA = nA/χ; this yields

σA(t) =
CAnA(t)

χ
≈

CA

χV

∫

d3xnA(x, t) . (4.3b)

In accord with our assumption of small gradients of the axial density we will neglect the

spatial component of axial current jA. The evolution of nA(t) is thus related to the evolution

of Chern-Pontryagin density E ·B by the anomaly equation (2.2):

∂tnA(t) =
CA

V

∫

d3xE ·B . (4.3c)

Eqs. (4.3) give the simplified version of the MCS equations that we about to solve.

A. General solutions

Once we apply the decomposition (3.3), (4.3a) becomes a differential equation describing

the time dependence of αlm(k, t):

∂tα
±

lm(k, t) = σ−1
[

−k2 ± σA(t)k
]

α±

lm(k, t) . (4.4)

From the definition of chiral magnetic conductivity σA = CAµA and (3.10), we have

σA(t) = kh

[

1−
hm(t)

h0

]

, (4.5)

where kh is defined in (3.11). The solution to (4.4) and (4.5) can be obtained as follows

(see also Refs. [11, 17]). First, integrating (4.4), we get

α±

lm(k, t) = α±

lm,I(k) exp

{

σ−1
[

−k2t± k θ(t)
]

}

, (4.6)

where α±

lm,I(k) ≡ α±

lm(t = 0, k) is determined by the initial value of magnetic field and

θ(t) ≡

∫ t

0

dt′ σA(t
′) . (4.7)

Now, from the definition (3.7) we have

g±(k, t) = g±I (k) exp

{

2σ−1
[

−k2t± k θ(t)
]

}

, (4.8)
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where g±I (k) ≡ g±I (t = 0, k) denotes the initial magnetic helicity spectrum. Finally, θ(t)

(and thus σA(t)) will be determined from the consistency condition (4.5):

σA(t) = kh

{

1−
1

h0

∫

∞

0

dk

π
k [g+(k, t)− g−(k, t)]

}

. (4.9)

Before presenting numerical solutions, we now discuss the evolution of individual CK

modes α±

lm(k, t) as described by (4.4). Without losing generality, let us assume that σA(t) >

0. Then the negative helicity mode α−

lm(k, t) will decay exponentially, so let us concentrate

on the evolution of the positive helicity mode α+
lm(k, t). For hard modes, i.e. the modes

with momenta k ≫ σA, α
+
lm(k, t) decays exponentially exp(−σ−1k2t), as usual. However,

the soft helicity mode k < σA(t) will grow exponentially. This unstable mode has been

noticed before in various contexts, see Refs. [10, 11, 14, 26] for examples. The growth of

soft CK modes could be anticipated from the discussion in Sec. III B: the system tends to

minimize the total energy while preserving the total helicity, and the soft CK state possesses

the lowest energy at a fixed helicity.

V. THE INVERSE CASCADE OF MAGNETIC HELICITY

A. The initial conditions and Hopfion solutions

As discussed in the previous section, the evolution of θ(t), σA(t) and g(k, t) can be de-

termined once the initial condition for the configuration of electromagnetic field is specified.

Since we would like to investigate the evolution of topology of magnetic flux, we assume

that initially the electromagnetic field with a non-zero magnetic helicity is localized at a

short spatial scale much shorter than k−1
h defined in (3.11). We therefore take the Hopfion

solution [22] to vacuum Maxwell equations as the initial configuration. This solution carries

non-zero helicity (which we assume to be positive) that is due to the second term in (2.1) and

a finite energy. It may be interpreted as a soliton wave solution to the Maxwell equations.

