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SUMMARY

General arguments and numerical calculations are used to show that the flow caused
by a supersonic gas jet is self-similar under certain conditions. If we assume that the
jet has a high initial Mach number and is generated in a region small compared to its
length, then the type of similarity solution depends on the density distribution of the
gas through which the jet propagates. If this density decreases faster than 1/R?, where
R is the distance from the source, then the length of the jet increases linearly with time
and it may evolve into a classical double if it subsequently encounters a region of
higher density. In a more slowly varying external density, the jet is reconfined and the
similarity exponent is the same as for an isotropic wind with a constant rate of energy
input. At intermediate times this looks like a classical double, but at large times it has

many of the characteristics of FRI sources

1 INTRODUCTION

In recent years there has been a great deal of work on hydro-
dynamical models of extragalactic jets. However, most of this
has either concentrated on the working surface at the end of
the jet (Norman et al. 1982; Kossl & Miiller 1988; Chakra-
barti 1988) or looked at the flow near the source where one
might expect the jet to be steady (Sanders 1983; Falle &
Wilson 1985; Wilson & Falle 1985; Wilson 1986, 1987,
Daly & Marscher 1988). So far nobody has tried to model
the whole of a jet numerically, although there has been some
analytic work on the subject (Scheuer 1974; Blandford &
Rees 1974).

Since jets generally propagate for distances which are
large compared to the scale on which they are generated, it
seems natural to look for similarity solutions to describe the
large-scale structure. Federenko & Zentsova (1986) have
done just this and show that at large times the length of the
jet increases like £ if the external density is constant. How-
ever, they did not consider what would happen in a non-
uniform external density, nor did they look at the details of
the flow in the jet.

The fact that the jets are long compared to the size of the
source galaxy means that the external density varies enor-
mously over the length of the jet and it is important that one
takes this into account (Baldwin 1982). We shall see that the
nature of the flow depends upon whether the external density
decreases more or less rapidly than 1/R? where R is the
distance from the source. If it decreases faster than 1/R?,
then the jet density remains larger than that of the surround-
ings, if it is so initially and the head of the jet advances at a

constant speed. The resulting flow looks very much like a
classical double except that it is unlikely to produce much
radio emission since only a small fraction of the energy is
thermalized. It would, however, become visible if it subse-
quently enters a region in which the density decreases more
slowly.

If, on the other hand, the external density decreases more
slowly than 1/R?, then the jet blows a low density cavity and
is considerably modified as it propagates through the cavity
on its way to the working surface. Dimensional arguments
suggest that the expansion of this cavity is self-similar with
the same similarity exponent as an isotropic wind in a power
law external density. Numerical calculations with a constant
external density confirm that the global expansion of the
cavity is approximately self-similar; although the flow near
the working surface is not since it is dominated by a periodic
vortex shedding. It turns out that the pressure in the cavity is
approximately uniform far from the working surface and this
allows a very simple treatment of the way in which the jet is
reconfined by the pressure in the cavity.

Although radio jets clearly contain magnetic fields, we do
not really know whether or not they are strong enough to be
dynamically important. It has been argued that jets can only
be confined and stabilized by magnetic fields and there are
some recent numerical calculations that explore such effects
(Kossl, Miiller & Hillebrandt 1990a,b), but in fact laboratory
experiments show that pure gas jets are quite capable of
propagating for large distances provided their Mach number
is high enough (Dash & Wolf 1983). Laboratory jets are
eventually destroyed by turbulence, but astrophysical jets
can avoid this as long as their opening angle is large enough.
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We therefore see no reason why we should complicate
matters by trying to include the dynamical effects of the
magnetic fields.

2 SIMILARITY SOLUTIONS

The observations tell us that radio jets are produced and
collimated on very small scales and their energy is such that
they propagate for distances much larger than the size of the
galaxy within which the source is embedded. So, as far as the
large-scale structure is concerned, we can ignore what hap-
pens near the source and simply assume that two symmetric
conical jets emerge from their parent galaxy with some
power P, mass flux Q and opening angle 6. If 6 is non-zero
and the jet is initially supersonic, then its internal Mach
number will increase with distance from the source and we
might as well take it to be infinite. We can also safely neglect
the pressure in the gas surrounding the galaxy as it is likely to
be small compared to the dynamic pressure of the jets.

Things can be further simplified by supposing that the
external gas has a spherically symmetric density distribution
centred on the source and that it is at rest. This is clearly not
always going to be the case, but it should be appropriate for
galaxies at the centre of clusters. It should also be approxi-
mately correct for other galaxies while the jet is still short
enough not to be significantly affected by the motion of the
galaxy through the surrounding gas.

