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Abstract

Self-similar inverse semigroups are defined using automata theory. Adjacency semigroups

of s-resolved Markov partitions of Smale spaces are introduced. It is proved that a Smale

space can be reconstructed from the adjacency semigroup of its Markov partition, using the

notion of the limit solenoid of a contracting self-similar semigroup. The notions of the limit

solenoid and a contracting semigroup is described.

1 Introduction

The aim of our paper is to show how self-similar inverse semigroups of automatic transformations
appear naturally in dynamical system theory, in particular in connection with Smale spaces, min-
imal dynamical systems on Cantor sets and substitution tilings (the Penrose tilings, for instance).

We show, for example, that semigroups associated with tilings and Markov partitions of Smale
spaces are generated by finite automata. This can be used to perform explicit computations and
establishes an interesting connection between symbolic dynamics and semigroup theory. We also
associate, in the spirit of the J. Kellendonk’s construction, finitely generated semigroups (the
adjacency semigroups) to Smale spaces of a special type. We show also that the Smale spaces are
uniquely determined by the associated adjacency semigroups.

These results connect two different directions of investigation, which were developed indepen-
dently before.

One direction investigates substitution tilings, Smale spaces and algebraic object related with
them. Inverse semigroups were applied to the study of substitutional tilings by J. Kellendonk,
who defined the tiling semigroups (see the articles [Kel97, Kel95, KL00] and [Pat99]). Inverse
semigroups are essential in this situation, since substitutional tilings have typically a rich semigroup
of partial symmetries, but are aperiodic, and thus have a small (trivial in the most cases) group
of symmetries.

Interesting algebraic objects related with the Smale spaces are the Ruelle groupoids and the
associated C∗-algebras, studied by I. F. Putnam and other authors (see [Put96, KPS97]). The
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space of all (pointed) tilings, obtained from a substitution rule is a Smale space in a natural
way [AP98, KP00].

The other direction, the theory of self-similar groups, was developed during the study of groups
of automata for purely group-theoretical reasons. For the first definitions of a self-similar (state-
closed) group (or a group, generated by an automaton), see the works [Gri85, Sid98].

The class of self-similar groups contains many examples of groups with such interesting prop-
erties as intermediate growth, just-infiniteness, being an infinite finitely generated torsion group,
etc. These examples have helped to solve many interesting problems in group theory. For exam-
ples of self-similar groups and their properties, see the papers [Gri80, Gri83, GS83, Gri98, BSV99,
GLSŻ00]. See also the surveys [Gri00, GNS00, BGN03], and the book [Nek05] for a systematic
study of self-similar groups and their relations to dynamical systems.

The study of self-similar groups had a dynamical flavor from the very beginning. Even the
definitions of such groups where in a sense dynamical, since the groups where defined via their
actions on graphs, topological spaces, or measure spaces.

The connections became more apparent during the subsequent investigations. For instance,
there exist interesting applications of iterations of rational mappings to spectra of random walks
on self-similar groups and their Schreier graphs (see [GŻ01, BG00]).

It was shown in [Nek05], that a naturally defined topological limit space JG and a dynamical
system s : JG −→ JG on it is associated with every self-similar group G belonging to an important
class of contracting groups. Another object, associated to a contracting self-similar group, is the
limit solenoid SG, which can be constructed as the inverse limit of the limit dynamical system
(JG, s). The limit solenoid has many properties, similar to the properties of the spaces of substi-
tutional tilings. It is a union of leaves, where each leaf is a union of naturally defined tiles. The
map s acts on the tiles as a substitution law (an inflation). In particular, the spaces of self-affine
substitutional digit tilings (see definitions in [Vin00]) can be all obtained as limit solenoids of
self-similar actions of the free abelian (or, in a more general setting, crystallographic) groups.

Self-similar groups can be naturally associated with branched self-coverings of topological
spaces (for example, with the mappings of the complex sphere defined by rational functions)
via the construction of the iterated monodromy group (see [Nek05, BGN03]). If the self-covering
is expanding (if the rational function is sub-hyperbolic), then the iterated monodromy group G is
contracting and its limit space JG is homeomorphic to the Julia set of the self-covering.

The notion of a self-similar inverse semigroup was introduced as a natural generalization of
the notion of a self-similar group, see [Nek02, BGN03]. One of the first examples of a self-similar
inverse semigroup was a variation of the tiling semigroup of the Penrose tiling (see its description
in [BGN03] and in this article).

The current article is an attempt to generalize the mentioned results on limit spaces and
iterated monodromy groups to the semigroup case.

The structure of the paper is the following. In Section 2 we define the notion of a self-similar
inverse semigroup, its groupoid of germs and present some typical examples. Self-similar inverse
semigroups act by local homeomorphisms on Markov shift spaces. We give the basic definitions
of shift spaces in the first subsection of Section 2. The notion of self-similar inverse semigroup
is defined in the second subsection. We use here the language of (non-deterministic) automata,
similar to the group case. A previous definition given in [BGN03] did not use explicitly the notion of
an automaton. The groupoid of germs is a natural object associated with every inverse semigroup
of local homeomorphisms (see [BH99]) and is a convenient notion for self-similar semigroups. Self-
similarity of the inverse semigroup can be, for example, formulated in terms of the groupoid of
germs as the requirement that the shift induces an endomorphism of the groupoid.

Among the examples (Subsection 2.5) we present the self-similar inverse semigroups related to
the “adic” transformations of the Cantor space defined by stationary Vershik-Bratelli diagrams
and a variant of the tiling semigroup of the Penrose tiling.

The next section “Contracting self-similar semigroups” generalizes the notion of a contracting
group and its limit solenoid to self-similar inverse semigroups. A self-similar inverse semigroup is
called contracting if the iteration of the shift attracts every element of the groupoid of germs to a

2



compact subset. We associate with every contracting self-similar inverse semigroup H a metrizable
finite-dimensional topological space SH together with a homeomorphism s : SH −→ SH .

We apply in Section 4 the introduced notions and results to Smale spaces. Its first subsection
contains the standard definitions of the Smale spaces (following [Rue78, Put96]) and the definition
of an s-resolved Markov partition. A Markov partition is called s-resolved if every rectangle is
a direct product (with respect to the canonical coordinates) of a clopen stable set and closed
unstable set. In particular, if a Smale space has an s-resolved Markov partition, then its stable
manifolds are 0-dimensional.

Subsection 4.2 contains the main results of our paper. We introduce a notion of the adjacency
semigroup of an s-resolved Markov partition (Definition 4.2) and prove (Theorem 4.6) that it is
self-similar contracting and that the limit dynamical system (SH , s) of the adjacency semigroup H
is topologically conjugate with the Smale space. In particular, the action of the inverse semigroup
on the shift space determines the Smale space uniquely.

Acknowledgments. The author is grateful to L. Bartholdi, T. Giordano, R. Grigorchuk, S. Mar-
golis, B. Steinberg for useful discussions and interest and to the referee for many suggestions which
helped to improve the paper.

2 Self-similar inverse semigroups

2.1 Preliminary definitions

Let X , |X | > 1 be a finite set, called alphabet. We associate with every alphabet two spaces of
sequences. One is the space XN of infinite one-sided sequences of the form x1x2 . . ., the other is
the space XZ of bi-infinite sequences of the form . . . x−2x−1 . x0x1 . . ., where the dot marks the
place between the coordinates number −1 and number 0. We introduce on the spaces XN and
XZ the topology of the direct products of the discrete spaces X . Then both spaces are compact
metrizable spaces without isolated points, i.e., homeomorphic to the Cantor space.