For a Hopfion solution with a total initial magnetic helicity hm,I , the electromagnetic field

can be expressed in terms of CK states as [27] (see also Ref. [28]):

BHopf(x, t) =

√

4hm,I

3π

∫

∞

0

dkk2e−kLEM

[

(kL2
EM)W

+
11(x, t)e

−ikt + c.c.
]

, (5.1a)

EHopf(x, t) =

√

4hm,I

3π

∫

∞

0

dkk2e−kLEM

[

(−ikL2
EM)W

+
11(x, t)e

−ikt + c.c.
]

, (5.1b)
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where LEM characterizes the size of the Hopfion. Consequently, only modes α+
11(k, t) are

non-vanishing (see (3.3)) and the initial magnetic helicity spectrum is given by:

gI(k) =
8π

3
hm,IL

4
EMk

2e−2kLEM . (5.2)

The peak of gI(k) at kp ≡ 1/LEM defines a characteristic size LEM of the configuration.

B. Stages of the inverse cascade evolution

We are now ready to solve the evolution equations (4.4) and (4.9). In addition to

the initial condition discussed in Sec. VA, the evolution also depends on the dimensionless

ratios LEMkh, hm,I/h0, σ/kh. We would like to model the situation in which initially the

helicity is dominated by the contribution from the EM field, thus hm ≈ h0 and LEM > k−1
h .

To be concrete, in this subsection we present the results corresponding to the solution

with (LEMkh, hm,I/h0, σ/kh) = (1/2, 0.8, 0.4). We have also numerically solved (4.9) with

different choices of LEMkh, hm,I/h0, σ/kh; the results are qualitatively similar.

In Fig. 2 , we plot the time dependence of the chiral magnetic conductivity σA(t), the peak

of g(k, t), kpeak(t), and magnetic helicity hm(t). From Fig. 2, we observe that according to

the behavior of σA(t), kpeak(t), hm(t), the evolution of system can be generally divided into

the following three stages listed below. For reference, we also plot the magnetic helicity

spectrum g(k, t) at initial time t = 0, and three representative times corresponding to the

three stages in Fig. 3(a).

1. Stage I: in this stage, the magnetic helicity hm(t) decays exponentially. Due to the

conservation of total helicity, the magnetic helicity is transferred to fermionic helicity

– thus we observe a fast growth of σA(t). Meanwhile, kpeak(t) starts decreasing but

is still larger than σA(t). Stage I ends when magnetic helicity hm(t) becomes small

and σA(t) is close to kh. The duration of “stage I”, which we denote as τI , can be

estimated from the decay rate of magnetic helicity in this stage, σ−1L2
EM, as indicated

by (5.5). We therefore have:

τI ∼ σL2
EM . (5.3)

2. Stage II: in this stage, the total helicity h0 is dominated by fermionic helicity hF . In

other words, σA(t) approximately equals to kh and we observe from Fig. 2 that σA(t)

12



FIG. 2. (Color online) The time dependence of chiral magnetic conductivity σA(t) (red), the peak

of magnetic helcity spectrum kpeak(t) (blue) and magnetic helicity hm(t) (green). The schematic

divisions of three stages (see text) for the evolution of the system are sketched in dotted horizontal

lines. Dashed black curve illustrate t−1/2 asymptotic behavior of σA(t), kpeak(t). Black dotted curve

below the green curve plots hm(t) by solving Maxwell’s equation in the absence of anomaly effect.

The numerical results are determined by solving (4.4) and (4.9) with (LEMkh, hm,I/h0, σ/kh) =

(1/2, 0.8, 0.4).

changes slowly, while kpeak(t) continues to decrease. “Stage II” ends when κpeak(t) is

close to σA.

3. Stage III: in this stage, both σA(t) and kpeak(t) decrease. The fermionic helicity is

transferred to magnetic helicity and eventually hm(t) will approach h0. At late times,

σA(t) ≈ kpeak(t). This corresponds to the configuration in which the energy cost per

helicity for fermionic helicity is approximately equal to that of magnetic helicity. In

this case, the following relation holds ∇×B ≈ kpeak(t)B ≈ σA(t)B. It is clear from

the log-log plot Fig. 2 that σA(t), kpeak(t) behave as a power law in time t:

kh(t) ≈ σA(t) ∝ t−β . (5.4)

Meanwhile, the evolution of g(k, t) becomes self-similar:

g(k, t) ∼ tαg̃(tβk) , (5.5)
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(a) (b)

FIG. 3. (Color online) The evolution of magnetic helicity spectrum g(k, t). (Left): g(k, t) at

initial time t = 0 (red) and three representative time (corresponding to stage I, II, III) respectively.