The parameters of the problem are the ratio of specific
heats, y; the density of the surrounding gas, o.(R), where R is
the distance from the source; the initial half opening angle of
the jet, 8(0 < 1); the jet power, P; and the jet mass flux, Q.

Since we are interested in similarity solutions, we will
suppose that the external density is a power law

a

e (2.1)

Pe=

where a and a are constants. From these parameters we can
form a characteristic length

ap!?\a=2)
l.= (W , (2.2)
which for a uniform external density (a =0)is

Q3/4
A =W , (2.3)

where p, is the constant external density.

If we set a=0 and P=10°% W, Q=P/c?, p,=10"2 kg
m~3, we get [,=20 pc, which is very small compared to the
typical size of radio jets. The only way in which /. could be
much larger than this is if the initial jet velocity is very small
compared with the speed of light. This is unlikely to be the
case and so it seems that [, will always be much smaller than
the length of the jet, at least for the constant density case.

Once the jet has become much larger than /, the swept up
ambient material dominates the mass involved in the motion
and the flow of this gas ought not to depend on the jet mass
flux Q. This is analogous to the situation for a spherically
symmetric wind (Dyson, Falle & Perry 1980) and the flow
ought to be as sketched in Fig. 1. Here S is a shock bounding

Swept Up Gas

Figure 1. The self-similar flow. Here G is the galaxy producing the
jets, S is a shock bounding the disturbed region and C is a tangential
discontinuity separating the jet gas from the swept up ambient gas.

the disturbed region and C is a tangential discontinuity
separating the swept up ambient gas from the jet gas. This is
very similar to Scheuer’s model A (Scheuer 1974), except
that his relativistic beam has been replaced by a fluid jet.

The shape of the surfaces .S and C will be of the form

S(r,z,t, P, Q,a,a,0,y)=0 (2.4)
and
C(r, Z? t’ P’ Q’ a’ a’ 0’ y)=07 (2'5)

where r and z are cylindrical polar coordinates with the z
axis along the jet. Once the flow has become self-similar S
and C will no longer depend upon Q and then dimensional
arguments demand that their shapes be given by

Sl(g’ n, a, 0’ V)=0 (263)
and
C(&,n, a,6,7)=0, (2.6b)
where the similarity variables & and # are
B
a
= 53] 2.
E=r (Pt3) (2.7a)
B
a
=z2\53] > 2.7b
n=z (Pt3) ( )
and
1
= . 2.7
P=5=a) (2.7¢)

In a constant external density we get the usual result

o 1/5
E=r ;;3) , (2.8a)
and

,O 1/5
n=z (P;) , (2.8b)

i.e. the disturbed region expands like 375,
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Although the flow in the swept up gas is self-similar in this
way, this cannot be true for the flow in the cavity enclosed by
the tangential discontinuity C since the self-similar velocity
behaves like r*#~!, but the jet velocity is constant. What must
happen is that the jet becomes approximately steady along
most of its length and the pressure in the cavity is nearly
uniform. That this is true for large times can be seen from the
following argument, which is essentially that used by Scheuer
(1974).

The speed of expansion behaves like 387! while the jet
velocity is constant, so, provided 33— 1=<0, the jet gas must
eventually pass through a shock which is almost stationary
with respect to the jet. It will therefore acquire a sound speed
of the same order as the jet speed and this will be large com-
pared to the expansion speed of the cavity in which the
exhaust gas from the jet resides. One would therefore expect
the pressure in this cavity to be approximately uniform and
to change on a time-scale «. However, if the jet speed is v;,
then the time-scale for the jet, out to a distance L from the
source, to adjust to changes in the pressure around it is

tj=£. (2.9)

Y
Hence as time increases the condition £ <t allows a larger
and larger fraction of the jet near the source to be approxi-
mately steady. The shock structure in such a steady jet has
been looked at in some detail by several authors (Sanders
1983; Falle & Wilson 1985; Wilson & Falle 1985; Wilson
1986, 1987; Daly & Marscher 1988).

The question is now what happens at the end of the jet
where it hits the end of the cavity. If the jet is not confined
between the source and the working surface, then it must
have a constant opening angle and since its length increases
like #*#, its radius must also increase like #°. If its Mach
number is large, then its velocity will remain constant along
its length and so the ram pressure p, at the working surface
must behave like

D, < (jet radius) =2 oc £ 08, (2.10)

On the other hand the bow shock advances at a speed pro-
portional to £*~! and it sees an ambient density which
behaves like ¢ ~3%%, Its pressure p, must therefore satisfy

(2.11)

Clearly these two pressures must have the same time
dependence and this is only possible if

128-3aB=2. (2.12)

Using (2.7c) we see that this requires a =2, i.e. the external
density decreases with the square of the distance from the
source. We thus have two quite distinct cases depending on
whether a <2 or a> 2.