We denote for every subset A ⊆ XZ and a finite sequence u = a1a2 . . . an by uA the set of
sequences of the form a1a2 . . . such that an+1an+2 . . . ∈ A.

We introduce also the following maps on the spaces XN and XZ, called shifts :

σ (x1x2 . . .) = x2x3 . . .

σZ (. . . x−2x−1 . x0x1 . . .) = . . . x−3x−2 . x−1x0 . . . .

The map σ : XN −→ XN is an |X |-to-one continuous surjection and the map σZ : XZ −→ XZ is a
homeomorphism. Note that σ and σZ are shifts in different directions.

A subspace F ⊆ XN or FZ ⊆ XZ is called shift space (or just shift) if it is closed and shift-
invariant, i.e., if σ(F) ⊆ F , or σZ(FZ) = FZ, respectively.

Important examples of shift spaces are the Markov shifts. Every Markov shift is defined by
a set of admissible pairs A ⊆ X × X . If A is a set of admissible pairs, then the respective
one-sided Markov shift F = F(A) is defined as the set of all sequences x1x2 . . . ∈ XN such that
(xn; xn+1) ∈ A for all n ≥ 1. Similarly, the two-sided Markov shift FZ = FZ(A) is defined as the
set of sequences (. . . x−2x−1 . x0x1 . . .) ∈ XZ such that (xn; xn+1) ∈ A for all n ∈ Z.

If F is a one-sided Markov shift, then its natural extension is the two-sided Markov shift FZ

defined by the same set of admissible pairs. For more on shift spaces, see the books [LM95, Kit98].

2.2 Automata

Definition 2.1. A (non-deterministic) automaton over an alphabet X is a directed graph Γ (loops
and multiple edges are allowed) with the arrows labeled by pairs (x; y) of letters from X . The
vertices of the graph are called the states of the automaton.
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We say that a transition (u; v), where u, v ∈ XN, is accepted by a state q ∈ Γ if there is an infi-
nite directed path starting in q whose consecutive edges are labeled by the labels (x1; y1), (x2; y2), . . .
so that u = x1x2 . . ., v = y1y2 . . ..

If Γ is an automaton, then its inverse is the automaton, obtained from Γ by changing every
label (x; y) to (y; x).

If a transition (u; v) is accepted by a state q then we say also that the state q defines the
transition (u; v).

Our automata may be infinite (i.e., may have infinitely many states), but we always suppose
that they are locally finite, i.e., that at every state only a finite number of arrows start.

If Γ is an automaton and q is its state, then a sequence v ∈ XN is accepted by the state q
if there exists u ∈ XN such that the transition (v; u) is accepted by q. The set of all sequences,
accepted by q is denoted Dom q. It is easy to see that Dom q is a closed subset of the space XN.

The union DomΓ =
⋃

q∈Γ Dom q is called the set of the sequences accepted by the automaton
Γ. It is easy to see that the set DomΓ is invariant under the shift σ. If the automaton Γ is finite
then the set DomΓ is closed and is a shift space.

An automaton Γ is said to be ω-deterministic if for every states q and for every u ∈ XN there
exists at most one path in Γ starting in q and labeled by (x1; y1) , (x2; y2) , . . ., where u = x1x2 . . ..
An ω-deterministic automaton is said to be ω-invertible if its inverse is ω-deterministic.

If Γ is an ω-deterministic automaton and q is its state, then the transformation defined by the
state q is the partial map, denoted Γq, with the domain Dom q, mapping every sequence u ∈ Dom q
to the unique sequence v ∈ XN such that (u; v) is accepted by q.

Definition 2.2. Let Γ be an automaton over the alphabet X with the set of states Q. Then the
dual automaton Γ∗ is the automaton over the alphabet Q with the set of states X such that we
have an arrow from x ∈ X to y ∈ X labeled by a pair (p; q) ∈ Q2 if and only if there is an arrow
from p to q labeled by the pair (x; y) in the automaton Γ.

It is easy to see that (Γ∗)∗ = Γ. We need the notion of a dual automaton, since in many cases
the dual automaton is easier to draw.

2.3 Self-similar inverse semigroups

Remark. We use left actions of semigroups, so that the image of a point w under the action of
a transformation g is denoted g(w) and in a product g1g2 the transformation g2 acts first.

All inverse semigroups appearing in our article come together with a fixed action by partial
permutation. Therefore, being absolutely accurate, one should actually change every instance of
the term “inverse semigroup” in our article to the term “action of the inverse semigroup”.

Definition 2.3. Let H be an inverse semigroup acting by local homeomorphisms on a Markov shift
F ⊆ XN. We say that the action is self-similar if there exists an ω-deterministic automaton Γ(H)
with the set of states H such that DomΓ(H) = F and for every g ∈ H the partial permutation g
coincides with the partial permutation Γg defined by the state g of the automaton Γ(H).

Here by a local homeomorphism of a topological space we mean a homeomorphism between two
open subsets. In our case these open sets have to be also closed, since the set of sequences accepted
by a state is closed. Note that in conditions of the last definition the union of the domains of the
elements of H is the space F and the automaton Γ(H) is ω-invertible. When talking about an
action of an inverse semigroup H on a space F , we always assume that the union of the domains
of H is the whole space F .

We consider here only self-similar semigroups acting on a Markov space F by local home-
omorphisms, though Definition 2.3 has sense in a more general situation (see, for example the
paper [BGN03]).

The automaton Γ(H) from Definition 2.3 is called the full automaton of the self-similar action.
We have the following easy criterion. (It shows also that the notion of a self-similar semigroup,

adopted here coincides with the notion, introduced in [BGN03].)
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Proposition 2.1. An action of an inverse semigroup H on a Markov shift space F ⊆ XN by
local homeomorphisms is self-similar if and only if for every g ∈ H the domain Dom g is closed
and for every g ∈ H there exist a number n ∈ N, a sequence x1, x2, . . . , xn ∈ X, a sequence
y1, y2, . . . , yn ∈ X and a sequence h1, h2, . . . , hn ∈ H such that Dom g =

⊔n
i=1 xi Dom hi and for

every w ∈ Dom hi we have g(xiw) = yihi(w).

Here
⊔

denotes disjoint union.

Proof. If the action is self-similar, then for every g ∈ H let e1, e2, . . . , en be the set of all arrows
of the automaton Γ(H), starting in g. If hi is the end of the arrow ei and the arrow is labeled
by (xi; yi), then the sequences (x1, x2, . . . , xn), (y1, y2, . . . , yn) and (h1, h2, . . . , hn) satisfy the con-
dition of the proposition. The sets xi Dom hi are disjoint by the definition of an ω-deterministic
automaton.

On the other hand, if for every g ∈ H such sequences (x1, x2, . . . , xn), (y1, y2, . . . , yn) and
(h1, h2, . . . , hn) exist, then we can construct the automaton Γ(H). We just have to draw n arrows
ei from g to hi labeled by (xi; yi). Let us prove that then the state g of the constructed automaton
Γ(H) defines the transformation g.

If a1a2 . . . ∈ F is a sequence belonging to the domain of g, then the sequence a2a3 . . . belongs
to the domain of the a transformation f1 = hi, where a1 = xi and g(a1a2 . . .) = yif1(a2a3 . . .).
Let us denote yi = b1. Repeating the same arguments for a2a3 . . ., then for a3a4 . . ., etc., we see
that if b1b2 . . . = g(a1a2 . . .) then there exists a sequence f0 = g, f1, f2, . . . such that the vertex fk

is connected by an arrow labeled by (ak+1; bk+1) with the vertex fk+1 for all k ≥ 0. This gives
us the necessary path, showing that the state g of the automaton Γ(H) admits the transition
(a1a2 . . . ; g(a1a2 . . .)).