(Right): t−αg(k, t) vs tβk in the self-similar stage (stage III) of the evolution.

where g̃
(

tβk
)

is the scaling function and

α = 1 , β = 1/2 , (5.6)

are scaling exponents. It is easy to see that once g(k, t) becomes self-similar as in

(5.5), kpeak(t) is determined by the peak of the scaling function g̃(tβk). Therefore β

in (5.5) is identical to β in (5.4).

In Fig. 3(b) , we plot g(k, t)/tα vs tβk with scaling exponents given by (5.6) for

different t in Stage III. The self-similar behavior of g(k, t) is evident from Fig. 3(b).

At this point, critical exponents (5.6) are found numerically. In Sec. VC, we will

determine the scaling function g̃ and derive (5.6) analytically.

To close this section, we emphasize that chiral anomaly plays a crucial role during the evo-

lution of chiral magnetic conductivity σA(t) and of the magnetic helicity spectrum g(k, t).

Indeed, without the CME current term in Maxwell equation (4.1a) and with no trans-

fer of helicity between magnetic field and chiral fermions, g(k, t) would simple decay as

exp(−2σ−1k2t) (see also black dotted curve in Fig. 2) and self-similar behavior would be

absent.
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C. Self-similar evolution and scaling behavior of g(k, t)

In this section, we would like to understand the origin of the scaling exponents (5.6)

found numerically, and to determine the scaling function g̃(tβk) .

First of all, we note that α, β are not independent. As hm ≈ h0 at late time (c.f. Fig. 2),

we have:

hm(t) =

∫

dk

π
kg(k) =

∫

dk

π
k tαg̃(tβk) = tα−2β

∫

dx

π
g̃(x) ≈ h0 , (5.7)

where we have introduced a new variable: x ≡ tβk. We therefore have:

α = 2β . (5.8)

Moreover, if (4.8) can be matched to the scaling form (5.5), we must have:

β =
1

2
, θ(t) ∼ tβ = t1/2 . (5.9)

Consequently, for self-similar evolution, we have from (4.7):

θ(t) = 2σA(t)t . (5.10)

Substituting (5.10) into (4.8), we obtain:

g(k, t) = gI(k) exp

{

2σ−1
[

−k2 + 2σA(t)
]

t

}

= gI(k) exp

(

−
2σ2

A(t)t

σ

)

exp

{

− 2σ−1 [k − σA(t)]
2 t

}

. (5.11)

If the width of the Gaussian in (5.11) is sufficiently narrow, we further have kpeak(t) ≈ σA(t)

and

g(k, t) ∝ gI(kpeak(t)) exp

{

− 2σ−1 [k − kpeak(t)]
2 t

}

. (5.12)

To summarize, the system will spend a long time at the stage of self-similar evolution.

In this stage, kpeak(t) decreases as t−1/2. This implies that a large-scale helical magnetic

field will develop. With the growth of t, the width of the Gaussian becomes more and more

narrow, and g(k, t) will become proportional to delta-function :

g(k, t) → δ [k − kpeak(t)] . (5.13)

In this limit, the system is described by a single CK state W+
11(kpeak(t), t). Eventually, the

evolution will end when kpeak(t) ∼ 1/L where L is the size of the system. Here we have found
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self-similar evolution by solving the MCS equation with the Hopfion initial condition (5.1).

However, as our analysis does not rely on any particular feature of the Hopfion solution, we

expect that self-similar evolution is a general feature that at late times does not depend on

the choice of initial conditions.