Py o€ (0823,

2.1 Casel(a<2)

If a <2, then the jet cannot have a constant opening angle
along its entire length since its ram pressure would be insuffi-
cient to drive the bow shock. It must therefore reconfine and
it is quite easy to work out where this happens. Since the jet
material is expanding adiabatically as it emerges from the
source, its pressure will quickly drop to a very low value and
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will therefore have a negligible effect on the motion. We can
therefore assume that the jet emerges ballistically from the
source with a uniform density across it. Its density at a dis-
tance z is then given by

3/2
Q

= 213
nOZ(ZP)l/ZZZ ( )

O
since 6 is small.

Now let r(z) be the radius of the reconfinement shock at
distance z. Then if 9 is the angle it makes with the z axis, we
have

dr
—=tan y.

2.14
% (2.14)
The normal component of the velocity v, is then
v,=v;sin|¢— |, (2.15)
where
r
== 2.16

$=- (2.16)

is the angle the upstream flow makes with the z axis. Since
the upstream pressure is very small, the reconfinement shock
will be strong and its post shock pressure is

2 e
y+ 1) T

P j Pile) vf sin’(g = y). (2.17)
The jet velocity can be assumed to be constant up to this
point, and so we have

2P|\
”J‘:(E) _ (2.18)
Putting (2.13) and (2.18) into (2.17) we get

KA
ps=;sm2(¢—w), (2.19)
where

2 (2pPQ)'"?

H = . 2.20

7+1) 6° (2.20)

As a first approximation it seems reasonable to assume
that the post-shock pressure p; is equal to the uniform pres-
sure in the cavity p_. We then have

sin (¢ — ) =sin (g—tan'l(dr/dz)) =z(pJx)". (2.21)

Canto, Raga & Binette (1989) used this equation in their
analysis of the reconfinement shock in stellar jets. They show
that it can be integrated exactly if we transform to polar
coordinates, but, since the pressure behind the reconfine-
ment shock will only be uniform if the angles are small, we
might as well use this to simplify the analysis. This will be
valid provided the jet opening angle 6 is small and the post-
shock pressure is small compared to the jet ram pressure so
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that ¢ — y is also small. In that case equation (2.21) reduces
to

(2.22)

This can easily be integrated to give
r=0z—z%p./* )2, (2.23)

where we have applied the obvious boundary condition
r

-—60 as z—0.

Z

According to equation (2.23) the shock reaches the z axis
at

z=2,=60(x/p.)'" (2.24)
and it then makes an angle

dr

— =-6 225
(dz)z=zl ( )

with the z axis. Actually in axisymmetry the shock must be
normal at the axis, but the resulting Mach disc will only be
significant if € is too large for a regular reflection. For strong
shocks this requires

6>sin"Y(1/y)=36.9°  for y=5/3

and so is unlikely to occur for typical jet opening angles.

In all this we have assumed that the cavity pressure p, is
uniform and small compared to the jet ram pressure. Both
these assumptions fail near the working surface, since there
p. must be of the order of the ram pressure and the Mach
number of the gas in the cavity is not small. However, if the
aspect ratio of the cavity is large, then the expansion speed of
the sides of the cavity will be small compared to that of its
ends. Near the source, the cavity gas will then have a uniform
pressure which is small compared to the jet ram pressure. We
shall see later that the aspect ratio of the cavity is large for
reasonable jet opening angles, and so all we have to do is to
check that z, is small compared to the length of the jet.

The length L, of the jet and p, are given by

P B
L=/ =] ¢’ (2.26)
a
and
P 2f-af
p.=Ra |- (072, (2.27)
a

where (6, y) and #(6, y) are dimensionless quantities.
Using these and (2.24) we find that

zl/LjOC tl+3aﬁ/2—6ﬂ°c t(a—2)/(10—2a) (228)

and this ratio decreases with time as long as a <2. z; will
therefore eventually become small compared to L; which
means that at large times the reconfinement occurs far from
the working surface where the cavity pressure should be
uniform.

The fact that the pressure behind the reconfinement shock
is small compared to the jet ram pressure means that this
shock does not involve much energy dissipation in the jet and
should therefore not appear as a particularly prominent
feature in radio maps. However, it does have an important
effect in that it reduces the opening angle and so ensures that
the jet ram pressure at the working surface is large enough to
drive the bow shock.