On the other hand, suppose that the state g admits the transition (a1a2 . . . ; b1b2 . . .). Then
there exists a path in the automaton Γ(H) starting in g, labeled by the consecutive labels (ak; bk),
k = 1, 2, . . ., and passing through the consecutive vertices g = f0, f1, . . .. Then we have, by
construction of the automaton Γ(H), that a1a2 . . . ak Dom fk ⊂ Dom g and

g(a1a2 . . . akxk+1xk+2 . . .) = b1b2 . . . bkfk(xk+1xk+2 . . .)

for all k ≥ 1 and xk+1xk+2 . . . ∈ Dom fk. But

Dom g ⊃
⋂

k≥1

a1a2 . . . ak Dom fk = {a1a2a3 . . .},

since the sets a1a2 . . . ak Dom fk are compact and form a descending sequence, so that the inter-
section is not empty. Similarly,

⋂

k≥1

b1b2 . . . bk Ran fk = {b1b2b3 . . .},

and consequently, g(a1a2 . . .) = b1b2 . . ..
Let us show that the constructed automaton is ω-deterministic. Let a1a2 . . . ∈ XN and g ∈

H be arbitrary. Then it follows from the previous consideration that a1a2 . . . ∈ Dom g if and
only if there exists a path e1e2 . . . in the automaton, starting in the state g and labeled by
(a1; b1), (a2; b2), . . .. It also follows that the first arrow e1 is necessary the arrow corresponding to
the unique set a1 Domh in the decomposition Dom g =

⊔

xi Dom hi to which belongs the sequence
a1a2 . . .. Hence the first arrow e1 and similarly all the subsequent arrows ei of the path e1e2 . . .
are uniquely determined by the sequence a1a1 . . ..

The full automaton Γ(H) is infinite if the semigroup H is infinite. On the other hand, finite
automata generate self-similar inverse semigroups in the following sense.

Definition 2.4. If Γ is a finite ω-invertible automaton, then the inverse semigroup generated by
Γ is the inverse semigroup acting on the space DomΓ generated by the partial permutations of
the form Γq, where q runs through the set of all states of the automaton Γ.

5



The following proposition is an easy corollary of Proposition 2.1.

Proposition 2.2. An inverse semigroup generated by a finite automaton is self-similar (if it acts
on DomΓ by local homeomorphisms).

2.4 Groupoid of H-germs

An important notion related to self-similar inverse semigroups is the associated groupoid. Recall
that groupoid is a small category of isomorphisms (see a more explicit definition in [Pat99, Ren80]).

Let H be a self-similar inverse semigroup acting on a Markov space F . The groupoid of
H-germs (denoted G(H)) is the set of the equivalence classes of pairs (h, w), where h ∈ H and
w ∈ Dom h. Two pairs (h1, w1) and (h2, w2) are considered to be equivalent if and only if w1 = w2,
h1(w1) = h2(w2) and the respective paths in the full automaton Γ(H) starting in h1 and h2 and
defining the transitions (w1; h(w1)) = (w2; h2(w2)) are cofinal, i.e., there exists a number n0 such
that the edge number n of the first path coincides with the edge number n of the second path for
every n > n0.

We will identify the germs with the respective pairs (h, w) and with the paths in G(H) starting
in h and defining the transition (w; h(w)).

We define the multiplication of the elements of the groupoid G(H) by the rules

(h1, w1) · (h2, w2) = (h1h2, w2),

where the product is defined if and only if h2(w2) = w1. Then the inverse to the pair (h, w) is the
pair (h−1, h(w)).

It is easy to see that the associated groupoid G(H) is well defined. Our construction is a
particular case of a general notion of the groupoid of germs of an inverse semigroup of local home-
omorphisms. The groupoid of germs comes with a naturally defined germ topology (see [BH99])
and is an étale (r-discrete) locally compact groupoid. Namely, a neighborhood of a germ (h, w) is
determined by a number n ∈ N and consists of all the germs (h, w′) such that the corresponding
paths in Γ(H) have a common beginning of length at least n.

The shift σ : F → F induces an endomorphism (functor) σ∗ : G(H) −→ G(H) defined by the
map deleting the first edge of a path in the full automaton Γ(H). It is easy to see that the shift
σ∗ agrees with the cofinality relation, thus is a well defined map of the groupoid. It follows also
directly from the definition that σ∗ is an étale functor.

Definition 2.5. A self-similar inverse semigroup is said to be recurrent if the shift endomorphism
σ∗ of the associated groupoid is onto.

Note that if the inverse semigroup acting on a space F is recurrent then σ(F) = F , since the
space F is identified with the space of units (with the set of objects) of the groupoid G(H).

2.5 Examples

Self-similar groups. A group G acting by permutations on the space XN is said to be self-
similar (see [Nek05]) if for every g ∈ G and every x ∈ X there exist h ∈ G and y ∈ X such that
g(xw) = yh(w) for every w ∈ XN.

There exist many interesting examples of self-similar group actions. For example, many branch
groups [Gri00] are self-similar. Branch groups often have interesting properties, rare among other
classes of groups (many of them are just-infinite, have intermediate growth, are infinite torsion
groups, etc.). An example of a self-similar branch group is the Grigorchuk group (see [Gri80,
Har00]).

Another class of self-similar groups are the iterated monodromy groups of (branched) self-
coverings of topological spaces (for example, of rational functions on the complex sphere). For the
definition of the iterated monodromy groups and their basic properties see [Nek05] and [BGN03].
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The iterated monodromy group of a self-covering map f contains much of the information about
the dynamics of the map. In particular, in many cases the Julia set of f can be reconstructed
from its iterated monodromy group.

Let us give one of important examples of self-similar group actions. It is the action of the
group Z on the space {0, 1}N generated by the transformation a, called the adding machine and
defined by the rules:

a(0w) = 1w, a(1w) = 0a(w),

where w ∈ {0, 1}N is arbitrary. It is easy to see that the transformation a acts on the sequences from
{0, 1}N in the same way as addition of 1 to a dyadic integer. More precisely, a(x0x1 . . .) = y0y1 . . .
is equivalent to the equality

1 +

∞
∑

k=0

xk · 2k =

∞
∑

k=0

yk · 2k

in the ring Z2 of dyadics.
The adding machine action of Z is generated by the automaton shown on the left-hand side of

Figure 1. On the right-hand side of the Figure the dual automaton is shown.

Figure 1: Adding machine.

“Adic” transformations. An interesting class of transformations defined by finite automata
are “adic” transformations, introduced by Vershik.

Recall that a Bratelli diagram D is defined by a sequence of finite sets V0, V1, . . . (sets of the
vertices of the diagram) and a sequence of finite sets E1, E2, . . . (sets of the edges of the diagram),
together with maps si : Ei −→ Vi−1 and ri : Ei −→ Vi. If e ∈ Ei is an edge, then the vertex
si(e) ∈ Vi−1 is the source and the vertex ri(e) ∈ Vi is the range of e.

A Vershik-Bratelli diagram is a Bratelli diagram with partial orders on every set Ei. Two
edges must be comparable in this order if and only if they have equal ranges.

If we have a Vershik-Bratelli diagram D, then the order on the edges induces the lexicographical
order on the paths of D. Namely a (finite or infinite) path (e1, e2, . . .) (i.e., such a sequence ei ∈ Ei

that ri(ei) = si+1(ei+1)) is less than a path of the same length (f1, f2, . . .) if and only if for some
index i0 we have that ei = fi for all i > i0 and the edge ei0 is less than fi0 . It is easy to prove that
for every infinite path w, which is not maximal in the lexicographical order there exists exactly
one infinite path τ(w) (the next path to w) minimal among the paths which are greater than w.