VI. IMPLICATIONS FOR HEAVY-ION COLLISIONS

Let us now establish whether a self-similar evolution of magnetic helicity can be realized

in experiment; here we will focus on QCD matter created in heavy-ion collisions. As we

discussed in Sec. III B, to realize the inverse cascade of magnetic helicity, the energy cost

per helicity if total helicity is carried by chiral fermions kh (see (3.11)), should be larger

than kmin, the minimum eigenvalue of a CK state. As kmin is of the order 1/L, where L

is the size of the system, we need to check whether kh > 1/L with L ∼ 10 fm can be

realized in a heavy-ion collision. As both magnetic helicity and fermionic helicity would

contribute to the total helicity, we will estimate their contributions separately. In heavy-ion

collisions, the initial axial charge density can be generated by sphaleron transitions and/or

by the color flux tubes during the early moments of the heavy-ion collision [29]. To make a

rough estimate, we will follow Ref. [12] and consider an (optimistically large) value of the

chiral chemical potential µA, of the order of 1 GeV. The resulting σA is then of the order

0.01 GeV. If the total helicity h0 originates mostly from this initial axial charge, 1/kh would

be at least of order 20 fm, which is much larger than the typical size of the fireball L ∼ 10 fm

created in a heavy-ion collision. This estimate is also in agreement with Ref. [30] in which

the relevance of CK state to heavy-ion collisions was discussed. To summarize, in order to

satisfy kh > 1/L, initially the dominant contribution to the total helicity should be from

magnetic helcity hm.

We now estimate magnetic helicity in a heavy-ion experiment. We first note that from

the EM field pattern created by spectators in heavy-ion collisions (c.f. Fig 4), E · B is

positive in the upper half region, and negative in the lower half region. The EM field would

thus be helical, with opposite helicities in the upper and lower half region. To estimate the

magnitude of this magnetic helicity, we assume |B| ≈ |E| and in RHIC A ∼ E τB,RHIC

where τB,RHIC is the typical lifetime of magnetic field at RHIC. The typical (peak) strength
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FIG. 4. (Color online) A typical configuration of EM field in the transverse plane in non-central

collisions. The two circles indicate the edge of the colliding nuclei. The solid line (red) shows the

magnetic field B and the dashed lines (blue) show the electric field E. The inner product between

electric and magnetic fields E ·B becomes positive (negative) on the upper (lower) side of reaction

plane (RP).

of magnetic field at RHIC is

eBRHIC = cBm
2
π , (6.1)

where cB varies in the range of 1 to 10 depending on the impact parameter after event

averaging, but in a given event can be significantly larger than this average value due to

fluctuations. We therefore have:

kh,RHIC ≈
C2

A

∫

d3xARHIC ·BRHIC

χAV
≈

e−2C2
A (eBRHIC)

2 τB,RHIC

Nfχf

= αEM (CEM)
2

(

N2
c

4π3

)

(eBRHIC)
2 τB,RHIC

Nfχf

= 1.0× 10−5c2B τB,RHIC fm−2 . (6.2)

Here we have assumed that the axial susceptibility is χA = Nfχf where χf is the quark

number susceptibility known from the lattice measurements [31, 32] to be χf ≈ 1.0T 2 for

temperatures higher than Tc. We consider the case of u, d flavors contributing to the CME

current and thus put Nf = 2, CEM = 5/9. We also assume that at the initial stage of

heavy-ion collisions T ≈ 0.4 GeV. To compute kh at LHC, we further take:

eBLHC

eBRHIC

,≈
γLHC

γRHIC

≈ 13.8
τB,LHC

τB,RHIC

≈

(

γLHC

γRHIC

)−1

. (6.3)
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We then get:

kh,LHC ≈

(

γLHC

γRHIC

)

kh,RHIC = 1.4× 10−4c2BτB,RHIC fm−2 . (6.4)

For the purpose of estimate, we will take τB,RHIC = 1 fm. Therefore in order to satisfy

kh > 1/L ≈ 0.1 fm−1, we need to select events with cB ∼ 100 at RHIC and cB ∼ 26 at LHC.