We must now consider what happens downstream of the
reconfinement shock. The jet is behaving like a steady under-
expanded jet in a uniform external pressure and so there will
be another shock cell downstream of z,. For z>z, the jet
pressure is p, and since this is small compared to the ram
pressure, the jet velocity is still approximately equal to its
initial value. The jet Mach number is then

_u_ [+ 1)p )"
M]-(z)—-cj—vj (m) . (2.29)

Substituting for v; and o, from (2.13) and (2.18) we get

+1 P

M,.(z)=( Y ) (2PO)" (2.30)

Yy —1) zp. 6z
Using (2.24) we can write this in terms of z,:

(y+1) z
M(z)=—"r—"L 2L 2.31
) =1 6z (231)
The jet Mach number at z =z, is then

(y+1) 1
My(z))= (2.32)

Ry(y—1)]" 6’

As we are dealing with a small disturbance, the next shock
cell will at a distance

2, =2, +2M(z,) r;(z,) (2.33)

from the source. Substituting for M;(z,) from (2.32) and
setting r;(z,) = 6z, we get

Zz=[1+2M,~(Zl)9] Zl=|:1+—J2—M] Z5. (2.34)

[y(y—1)"

It is interesting that the ratio z, /z, depends only on y and not
on the jet parameters. It must, of course, also be independent
of the inclination of the jet to the line-of-sight, and would
therefore seem to be a method of determining the effective y
of the jet fluid. The formula gives

2_358  for y=5/3
4

and

22

Z—=4.95 for y=4/3
1

and is thus quite sensitive to the value of y.
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Finally, we have to check that the jet ram pressure p,(z,) at
z =z, behaves correctly. We have

2PQ)'? (y+1

pzi)=p5(z1) vf=(—e%=%—ez—) Pes (2.35)
from equations (2.13), (2.18) and (2.24). As the cavity pres-
sure p, is proportional to the bow shock pressure, this means
that the ram pressure decreases with time in the same way as
the bow shock pressure. Furthermore (2.35) shows that our
analysis is consistent in the sense that p, is small compared to
the ram pressure provided the jet opening angle 6 is small.

Equation (2.35) also gives us an idea of the aspect ratio,
A of the disturbed region. This is simply the ratio of the
advance speed of the bounding shock at the end of the jet to
that of the sides of the cavity. The shock at the side of the
cavity is driven by a pressure p_, while that at the end of the
jet is driven by the jet ram pressure at the working surface
p.(L;). We expect the jet to expand somewhat between the
reconfinement shock and the working surface and therefore

pL)=p,(z)).

Using (2.35) we then have
L\ 12 +1\721
%z(p,; ,)) S(p,;z,>) <[ (236)

So far we have supposed that the jet boundary is a slip line
with zero thickness, but this is clearly not true. Experiments
with laboratory jets (Dash & Wolf 1983) show that there
exists a turbulent boundary layer which grows more or less
linearly with distance down the jet. Canto & Raga (1990)
have used a simple momentum balance argument to deduce
that

(2.37)

Here 6; is the angle the boundary between the turbulent
layer and the laminar jet makes with the z axis and p, is the
density in the cavity.

In our case we have

1 1
Ext?’—aﬁ (2.38)

]

Pc*
and

68—2-3ap

1
p;(zl)“;“pc“t (2.39)

1

from equations (2.13), (2.24) and (2.27). Equation (2.32) tells
us that M;(z,) is a constant and hence we have

2-a)/(5-a)

0(z,) o 7% oc ) (2.40)

The entire jet thus becomes turbulent at a distance

2(2-a)/(5-a)
z.r=z,+—r"m=zl (1+i =7, |1+% (—t ,
6:+(z,) [ c

(2.41)
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where

1/2
tc = lc (g)
2P

is the characteristic time and #°(6, y) is another dimension-
less constant. Since a <2 and ¢, is short, we can see that
zp—z, rather quickly and that the jet thus becomes com-
pletely turbulent downstream of the reconfinement shock.
Once this happens, it begins to entrain a large amount of gas
from the cavity and most of its kinetic energy is dissipated
long before it reaches the working surface. What we then
have is something that looks very much like an FRI source in
that it has no pronounced hot spots near the end of the jet.
The M87 jet seems to be a very good example of this if we
interpret knot A as being the reconfinement shock (Falle &
Wilson 1985).

(2.42)

2.2 Casell(a=2)

In the previous case the ratio of the jet density at the working
surface to that in the surroundings decreased with time, while
if a> 2, then the opposite occurs. This means that the bow-
shock speed will eventually approach the jet speed and the
structure of the working surface should become self-similar
with a length scale which increases linearly with time. Note
that, as the jet is not reconfined, it cannot become turbulent
and is therefore able to transport most of its kinetic energy
out to the working surface. Morphologically such a jet would
look very much like an FRII source except that the weakness
of the terminating shock in the jet means that there would not
be much radio emission from the working surface.

However, if such a jet now enters a region in which
a <2, then its density would begin to decrease relative to the
external density and the jet shock will get stronger. The result
would be a very faint unconfined jet ending in an extended
radio lobe with a bright hot spot at the working surface, i.e. a
classical double. This would, however, be a transient stage
since the flow must eventually become like that discussed in
Section 2.1.