The transformation τ defined on the set of non-maximal paths is called the adic transformation,
defined by the Vershik-Bratelli diagram.

If the maximal path w1 is unique and the minimal path w0 is unique, then one can define
τ(w1) = w0 and the transformation τ will be a minimal homeomorphism of the space of infinite
paths in the diagram D. In fact, every minimal homeomorphism of the Cantor space is of this
form, i.e., is conjugate to an adic transformation (see [GPS95]).

A stationary Vershik-Bratelli diagram D is a Vershik-Bratelli diagram defined by constant
sequences Vi = V , Ei = E, and si = s : E −→ V , ri = r : E −→ V such that all the orderings on
Ei = E are equal. The space of all infinite paths in a stationary diagram is obviously a Markov
shift over the alphabet X = E.
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For every n ∈ N the nth telescoping D(n) of a stationary Vershik-Bratelli diagram D is the
diagram defined by the same set of vertices V , by the set of edges E(n) equal to the set of paths
e = (e1, e2, . . . , en) of length n in the original diagram, the maps s(n)(e) = s(e1), r(n)(e) = r(en)
and the lexicographic order on E(n) induced by the order on E. The telescoping changes the adic
transformation to a conjugate one. See more on Vershik-Bratelli diagrams and adic transformations
in the papers [HPS92, GPS95].

Suppose that we have a stationary diagram D, which has a unique minimal and a unique
maximal path. For every edge a of the first level of the diagram, denote by τa the restriction
of the minimal homeomorphism τ onto the set of paths with the first edge a. Denote by HD

the inverse semigroup generated by the transformations τa, a ∈ E. We have the following result
(see [Nek02]).

Theorem 2.3. Let D be a stationary Vershik-Bratelli diagram with a single maximal and a single
minimal path. Then there exists n ∈ N such that the semigroup HD(n) is self-similar.

For example, consider the stationary Vershik-Bratelli diagram shown on the upper part of
Figure 2. We introduce the ordering of the edges as follows:

a0 < a1 < a2, b0 < b1.

Then the adic transformations τx are defined by the dual automaton, shown on the lower part
of Figure 2. Here a label (a; b1, b2, . . . , bn) means that we have at this place n arrows with the labels
(a; bi). The transformations 1x are the identical transformations, with the domain equal to the set
of paths with the first edge x. We have omitted the loops, defining the identical transformations
1x, since it is obvious how to draw them (one must only not forget that some of transitions (1x; 1y)
are prohibited by the Vershik-Bratelli diagram).

Figure 2: Adic transformations.

Another example of a homeomorphism defined by a stationary Vershik-Bratelli diagram is the
binary adding machine described before. It is defined by the set V consisting of a single point and
the set E = {0, 1} with the ordering 0 < 1.

Penrose tiling. The following example of a self-similar semigroup is defined in [BGN03]. It is
an example similar to the tiling semigroup of J. Kellendonk, different from it only in some technical
details.
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Recall, that a Penrose tiling (see [Pen84, Gar77, GS87]) is a tiling of the plane by the triangles
of two types shown on Figure 3, which has to satisfy the matching rules.

The angles of the triangles are equal to π
5 , 2π

5 , 2π
5 and to 3π

5 , π
5 , π

5 . They can be cut from a
regular pentagon by the diagonals issued from a common vertex.

The matching rules require that the common vertices of two tiles are marked by the same
color (black or white) and that the arrows on the adjacent sides of the triangles point at the same
direction (see Figure 3 for the marking of the vertices and the arrows).

Figure 3: Tiles and matching rules.

It follows from the matching rules that if we mark the sides of the tiles by the letters S, L and
M in the way it is done on Figure 3, then in every Penrose tiling the common sides of any two
adjacent tiles will be marked by the same letter.

One can check, just considering all possible patches of Penrose tilings of sufficient size, that
the tiles of any Penrose tiling can be grouped into blocks of two or three tiles, as it is shown on
Figure 4 (the mirror images are also allowed).

Figure 4: Inflation

The grouping into blocks is unique [GS87] and it is easy to see that the blocks are similar to
the original tiles and that the blocks also form a Penrose tiling. This tiling is called the inflation
of the original one.

The inflation procedure defines an encoding of the tiles of Penrose tilings by infinite sequences
from the Markov shift F over the alphabet X = {a, b, c} defined by the set of admissible pairs
A = X × X \ {(b; a)}. Namely, let T be a tile of a Penrose tiling. Then T is a subset of a tile Tn

of the Penrose tiling obtained by the nth iteration of the inflation procedure. Let an ∈ X be the
label of the tile Tn on Figure 4, according to its participation in the inflation. Then a0a1 . . . ∈ F
is the label of T .

This encoding is one-to-one, except for the case when a tiling has a non-trivial symmetry group
(this group is always finite and isomorphic either to Z/2Z or to the dihedral group D5 of order
10). If the tiling has a non-trivial symmetry group, then the tiles belonging to one orbit of the
symmetry group correspond to one sequence (see analysis of this situation in [BGN03]).
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Define transformations L, M, S of the space F by the formulae:

S(aw) = cw L(aaw) = b · S(aw)
S(bw) = b · M(w) L(abw) = a · M(bw)
S(cw) = aw L(acw) = a · M(cw)

L(bbw) = b · S(bw)
M(aw) = a · L(w) L(bcw) = a · S(cw)
M(bw) = cw L(cw) = c · L(w)

M(caw) = c · M(aw)
M(cbw) = bbw
M(ccw) = bcw

If w ∈ F corresponds to a tile T of the Penrose tiling, then S(w), M(w) and L(w) correspond
to the tiles having a common side with T , marked on Figure 3 by the letters S, M and L respec-
tively. This is also proved just by considering all possible patches of sufficient size in the Penrose
tilings (actually, by considering one sufficiently large patch, since all Penrose tilings are locally
isomorphic).

If we denote by Sx, Mx, Lx the restrictions of S, M and L onto the sets of sequences starting
with x, for x ∈ {a, b, c}, then the transformations Sx, Mx, Lx, x ∈ {a, b, c} are defined by the dual
automaton shown on Figure 5. We have not written the loops defining the idempotents 1x.

Figure 5: Adjacency semigroup of the Penrose tilings.

3 Contracting self-similar semigroups

3.1 Definitions

Definition 3.1. A subautomaton of an automaton Γ is a subgraph Γ1 of Γ such that every arrow
of Γ starting in a vertex of Γ1 also belongs to Γ1.

So, a sub-automaton Γ1 is uniquely determined by the corresponding subset of states of Γ. If
Γ is ω-deterministic and Γ1 is a sub-automaton of Γ, then every state q of Γ1 defines the same
transformation as the state q of Γ.

10



Definition 3.2. Let H be a self-similar semigroup and let Γ(H) be its full automaton. We say
that the semigroup H is contracting if there exists a finite subautomaton N ⊂ Γ(H) such that
every infinite path e1, e2, . . . in the automaton Γ(H) has only a finite number of arrows ei outside
N .

The minimal set N satisfying the conditions of the definition is called the nucleus of the action.

Proposition 3.1. The nucleus exists if the semigroup is contracting. It consists of all the states
g of Γ(H) such that there exists a directed path to g from a directed cycle in Γ(H).

Proof. Suppose that the semigroup is contracting. Let N be any finite subautomaton satisfying
the conditions of Definition 3.2. Every cycle of Γ(H) must belong to N , since there exists a path
going infinitely many times through each of its arrows. Consequently, every end of a path starting
in a vertex of a cycle must belong to N .