We conclude that observing the self-similar cascade of magnetic helicity in heavy ion

collisions will be challenging. However the estimated magnetic helicity is quite large, and is

likely to affect the evolution of the quark-gluon plasma. It can lead to interesting observ-

able effects. For example, since the sign of magnetic helicity is different in the upper and

lower hemispheres (above and below the reaction plane), the decay of the magnetic field at

freeze-out will yield the photons with opposite circular polarizations. Since the direction of

magnetic field, and thus the signs of magnetic helicity, can be determined experimentally

by measuring the spectators, one can measure the polarizations of photons by summing

over many events (the sign of polarization will not fluctuate event-by-event). The pho-

ton polarization can be measured through photon conversion into e+e− pairs by extracting

the angular distribution of the electrons and positrons. We believe that the observation of

these opposite circular polarizations of the produced photons will be a unique signature of

magnetic helicity in heavy ion collisions.

VII. SUMMARY

To summarize, the chiral anomaly couples the evolution of axial charge density and

electric-magnetic (EM) field in the plasmas possessing chiral fermions. By solving the

Maxwell-Chern-Simons equation in the presence of CME current, we analyzed the real time

evolution of the magnetic helicity spectrum. We initialized the system by assuming that it

contains a seed of a helical magnetic field at short distances, with helicity carried by the

linked magnetic field configuration, i.e. by the second term in (2.1). As summarized in

Fig. 2, we found that the magnetic helicity first gets transferred to fermionic helicity and

then fermionic helicity is transformed back into magnetic helicity, but this time to self-linked

Chandrasekhar-Kendall (CK) configurations characterized by the second term in (2.1). We

have argued that the CK states that minimize magnetic energy at a fixed helicity represent

the final stage of the magnetic helicity evolution. We found that at late stage, this evolution
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becomes self-similar, and describes the growth of the self-linked CK state.

The role of fermions is to mediate the magnetic reconnections that are necessary to

transfer the magnetic helicity from the linked to self-linked configurations of magnetic flux,

see (2.1). We expect that our findings apply to all systems that possess the CME current.

In addition to the quark-gluon plasma discussed above, the growth of magnetic helicity can

be expected in Dirac semimetals that exhibit the CME in parallel electric and magnetic

fields [33]. Experimentally, this generation of magnetic helicity can manifest itself through

the emission of circularly polarized photons in the THz frequency range characteristic for

Dirac semimetals [34].

As a natural extension of this work, it will be interesting to study the inverse cascade in

the framework of anomalous MagnetoHydroDynamics (MHD). In this case, the anomaly can

couple the kinetic helicity carried by the fluid, magnetic helicity and fermionic helicity. While

the inverse cascade of magnetic helicity is a traditional topic of magnetohydrodynamics, the

role played by the chiral anomaly has not yet been fully explored. As another extension of

this work, it would be interesting to include the spatial dependence of axial charge density

in the MCS equations. This would allow us to study the evolution of domains with non-zero

axial charge throughout the inverse cascade of magnetic helicity.
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Appendix A: A useful representation of Chardrasekhar-Kendall states

A single CK state W±(x; k) can be represented as the linear combination of toroidal field

T (x; k) and poloidal field P (x; k)

W±

lm(x; k) = Tlm(x; k)∓ iPlm(x; k) , (A1)

where

Tlm(x; k) = jl(kr)Xlm(θ, φ) , Plm(x; k) =
i

k
∇× Tlm(x; k) , (A2)

where jl(kr) denotes spherical Bessel functions. Here, we have defined:

Xlm(θ, φ) ≡
1

√

l(l + 1)
L [Ylm(θ, φ)] , L ≡ −i (r ×∇) . (A3)

In the above equations, Ylm(θ, φ) is the usual speherical harmonic functions.
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[15] A. Boyarsky, J. Fröhlich, and O. Ruchayskiy, Phys. Rev. Lett. 108, 031301 (2012).