This case seems to correspond to that first considered by
Blandford & Rees (1974) and has subsequently been the
subject of a number of numerical simulations (Norman et al.
1982; Wilson & Scheuer 1983; Kossl & Miiller 1988). As it
has already been so intensively studied, there seems to be
little point in pursuing it further in this paper.

For a =2, the ratio of densities remains constant and the
flow is self-similar with constant advance speed at all times.
In that case the terminating shock can be strong enough to
generate radio emission and we should get something that
looks like an FRII at all times. However, this is a rather
special case and is unlikely to be very common.

3 NUMERICAL CALCULATIONS

Although the above analysis is quite useful, it leaves a num-
ber of important questions unanswered. It does not tell us
much about how the shape of the self-similar cavity is related
to the jet opening angle nor does there seem to be any simple
way to determine the dimensionless quantities %/ and % that
appear in equations (2.26) and (2.27). Apart from that, we
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would also like to know what the flow looks like before it
becomes self-similar.

As we have already pointed out, previous calculations are
only relevant to case II, while we are mainly interested in
case L. The difference is that for case I we have to include the
entire disturbed region in the computational domain and
integrate long enough for the flow to become at least ap-
proximately self-similar. This is clearly going to be a very
large calculation if performed with adequate numerical reso-
lution and so not only must we use an efficient code, but we
will also have to choose our parameters with some care to
keep the costs within reasonable bounds.

The details of our numerical algorithm are given in the
Appendix, but basically it is a second order Godunov
scheme (Godunov 1959) which uses an averaging function to
ensure monotonicity. This code has been successfully
applied to a number of industrial problems involving the
interaction of blast waves and supersonic jets with solid
structures and in more than one space dimension seems to be
as accurate as PPM (Collela & Woodward 1984) and some-
what faster for the same resolution.

Even with a good code the computational costs are such
that we can only consider a single case and even then we
have had to make some compromises in our choice of para-
meters. The time taken for the flow to become self-similar is
shortest for a uniform external density and a large initial jet
opening angle. We therefore confine ourselves to the uniform
density case and use a rather larger opening angle than that
found in typical radio jets.

The theory of Section 2 assumes that the flow in the jet is
initially conical with some opening angle 6 and infinite Mach
number. However, since the initial jet radius has to be small
compared to the size of the cavity, it is difficult to ensure
enough numerical resolution in the jet near the source. The
result is that if we tried to input the jet with infinite Mach
number and finite opening angle, we would get a very poor
representation of a conical flow. It is much better to input the
jet with zero opening angle and a finite Mach number. This
has much the same effect once the cavity pressure becomes
small compared to the initial jet pressure since the jet then
expands freely until it begins to reconfine. We shall see that
this gives a reasonable approximation to a conical flow at
distances greater than a few jet radii from the source.

Ideally we would like the jet mass flux to be as low as pos-
sible since equation (2.3) tells us that this leads to a small
value of the characteristic length /.. Unfortunately this is not
possible because the jet will not propagate into the domain if
its initial density is much smaller than the external density.
The simplest thing to do is to set the initial jet density equal
to the external density. The Mach number of the jet is then
fixed by the choice of opening angle and so the only remain-
ing free parameters are the initial jet radius and the mesh
spacing. The initial jet radius has to be smaller than [, but we
cannot make it much smaller since there must be at least a
few mesh points in the jet at input. The mesh spacing should
be as small as possible subject to the constraint that the cal-
culation does not become unmanageable before the size of
the cavity has become large compared to /.

The boundary and initial conditions are fairly obvious. We
could consider a one-sided jet, but it is much easier to
assume that we have two symmetric jets on either side of the
source. If that is so, then we must impose a symmetry condi-

tion at the z=0 boundary. The other boundary conditions
present no difficulty as long as we make sure that no disturb-
ance ever reaches them. The most efficient way to achieve
this is to monitor the position of the bounding shock and to
add cells to the computational domain as necessary. As we
are interested in the behaviour at large times, the initial con-
ditions are of little importance. We therefore started the cal-

04f .
log(L)
02f i
+
+
0.0 C 1 1 JA
0.0 0.2 04
(a) log(1)
. . 7 ' .
e 4
st AL ]
+ +4
+ +
i+
+
2 i
[

1t _

+

1 1 . B

0 1 2 3

(b) t
Figure 2. (a) The length of the jet, L, as a function of time. The
points ( + ) are from the simulations and the line has a slope of 3/5.
(b) The aspect ratio, %, as a function of time.
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culation with the entire domain filled with external gas at
rest, switched on the jet and let it do its stuff.