Let us prove that the set C of the states g which are ends of the directed paths starting in
elements of the cycles is the nucleus. We have shown that it is a sub-automaton of any finite
automaton, satisfying the conditions of Definition 3.2. It remains to show that C itself satisfies
the conditions of Definition 3.2.

Let e1, e2, . . . be an arbitrary infinite directed path. Its all but finite number of arrows belong
to a finite set satisfying the conditions of Definition 3.2. Hence, some arrow ei appears in this path
twice. All the states between these two appearances belong to a cycle in Γ(H). Consequently, all
the states appearing after them belong to C.

Lemma 3.2. Let H be a contracting self-similar inverse semigroup acting on a Markov shift F .
Then for every g ∈ H there exists n0 ∈ N such that every path in Γ(H) of length ≥ n0 which starts
in g ends in an element of the nucleus.

Proof. Let w ∈ Dom g be an arbitrary sequence. Then the path starting in g and defining the
transition (w; g(w)) has all edges inside the nucleus N , except for some finite beginning. Let nw

be the length of this beginning, and let hw ∈ N be its end. Then we have for every u ∈ Dom hw

that
g(w0u) = v0hw(u),

where w0 and v0 are the beginnings of length nw of the sequences w and g(w), respectively.
The sets of the form w0 Dom hw are open and cover the set Dom g. Thus there exists a finite

subcover {w1 Dom h1, w2 Dom h2, . . . , wm Dom hm}, where wi are some finite sequences and hi are
elements of the nucleus. Then the maximal length n0 of the sequences wi satisfies the conditions
of the lemma.

Corollary 3.3. Suppose that a recurrent self-similar semigroup H acting on F is contracting and
let N be its nucleus. Then for every w ∈ F there exists an idempotent 1U ∈ H defined by an
element of N such that w belongs to the domain U of 1U .

Proof. The space F is covered, by definition, by the domains of the idempotents from H . The
domains are open, thus the space F is covered by domains Ui of a finite number of idempotents
{1U1 , 1U2 , . . . , 1Um

} ⊂ H .
There exists, by Lemma 3.2, for every 1Ui

∈ H a number ni such that every path of length
ni starting in 1Ui

∈ Γ(H) ends in an element of the nucleus. Every such an end is obviously an
idempotent. Let n = max ni. Then the sets σn(Ui) and, consequently, the space F = σn(F) are
covered by the domains of idempotents belonging to N .

Denote by G(N ) the set of germs (h, w) ∈ G(H) such that h ∈ N . Then the condition in
Definition 3.2 can be formulated as the requirement that σn

∗ ((h, w)) ∈ G(N ) for all (h, w) and for
all n = n(h, w) big enough. Note also that the set G(N ) is a compact σ∗-invariant subset of G(H).
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3.2 Limit solenoid

Definition 3.3. Let H be a recurrent contracting self-similar semigroup, acting on a shift space
F . Let N be its nucleus and let FZ be the natural extension of F . We say that two bi-infinite
sequences (. . . x−2x−1 . x0x1 . . .), (. . . y−2y−1 . y0y1 . . .) ∈ FZ are asymptotically equivalent if there
exists a bi-infinite path in the full automaton Γ(H) labeled by the consecutive labels

. . . (x−2; y−2), (x−1; y−1), (x0; y0), (x1; y1) . . .

with all its vertices belonging to the nucleus N of the semigroup.

Lemma 3.4. Two sequences (. . . x−2x−1 . x0x1 . . .) and (. . . y−2y−1 . y0y1 . . .) ∈ FZ are asymp-
totically equivalent if and only if for every n ∈ Z there exists gn ∈ N such that

gn(xnxn+1 . . .) = ynyn+1 . . . .

Proof. The “only if” part of the lemma is trivial.
Let An ⊂ N be the set of all elements gn such that gn (xnxn+1 . . .) = ynyn+1 . . .. It is a

non-empty finite set, and we have a natural map An−1 −→ An, mapping a state gn to the next
state gn−1 in the path defining the respective transition. In this way we get an inverse sequence of
finite sets. It is well known that the inverse limit of this sequence is not empty. Any point of the
inverse limit defines an infinite path labeled by the labels . . . (x−1; y−1), (x0; y0), (x1; y1), . . ..

Proposition 3.5. The asymptotic equivalence is an equivalence relation on FZ and the quotient of
the space FZ by this equivalence relation is a metrizable topological space of topological dimension
less than |N |.

Proof. It is easy to prove that if g ∈ N , then g−1 ∈ N and thus the asymptotic equivalence is
symmetric. The fact that it is reflexive follows directly from Corollary 3.3 and Lemma 3.4. Let
us prove that it is transitive.

Suppose that a sequence ξ = . . . x−2x−1 . x0x1 . . . ∈ FZ is equivalent to a sequence η =
. . . y−2y−1 . y0y1 . . . ∈ FZ and η is equivalent to ζ = . . . z−2z−1 . z0z1 . . . ∈ FZ. Let (. . . g−1, g0, g1 . . .)
be such a sequence of elements of N that gn (xnxn+1 . . .) = ynyn+1 . . . and let (. . . h−1, h0, h1 . . .)
be such a sequence of elements of N that hn (ynyn+1 . . .) = znzn+1 . . .. Then

hngn (xnxn+1 . . .) = znzn+1 . . . .

There exists, by Lemma 3.2, a number n0 ∈ N such that every path of the length ≥ n0 in
Γ(H), starting in a product of two elements of N , ends in N . This implies that the transition
(xnxn+1 . . . ; znzn+1 . . .) is defined by an element of the nucleus for every n ∈ Z and the sequences
ξ and ζ are equivalent by Lemma 3.4.

It follows directly from the definitions that the asymptotic equivalence relation is closed (since
even its graph is closed). It follows also that for every sequence ξ = . . . x−2x−1 . x0x1 . . . ∈ FZ and
for every n ∈ Z the number of possible tails ynyn−1 . . . of a sequence . . . y−2y−1 . y0y1 . . . asymp-
totically equivalent to ξ is not greater than |N |. This implies that every asymptotic equivalence
class on FZ has not more than |N | elements.

Now by Theorem 4.2.13 from [Eng77], the quotient space is metrizable, since it is a quotient of a
compact separable metrizable space FZ by a closed equivalence relation with compact equivalence
classes. The assertion about the dimension follows from Hurewicz formula (see [Kur61] page
52).

Definition 3.4. The quotient of the space FZ by the asymptotic equivalence relation is called the
limit solenoid of the self-similar semigroup and is denoted SH .

The shift σZ : FZ −→ FZ induces a homeomorphism of the limit solenoid SH , since the
asymptotic equivalence relation agrees with the shift. Let us denote this homeomorphism by s.
We have associated in this way a dynamical system (SH , s) with every contracting recurrent action
of an inverse semigroup.
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Definition 3.5. A tile Tw corresponding to a sequence w ∈ F is the image of the set of the
sequences of the form . . . x−2x−1 . w ∈ FZ in the solenoid SH . A leaf of the solenoid is the union
of all the tiles Tw, for which w belongs to a given H-orbit.

Every tile Tw is a closed subset of SH , and the solenoid SH is a disjoint union of the leaves.
It follows directly from the definition that

s (Tw) =
⋃

x∈X

Txw,

where Txw is considered to be empty if xw /∈ F . This relation is similar to the inflation of
substitution tilings, see [AP98].