[16] A. Boyarsky, J. Frohlich and O. Ruchayskiy, Phys. Rev. D 92, no. 4, 043004 (2015)

[arXiv:1504.04854 [hep-ph]].

[17] H. Tashiro, T. Vachaspati, and A. Vilenkin, Phys.Rev. D86, 105033 (2012), 1206.5549.

[18] M.A Berger, G.B. Field, J. Fluid Mech. 147, 133 (1984).

[19] H.K. Moffatt, R.L. Ricca, Proc. R. Soc. A. 439, 411 (1992).

[20] M. A. Berger, Plasma Physics and Controlled Fusion 41 no.12B, B167 (1999).

[21] E. Witten, Commun. Math. Phys. 121, 351 (1989).

[22] A. F. Ranada, Lett. Math. Phys. 18, 97 (1989).

[23] D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 80, 034028 (2009) [arXiv:0907.5007 [hep-

ph]].

[24] S. Chandrasekhar and P.C. Kendall, Astrophysical Journal 126, 457 (1957).

[25] D. E. Kharzeev, Annals Phys. 325, 205 (2010) [arXiv:0911.3715 [hep-ph]].

[26] Y. Akamatsu and N. Yamamoto, Phys.Rev.Lett. 111, 052002 (2013), 1302.2125.

[27] W. T. M. Irvine and D. Bouwmeester, Nat Phys 4, 716 (2008), URL http://dx.doi.org/

10.1038/nphys1056.

[28] C. Hoyos, N. Sircar and J. Sonnenschein, J. Phys. A 48, no. 25, 255204 (2015)

[arXiv:1502.01382 [hep-th]].

[29] Y. Hirono, T. Hirano and D. E. Kharzeev, arXiv:1412.0311 [hep-ph].

[30] M. N. Chernodub, arXiv:1002.1473 [nucl-th].

[31] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti and K. Szabo, JHEP 1201, 138 (2012)

[arXiv:1112.4416 [hep-lat]].

[32] A. Bazavov et al. [HotQCD Collaboration], Phys. Rev. D 86, 034509 (2012) [arXiv:1203.0784

[hep-lat]].

[33] Q. Li et al., arXiv:1412.6543 [cond-mat.str-el].

[34] D. E. Kharzeev, R. D. Pisarski and H. U. Yee, arXiv:1412.6106 [cond-mat.mes-hall].

21

http://arxiv.org/abs/1504.04854
http://arxiv.org/abs/0907.5007
http://arxiv.org/abs/0911.3715
http://dx.doi.org/10.1038/nphys1056
http://dx.doi.org/10.1038/nphys1056
http://arxiv.org/abs/1502.01382
http://arxiv.org/abs/1412.0311
http://arxiv.org/abs/1002.1473
http://arxiv.org/abs/1112.4416
http://arxiv.org/abs/1203.0784
http://arxiv.org/abs/1412.6543
http://arxiv.org/abs/1412.6106

	Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly
	Abstract
	I Introduction  
	II The chiral anomaly and topology of magnetic flux
	III Inverse cascade of magnetic helicity driven by anomaly  
	A Magnetic helicity spectrum and Chardrasekhar-Kendal (CK) states  
	B Qualitative picture of the anomaly-driven inverse cascade of magnetic helicity  

	IV Maxwell-Chern-Simons equations  
	A General solutions

	V The inverse cascade of magnetic helicity
	A The initial conditions and Hopfion solutions
	B Stages of the inverse cascade evolution
	C Self-similar evolution and scaling behavior of g(k,t)  

	VI Implications for heavy-ion collisions 
	VII Summary  
	 Acknowledgments
	A A useful representation of Chardrasekhar-Kendall states 
	 References