The parameters of our calculation are initial jet radius,
0.02; initial jet Mach number, 5.0; initial jet pressure, 1.0;
external density, 1.0; external pressure, 0.001; jet velocity,
6.45; jet mass flux, 8.1 x 1073; jet power, 1.87 x 10™%; and
the mesh spacing, 0.005.

These values are a reasonable compromise between what
it is possible to compute and the demands of our theory.
1.=0.04 and we have been able to continue the calculation
until the length of the jet is 2.76, so we ought to have reached
the self-similar regime. As there are only four grid points in
the jet at input, it is clearly under resolved, but the effective
opening angle of about 13° ensures that it has expanded to a
decent size before anything interesting happens to it.

The first thing to do is to see whether the disturbed region
eventually grows in a self-similar way. Fig. 2(a) shows the
length of the jet as a function of time and it can be seen that it
does indeed grow like £3/° at large times. The aspect ratio, %,
which is plotted in Fig. 2(b), also behaves in the correct way
since it approaches a constant value of about 3, which is
consistent with the upper limit % <5.1 given by (2.36). This
is rather encouraging since it tells us that the global behavi-
our has become self-similar.

However, once we start looking at the details of the flow,
we find that things are more complicated than our simple
analysis would suggest. Fig. 3 is supposed to correspond to
the sketch in Fig. 1. What we have done is to take the solu-
tion at the latest time and plot a single density contour at
0 =1. Most of the swept up external gas has a density greater
than one, so this contour marks the edge of the cavity and the
bounding shock. To delineate the edge of the jet, we have
also plotted a z velocity contour at half the initial jet velocity.
The first thing to notice is that both the edge of the cavity and
the outer shock are indented and their shapes are nowhere
near as simple as those we have drawn in Fig. 1. This com-
plex structure is caused by vortex rings which are periodi-
cally shed from the working surface as it advances. The result
is that no part of the flow is really self-similar and it might
therefore seem surprising that the overall expansion behaves
as it does.

We are by no means the first to come across this vortex
shedding. It seems to occur in all high resolution simulations
of jets which are less dense than their surroundings and is
almost certainly a real effect. As far as the working surface is
concerned, the only thing that is different about our calcula-
tion is the extent to which the jet has been modified by its
passage through the cavity.

One can get some idea of what is happening by looking at
the behaviour of isolated vortex rings. Suppose that we have
an incompressible flow which consists of a potential vortex
ring with radius R and circulation C. Such a vortex ring
moves perpendicular to its plane with an induced speed v,
given by

C Ry 1
=——|In|=]|-= 31
" 4R [ ! (Rc) 4] 3.1
(Fraenkel 1970). Here R_ is characteristic length scale of the
vortex core within which all the vorticity is concentrated.

Obviously this formula is not strictly applicable to our
case since we do not have a potential vortex and the flow is
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3r 1
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Figure 3. The shape of the cavity and jet at 1=2.3267 as given by
the numerical simulation. We have plotted a single density contour
at p=1.0 and a single z velocity contour at half the initial jet
velocity (v, =3.2275).

neither incompressible nor solely due to the presence of the
vortex. Despite this it must still be true that the behaviour of
the vortex depends crucially on the size of its core and this in
turn depends upon how the vortex was formed and the rate
at which it is diffused by viscous effects.

The vortex ring at the working surface is formed by the
rolling up of the shear layer at the edge of the jet as it impacts
with the dense gas at the end of the cavity. If this layer is
actually a slip line with zero thickness, then R, will be zero in
the absence of viscosity and v; should be infinite. In the
simulations numerical viscosity ensures that the boundary of
the jet is diffused and this keeps v; finite, but as we increase
the numerical resolution we reduce this viscosity and v; can
become very large.

For large enough v;, the vortex can avoid being swept
away by the backflow from the working surface and so it is
able to grow as it accumulates more and more vorticity from
the jet. The result is an increase in the size of the vortex and a
lateral expansion of the end of the cavity. Eventually the
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vortex core diffuses to such an extent that the vortex can no
longer remain at the end of the jet and it is swept away into
the interior of the cavity. Once this happens, a new vortex
begins to form and the whole process repeats itself.

If we are right about this, then the time it takes for the
vortex to be shed depends upon the effective viscosity. In all
the simulations, including ours, the only viscosity is the one
introduced by the numerical scheme and this means that it
scales with the mesh spacing. We would therefore expect the
behaviour of the vortex to depend on both the resolution and
the numerical method.

This does in fact seem to be the case. Kossl & Miiller
(1988) looked at the effect of grid size on the behaviour of a
jet whose density at the working surface was less than that of
the surroundings. They found that both the intensity of the
vortex and the time it spent near the working surface
increased with decreasing mesh spacing. This is exactly what
we would expect if it is the viscosity that plays the crucial
role.