3.3 Examples

Adding machine. The nucleus of the adding machine action consists of the states (vertices)
a, 1, a−1 (see [BGN03]). It follows directly from the diagram of the nucleus that two sequences
(. . . x−2x−1 . x0x1 . . .), (. . . y−2y−1 . y0y1 . . .) ∈ {0, 1}Z are asymptotically equivalent if and only if
they are either equal or are of the form (. . . 0001anan+1 . . .), (. . . 1110anan+1). But this is the usual
identification of the reals written in the binary numeration system. More precisely, the sequences
are asymptotically equivalent if and only if

+∞
∑

n=0

xn · 2n −
+∞
∑

n=0

yn · 2n =

−1
∑

n=−∞

yn · 2n −
−1
∑

n=−∞

yn · 2n, (1)

where the left-hand side of the equality is computed in the ring Z2 of dyadics, the right-hand side
in the field R of real numbers, but both sides must belong to Z and be equal.

The limit solenoid of the adding machine action is then the well known Smale solenoid, home-
omorphic to the inverse limit of the circle R/Z with respect to the iterations of its double self-
covering f : t 7→ 2t (see, for example [Put96] and [BGN03]). The respective shift is induced by f
on the inverse limit.

This solenoid SZ can be also constructed in the following way. Take the direct product [0, 1]×XN

of the real segment by the Cantor space XN = {0, 1}N and identify every point (1, w) with the
point (0, a(w)), where a is the adding machine. The obtained space is homeomorphic to the limit
solenoid SZ of the adding machine action. This follows easily from (1).

Penrose tilings. The self-similar semigroup associated with the Penrose tiling is contracting.
The tiled leaves of its limit solenoid are exactly the Penrose tilings. (Except for the tilings having
a non-trivial symmetry group; then the respective leaf of the solenoid is the quotient of the tiling
by its symmetry group.)

The limit solenoid is homeomorphic to the space of Penrose tilings with marked points. Two
marked Penrose tilings are close in this space if the tilings can be superimposed by an affine
transformation in such a way that the marked points will be close to each other and the tilings
agree on a large ball around one of the marked point. For an exact definition of this space, see the
paper [AP98]. Note, however, that we do not care about the orientation of the tiles. Respectively,
our space is a finite-to-one quotient of the space defined in [AP98].

The fact that the semigroup is contracting and the above description of the limit space follow
easily from Theorem 4.6 below.

4 Smale spaces

4.1 Definitions

Let us define the notion of a Smale space, following [Rue78] and [Put96]. Let (Ω, d) be a compact
metric space together with a homeomorphism f : Ω −→ Ω. We require that there exists a number
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ǫ0 > 0 and a continuous function (canonical coordinates):

[·, ·] : {(ξ, η) ∈ Ω × Ω : d(ξ, η) < ǫ0} −→ Ω

such that
[ξ, ξ] = ξ, [[ξ, η] , ζ] = [ξ, ζ] , [ξ, [η, ζ]] = [ξ, ζ]

for all ξ, η, ζ ∈ Ω for which the respective expressions are defined.
Define for every 0 < ǫ ≤ ǫ0

W s
ǫ (ξ) = {η ∈ Ω : [ξ, η] = η, d(ξ, η) < ǫ} (2)

Wu
ǫ (ξ) = {η ∈ Ω : [η, ξ] = η, d(ξ, η) < ǫ} . (3)

We require that
f ([ξ, η]) = [f(ξ), f(η)] ,

whenever both sides of the equality are defined and that

d (f(η), f(ζ)) ≤ λ0d(η, ζ), η, ζ ∈ W s
ǫ (ξ)

d
(

f−1(η), f−1(ζ)
)

≤ λ0d(η, ζ), η, ζ ∈ Wu
ǫ (ξ)

for some fixed 0 < λ0 < 1.
Then we have for every ξ ∈ Ω a homeomorphism

[·, ·] : Wu
ǫ0/2(ξ) × W s

ǫ0/2(ξ) −→ Ω

onto a neighborhood of ξ, and
{[ξ, η]} = W s

ǫ0(ξ) ∩ Wu
ǫ0(η).

In general, a subset R ⊂ Ω is called rectangle, if its diameter is less than ǫ0 and for every point
ξ ∈ R the map

[·, ·] : Wu
ǫ0(ξ, R) × W s

ǫ0(ξ, R) −→ R

is a homeomorphism, where Wu
ǫ0(ξ, R) = Wu

ǫ0(ξ) ∩ R and W s
ǫ0(ξ, R) = W s

ǫ0(ξ) ∩ R.
The next lemma follows directly from the definition.

Lemma 4.1. If R is a rectangle and ξ1, ξ2 ∈ R, then the map

W s
ǫ0(ξ1, R) −→ W s

ǫ0(ξ2, R) : η 7→ [ξ2, η].

is a homeomorphism. Similarly, the map η 7→ [η, ξ2] is a homeomorphism from Wu
ǫ0(ξ1, R) to

Wu
ǫ0(ξ2, R).

A Markov partition of a Smale space (see [Bow75]) is a finite cover M of the space Ω by closed
proper rectangles with disjoint interiors (a rectangle R is said to be proper if R = intR), such
that if ξ ∈ intR and f(ξ) ∈ intR′ for R, R′ ∈ M, then

f
(

W s
ǫ0(ξ, R)

)

⊆ R′ and f−1
(

Wu
ǫ0(f(ξ), R′)

)

⊆ R.

If R is a closed rectangle, then (see [Bow75]) its boundary ∂R is a union ∂sR ∪ ∂uR, where

∂sR = {ξ ∈ R : ξ /∈ intWu
ǫ0(ξ, R)},

∂uR = {ξ ∈ R : ξ /∈ intW s
ǫ0(ξ, R)},

where the interiors of Wu
ǫ0(ξ, R) and W s

ǫ0(ξ, R) are taken as in subsets of the topological spaces
Wu

ǫ0(ξ) and W s
ǫ0(ξ), respectively.

Definition 4.1. We say that a Markov partition M is s-resolved if for every rectangle R ∈ M
and ξ ∈ R the set W s

ǫ0(ξ, R) is open in W s
ǫ0(ξ), i.e., if we have

∂R = ∂sR.
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Figure 6: A rectangle.

The set W s
ǫ0(ξ, R) is always closed ,since R is closed, W s

ǫ0(ξ, R) = {η ∈ R : [ξ, η] = η} and the
map [· , ·] is continuous. Hence, if the Markov partition is s-resolved, then the sets W s

ǫ0(ξ, R) are
clopen in W s

ǫ0(ξ) (and totally disconnected, as we will see later).
Fix an alphabet X together with a one-to-one correspondence a 7→ Ra with the elements of a

Markov partition M of a Smale space (Ω, d, f). Then for every point ξ ∈ Ω its code is a sequence
(. . . a−2a−1 . a0a1 . . .) ∈ XZ such that for every n ∈ N we have

ξ ∈
⋂

−n≤k≤n

fk (Rak
) = Cn

and the set Cn has a non-empty interior.
Note that the diameter of the set Cn is less than λn

0 ǫ0. Consequently, there is not more than
one point having a given code. On the other hand, one point can have different codes, since the
elements of the Markov partition can have non-empty intersections.

The following result is classical.

Lemma 4.2. The set FZ of all codes of points ξ ∈ Ω is equal to the set of all sequences
(. . . a−2a−1 . a0a1 . . .) ∈ XZ such that the set intRak

∩ int f
(

Rak+1

)

is not empty for all k ∈ Z.
The map π : FZ −→ Ω, putting into correspondence to a code the respective point of Ω is a

continuous surjection such that
f (π(w)) = π (σZ(w)) .

Consequently, the set FZ is a Markov shift space. We denote by F the respective one-sided
shift.

The following lemma follows directly from the definitions.

Lemma 4.3. If π(. . . a−2a−1 . a0a1 . . .) = ξ and π(. . . b−2b−1 . b0b1 . . .) = η, where a0 = b0 and
ξ, η ∈ Ra0 , then π(. . . a−2a−1 . b0b1 . . .) = [ξ, η]. In particular, the set W s

ǫ0(Ra0 , ξ) coincides with
the set of points having codes of the form (. . . a−2a−1 . a0x1x2 . . .).

Let us prove the following fact about s-resolved Markov partitions.

Lemma 4.4. Let M be an s-resolved Markov partition of a Smale space (Ω, d, f). For every
Ra0 ∈ M and every point ξ ∈ Ra0 having a code (. . . a−2a−1 . a0a1 . . .), the restriction of π onto
the set Fs(ξ) of sequences of the form . . . a−2a−1 . a0x1x2 . . . ∈ FZ is a homeomorphism onto the
space W s

ǫ0(ξ, Ra0).

Proof. It is sufficient to prove that the restriction of the map π onto the set Fs(ξ) is injective,
since it is surjective by Lemma 4.3 and the spaces Fs(ξ) and W s

ǫ0(ξ0, Ra0) are compact.
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Suppose at first that ξ ∈ intRa0 . Then W s
ǫ0(ξ, Ra0) ⊂ intRa0 , by definition of an s-resolved

Markov partition. Let η ∈ W s
ǫ0(ξ, Ra0) be an arbitrary point and let (. . . a−2a−1 . a0b0b1 . . .) be its

code. The point η is an internal point of Ra0 and thus it is an internal point of Wu
ǫ0(η, Ra0). Then

for every n ∈ N the point f−n(η) is an internal point of the set f−n
(

Wu
ǫ0(η, Ra0)

)

⊂ Rbn
, and

thus is an internal point of Rbn
, by definition of an s-resolved Markov partition. Consequently,

the point η belongs only to the rectangle Rbn
and the sequence b1b2 . . . is uniquely determined by

(. . . a−2a−1a0) and η, i.e., the restriction of the map π onto Fs(ξ) is injective.
For other points of Ra0 one needs just to apply Lemma 4.1 and Lemma 4.3.

4.2 Adjacency semigroup

Let us fix now some s-resolved Markov partition M = {Ra}a∈X of a Smale space (Ω, d, f).
Let a0, b0 ∈ X be arbitrary letters such that the intersection Ra0 ∩Rb0 is not empty, and let ξ ∈

Ra0 ∩Rb0 . Then the point ξ has codes of the form (. . . a−2a−1 . a0a1 . . .) and (. . . b−2b−1 . b0b1 . . .).
Define now a partial transformation T(a0;b0) of the space F , which maps a sequence a0x1x2 . . . ∈

F to a sequence b0y1y2 . . . ∈ F if and only if

π(. . . a−2a−1 . a0x1x2 . . .) = π(. . . b−2b−1 . b0y1y2 . . .).

Proposition 4.5. The transformation T(a0;b0) is a well defined local homeomorphism of the space
F depending only on the letters a0 and b0.

Proof. Let us prove that the transformation T(a0;b0) does not depend on the choice of the point ξ
and its codes w1 = (. . . a−2a−1 . a0a1 . . .), w2 = (. . . b−2b−1 . b0b1 . . .). Let

w′
1 = (. . . a′

−2a
′
−1 . a′

0a
′
1 . . .), w′

2 = (. . . b′−2b
′
−1 . b′0b

′
1 . . .) ∈ F

be codes of a point ξ′ such that a′
0 = a0 and b′0 = b0.

Let (. . . a−2a−1 . a0x1x2 . . .) and (. . . b−2b−1 . b0y1y2 . . .) be codes of a point ζ. Then, by
Lemma 4.3, the sequences (. . . a′

−2a
′
−1 . a′

0x1x2 . . .) and (. . . b′−2b
′
−1 . b′0y1y2 . . .) are codes of

the point [ξ′, ζ]. Hence, the transformation T(a0;b0) defined by ξ, w1 and w2 is the same as the
transformation defined by ξ′, w′

1 and w′
2.

Let us prove that the transformation T(a0;b0) is a local homeomorphism (in particular, that
it is a well defined map). Let ξ ∈ Ra0 ∩ Rb0 be a point, and let (. . . a−2a−1 . a0a1 . . .) and
(. . . b−2b−1 . b0b1 . . .) be codes of the points ξ. Recall that Fs(ξ) denotes the set of sequences of
the form (. . . a−2a−1 . a0x1x2 . . .) ∈ F . The map

ρξ : a0x1x2 . . . 7→ . . . a−2a−1 . a0x1x2 . . .

is a homeomorphism from the space Fa0 of all the sequences belonging to F and starting with a0

to the set Fs(ξ). Let us denote by πa0,ξ the homeomorphism π|Fs(ξ) ◦ ρξ : Fa0 −→ W s
ǫ0(ξ, Ra0).

It is a homeomorphism by Lemma 4.4.
Denote

Da0 = π−1
a0,ξ

(

W s
ǫ0(ξ, Ra0) ∩ W s

ǫ0(ξ, Rb0 )
)

Db0 = π−1
b0,ξ

(

W s
ǫ0(ξ, Ra0) ∩ W s

ǫ0(ξ, Rb0)
)

.

Then, by Lemma 4.4 the set Da0 is the domain of the map T(a0;b0), and

T(a0;b0) =
(

π|Da0

)−1
◦ π|Db0

,

so that T(a0;b0) is a local homeomorphism.

Note that the transformation T(a0;a0) is the idempotent with domain Fa0 .

Definition 4.2. The adjacency semigroup of an s-resolved Markov partition is the inverse semi-
group generated by the set of partial homeomorphisms T = {T(a0;b0) : Ra0 ∩ Rb0 6= ∅} of the
space F .
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The groupoid of germs of the adjacency semigroup can be interpreted as the holonomy groupoid
of the unstable foliation coming from the local structure of a direct product on the Smale space.
See [Hae01] for the definition of the holonomy groupoid of a foliation.

Theorem 4.6. The adjacency semigroup H of a Smale space (Ω, f) is self-similar and contracting.
Its limit dynamical system (SH , s) is topologically conjugate to the system (Ω, f). In particular,
the limit solenoid SH is homeomorphic to Ω.

Proof. Let us prove that the semigroup H is self-similar. We shall construct the automaton
generating the semigroup H and use then Proposition 2.2.

Let us construct a directed graph Γ with the vertices T and connect the vertex T(a0;b0) to the
vertex to T(a1;b1) by an arrow labeled by (a0; b0) if and only if there exists a pair of sequences

(. . . a−2a−1 . a0a1a2 . . .), (. . . b−2b−1 . b0b1b2 . . .) ∈ FZ,

representing the same point of the Smale space Ω.
Let us prove that the constructed automaton defines the transformations T(a;b) and thus gen-

erates the semigroup H .
Let T(a0;b0) be an element of T and let T(

a
(k)
1 ;b

(k)
1

) , k = 1, . . . , m, be all the ends of the arrows

starting in T(a0;b0). Then for every k there exists a pair of codes

(. . . a
(k)
−2a

(k)
−1 . a

(k)
0 a

(k)
1 a

(k)
2 . . .), (. . . b

(k)
−2b

(k)
−1 . b

(k)
0 b

(k)
1 b

(k)
2 . . .) ∈ FZ,

of a point ξk ∈ Ω such that a
(k)
0 = a0 and b

(k)
0 = b0. It follows directly from the definition of the

transformation T(

a
(k)
1 ;b

(k)
1

) (and the fact that it is well defined) that the condition a
(k)
1 x2x3 . . . ∈

Dom T(

a
(k)
1 ;b

(k)
1

) is equivalent to the condition a0a
(k)
1 x2x3 . . . ∈ Dom T(a0;b0) and that the equality

T(a0;b0)

(

a0a
(k)
1 x2x3 . . .