In a real jet it is not likely to be the physical viscosity that
matters, but the level of turbulence. The turbulence in the
shear layer at the edge of the jet gets swept into the vortex
and it is this that determines the rate at which the vortex core
diffuses away. Paradoxically this means that the simulations
are probably more realistic than they would be if they had
incorporated a laminar viscosity and sufficiently high resolu-
tion for the numerical viscosity to be unimportant in the
vortex.

One might think that this effect means that both our
numerical calculations and the analysis of Section 2 are
completely useless. Fortunately this is not the case. Although
the flow cannot be strictly self-similar. Fig. 2(a) shows that
our analysis does describe the global behaviour quite well.
We shall also see that the pressure in the cavity is more or
less uniform and the jet does actually reconfine in more or
less the way that we have predicted.

There seem to be two reasons for this. The first is that,
although the vortex shedding dominates the flow near the
working surface, it is of little importance near the source.
The expansion of the sides of the cavity and the reconfine-
ment of the jet are therefore not too seriously affected by the
vortices. We can also show that global effect of the vortex
shedding becomes less and less important at large times.

Suppose that the vortex is characterized by a length scale
I, and time-scale #,. Then if diffusion determines the evolu-
tion we must have

12
o (32)
v

where v is the dynamic viscosity. We might expect [, to
behave like the jet radius at the working surface since that is
what determines the distribution of vorticity of the gas enter-
ing the vortex. Ram pressure balance demands that this
increases like #%° for a constant external density and we
therefore have

£, 1405, (3.3)

This means that the time-scale for vortex shedding eventu-
ally becomes small compared with the dynamical time ¢ for
the flow as a whole. It is therefore not too surprising that the
large scale structure is approximately self-similar. The only

bad news is that the ratio of ¢, to the dynamical time only
decreases like 7!/ and it therefore takes a long time before
the vortex shedding ceases to affect the overall dynamics.

5T ]

107 h

(2 L L L . L
0.00 0.02 0.04 0.06 0.08 0.10

(b) R

Figure 4. (a) The flow angle ¢ (+ markers) and z velocity (no
markers) in the jet at £=2.3267 and z =0.1 (five times the initial jet
radius). (b) The flow angle ¢ (+ markers) and z velocity (no
markers) in the jet at £=2.3267 and z=0.2 (10 times the initial jet
radius).

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System

220z ¥snbny g1 uo Jasn aonsnp jo Juswpedaq ‘S'N A9 GG#866/185/S/05Z/2101e/seluw/woo dno ojwapeoe//:sdny woly papeojumoq


http://adsabs.harvard.edu/abs/1991MNRAS.250..581F

&

[IORIMIRAS 750

Having established that the overall expansion behaves as
expected and that the vortices should be weak near the
source, we ought now to look at the reconfinement process
to see whether the assumptions of Section 2 are correct. In
Fig. 4 we have plotted the z velocity and the angle ¢ that the
flow makes with the z axis at 5 and 10 jet radii from the

T —T T

0.021 J

0.00F , L L ]

0.0 0.5 10
4

Figure 5. The pressure at the jet boundary as a function of z at

t=2.3267.
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Figure 6. The ratio of the distance to the reconfinement shock, Z,
to the length L of the jet as a function of time.
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source. The sharp decrease in the z velocity marks the jet
radius and we can see that ¢ increases linearly with radius for
most of the jet. This means that the flow in the jet is approxi-
mately conical before it is affected by the reconfinement
shock. Our jet is therefore effectively conical even though it
was input with finite radius and Mach number.

Next we look at the pressure at the jet boundary, which
should be equal to the uniform cavity pressure p.. Fig. 5
shows that, although this pressure is reasonably uniform for
z<0.5, it varies quite substantially before we reach the
reconfinement shock at z =z, =1.18. These pressure varia-
tions are due to the vortices in the cavity which have not
entirely decayed at this distance. This is simply because we
have not continued the calculation for long enough for the
distance to the reconfinement shock to become small com-
pared with the jet length L;. According to our analysis, z, /L;
should decrease like 1/¢!/° and we will therefore have to wait
a very long time for this ratio to become small. Fig. 6 does,
however, show that it is decreasing, albeit very slowly.

101 1 10fF 1
z VA
0sf ] 0s[ h
0.0 L . ] 0.0f N L R
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
(a) R (b) R

Figure 7. (a) The shape of the jet boundary and reconfinement
shock at r=2.1316. The jet boundary is delineated by a single
contour of z velocity at half the initial jet velocity (v,=3.227). A
single pressure contour at p = 0.004 marks the reconfinement shock
for z>0.3. (b) The shape of the jet boundary and reconfinement
shock at r=2.3267. The jet boundary is delineated by a single
contour of z velocity at half the initial jet velocity (v,=3.227). A
single pressure contour at p =0.004 marks the reconfinement shock
for z>0-3.
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Given the size of these pressure variations, we cannot
expect the shape of the reconfinement shock to be accurately
given by equation (2.23). Fig. 7 shows the shape of the jet
boundary and the reconfinement shock at two different
times, and we can see that the shock approaches the z axis at
a somewhat steeper angle than 6 and furthermore there is a
Mach disc whose radius is nearly a third that of the jet at this
point. This Mach disc is caused by a sharp increase in the
cavity pressure downstream of z,.