)

= b0T(

a
(k)
1 ;b

(k)
1

)

(

a
(k)
1 x2x3 . . .

)

(4)

holds. In particular, we have

Dom T(a0;b0) =
⊔

k=1,...,m

a0 Dom T(

a
(k)
1 ;b

(k)
1

) . (5)

The union is disjoint, since every sequence a0a1 . . . ∈ Dom T(a0;b0) belongs only to a0 Dom T(a1;b1),
where b1 is the second letter of the sequence T(a0;b0)(a0a1 . . .).

Repeating now the arguments from the proof of Proposition 2.1, we deduce from (4) and (5)
that the state T(a0;b0) of the automaton Γ defines the transformation T(a0;b0).

Let us prove that the semigroup H is contracting. We need at first some auxiliary definitions
and facts.

Let R1, R2, R3 be three rectangles from the Markov partition, and denote by Ξ2 the set all
ξ2 ∈ R2 such that there exist ξ1 ∈ R1 and ξ3 ∈ R3 such that

Wu
ǫ0(ξ1, R1) ∩ Wu

ǫ0(ξ2, R2) 6= ∅, Wu
ǫ0(ξ2, R2) ∩ Wu

ǫ0(ξ3, R3) 6= ∅. (6)

Note that the sets Wu
ǫ0(ξ1, R1) and Wu

ǫ0(ξ3, R3) depend only on Wu
ǫ0(ξ2, R3), R1, R2, R3.

It is easy to see that the set Ξ2 is a closed rectangle and is the image of the set Wu
ǫ0(ξ2, R2)×S

under the homeomorphism [·, ·], where S is a closed subset of W s
ǫ0(ξ2, R2) (see Figure 7).

The set
(Ξ2 ∩ R1) ∩ (Ξ2 ∩ R3)

is also a rectangle and is equal to the image of the set U(ξ2) × S under the homeomorphism [·, ·],
where

U(ξ2) = Wu
ǫ0(ξ1, R1) ∩ Wu

ǫ0(ξ2, R2) ∩ Wu
ǫ0(ξ3, R3),
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Figure 7: The set Ξ2.

and ξ1, ξ3 are some points satisfying conditions (6). In particular, the set U(ξ2) does not depend,
up to a homeomorphism on ξ2 ∈ Ξ2.

Define c(R1, R2, R3) to be equal to the distance between the compact sets Ξ2∩R1 and Ξ2∩R3,
if they are disjoint, i.e., if the set U(ξ2) (for some, and thus for all ξ2 ∈ Ξ2) is empty. Let
c be the minimal among the defined numbers c(R1, R2, R3) for all possible triples of rectangles
R1, R2, R3 ∈ M. If the set of the defined numbers c(R1, R2, R3) is empty, then we choose c to be
any positive number.

The positive number c is so defined that if R1, R2, R3 ∈ M and ξi ∈ Ri are such that ξ1, ξ2 ∈ R2,
conditions (6) hold and d(ξ1, ξ3) < c, then W s

ǫ0(ξ1, R1) ∩ W s
ǫ0(ξ2, R2) ∩ W s

ǫ0(ξ3, R3) 6= ∅.
Let now T(b0;c0), T(a0;b0) be two generators of the adjacency semigroup H , and sequences

a0a1 . . . , b0b1 . . . , c0c1 . . . ∈ F are such that a0a1 . . . ∈ Dom
(

T(b0;c0) · T(a0;b0)

)

and

b0b1 . . . = T(a0;b0)(a0a1 . . .),

c0c1 . . . = T(b0;c0)(b0b1 . . .).

Then there exist sequences from FZ and points of Ω such that

ξ = π (. . . a−2a−1 . a0a1a2 . . .) = π (. . . b−2b−1 . b0b1b2 . . .)

η = π
(

. . . b′−2b
′
−1 . b0b1b2 . . .

)

= π (. . . c−2c−1 . c0c1c2 . . .) .

The definition of a Smale space implies than for every n >
log(c/ Diam Rb0)

− log λ0
the inequality

d (f−n(ξ), f−n(η)) < c holds. We have f−n(ξ) ∈ Ran
∩Rbn

and f−n(η) ∈ Rbn
∩Rcn

. We also have
Wu

ǫ0(ξ, Rbn
) = Wu

ǫ0(η, Rbn
). Then it follows from the choice of the constant c that the intersection

Wu
ǫ0(ξ, Ran

) ∩ Wu
ǫ0(η, Rcn

) is not empty. This implies that T(an;cn)(anan+1 . . .) = cncn+1 . . . and
that the beginning of length n of the path starting in T(b0;c0) · T(a0;b0) and defining the transition
(a0a1 . . . ; c0c1 . . .) ends in T(an;cn).

We have proved that a path in the full automaton of the adjacency semigroup which starts
in a product of two generators is eventually trapped in the set T = {T(a;b) : a, b ∈ X}. But it
follows then by induction that the path starting in a product of any number of generators is also
eventually trapped in the set T . This shows that the semigroup H is contracting with the nucleus
a subset of T .

Let us prove that the dynamical systems (Ω, f) and (SH , s) are topologically conjugate. Both Ω
and SH are quotients of the topological space FZ. It is sufficient to prove that the respective equiv-
alence relations are equal. Then the conjugacy of the dynamical systems will follow automatically,
due to the definition of the map s and Lemma 4.2.

Let w1 = (. . . a−2a−1 . a0a1 . . .) and w2 = (. . . b−2b−1 . b0b1 . . .) be two points, which are
asymptotically equivalent in FZ with respect to the action of the semigroup H . Then for every
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n ∈ Z there exists a pair of sequences

w
(n)
1 = (. . . a

(n)
−2a

(n)
−1 . a

(n)
0 a

(n)
1 . . .), w

(n)
2 = (. . . b

(n)
−2 b

(n)
−1 . b

(n)
0 b

(n)
1 . . .) ∈ FZ

such that π(w
(n)
1 ) = π(w

(n)
2 ) and ak = a

(n)
k , bk = b

(n)
k for all k ≥ n (we used here the fact that the

nucleus of H is a subset of T ). Then

π(w1) = π

(

lim
n→−∞

w
(n)
1

)

= lim
n→−∞

π
(

w
(n)
1

)

= lim
n→−∞

π
(

w
(n)
2

)

= π(w2).

In the other direction, suppose that π(w1) = π(w2). Then we have also that

π (σn
Z
(w1)) = fn (π(w1)) = fn (π(w2)) = π (σn

Z
(w2))

for all n ∈ Z. But this means, by definition of the transformations T(a;b), that

T(a
−n;b

−n) (a−na−n+1 . . .) = b−nb−n+1 . . . ,

so that the sequences w1 and w2 are asymptotically equivalent.
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[BH99] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume
319 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, 1999.

[Bow75] R. Bowen. Equilibrium states and ergodic theory of Anosov diffeomorphisms, volume
470 of Lecture Notes in Mathematics. Springer, 1975.

[BSV99] Andrew M. Brunner, Said N. Sidki, and Ana. C. Vieira. A just-nonsolvable torsion-free
group defined on the binary tree. J. Algebra, 211:99–144, 1999.

[Eng77] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne.
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[GLSŻ00] Rostislav I. Grigorchuk, Peter Linnell, Thomas Schick, and Andrzej Żuk. On a question
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