It would be nice to get closer agreement between our
analytic expressions and the numerical simulation, but this is
not really possible. The problem is that the flow approaches
self-similarity like ¢!, i.e. very slowly and we would there-
fore have to continue the calculation for a ridiculously long
time to get accurate agreement. However, the qualitative
features are correct, and the numerical solution does seem to
be moving in the right direction.

In a certain sense it does not matter too much that the
cavity pressure is not uniform all the way out to z,, as long as
the flow in the jet is quasi-steady up to this point. We can see
that this is approximately true by comparing Fig. 7(a) and (b)
which show the reconfinement process at r=2.13 and
t=2.33. It takes the jet fluid a time z, /v; to reach z, and this

|

0

00 02 04 06 08 10
(a) R

turns out to be 0.18. In Section 2 we have argued that the
reconfinement is quasi-steady if the flow does not change
much in a time z,/v; and we can see that this is indeed true
for z<1. So although our simple theory is a bit inadequate,
we can always deal with the reconfinement by treating the jet
as steady in an external pressure which, although it varies
spatially, is aproximately uniform in time. This sort of thing
has been done for the M87 jet (Falle & Wilson 1985) and
NGC 6251 (Wilson 1986).

So far we have been concerned with the self-similar
regime, but the computations also tell us about the flow at
earlier times. Fig. 8 shows the pressure, density and velocity
at t=1.75, at which time it looks quite different from that at
t=2.32 (Fig. 9). The most important distinction is that the
reconfinement shock is much stronger at the earlier time, so
strong that it completely disrupts the jet. The highest pres-
sure occurs downstream of the reconfinement shock and the
working surface is not particularly prominent. Interestingly,
the largest pressure at the end of the jet occurs off axis, so, if
the emission correlates with pressure, we would see a ring of
enhanced radio emission.

At early times the vortex shedding is much more pro-
nounced and this leads to dramatic variations in the flow on
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Figure 8. (a) Pressure contours at £=1.7484. There are 10 linear contours equally spaced between 0.0 and 1.0. (b) Density contours and
velocity vectors at £=1.7484. There are 10 linear contours of density equally spaced between 0.0 and 4.645. The maximum velocity is 6.85 and
occurs just upstream of the reconfinement shock at z=1.12.
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the vortex time-scale. As this time-scale is rather short, it
makes comparison with observations extremely difficult
since small differences in age can lead to large differences in
morphology. Fortunately the self-similar flow is much
simpler and Fig. 9 shows that it corresponds very well with
the morphology of classical doubles. The jet is not too seri-
ously damaged by reconfinement and the structure of the
working surface is much the same as in previous numerical
simulations.

It seems that we can divide the evolution into three dis-
tinct phases. At early times we get strong vortex shedding, a
rapidly changing flow and strong hotspots recessed from the
end of the jet. Once the flow becomes self-similar, it
resembles an FRII source in that the jet is relatively faint with
a pronounced hotspot at its end. Later still the jet becomes
turbulent downstream of the reconfinement shock and the
hotspot at the working surface disappears, leaving us with an
FRI source. Although we have only studied the constant
density case in detail, the arguments of Section 2 suggest that
the flow should be qualitatively similar for any value of a less
than 2. The only difference is that the evolution time
increases with increasing .

Self-similar jets 591
4 OBSERVATIONAL COMPARISONS

The problem with all comparisons between flow calculations
and observations of radio jets is that, despite numerous
attempts (e.g. Rayburn 1977; Wilson & Scheuer 1983; Smith
et al. 1985; Coleman & Bicknell 1987; Heavens & Meisen-
heimer 1987; Kossl & Hillebrandt 1990c), we do not yet
have a reliable way of predicting the radio emission from a
given flow. We know that the emission is produced by the
synchrotron process and that there must therefore be some
mechanism which transfers flow energy to the relativistic
electrons and magnetic field, but how this happens is not at
all clear. Indeed, we cannot even be sure that the jets are not
composed of some exotic material such as relativistic pair
plasma which may not behave like a fluid.

Whatever the jets are made of, it seems fairly certain that
the relativistic electrons are not accelerated once and for all
in the source and then transported to the radio lobes (Begel-
man, Blandford & Rees 1984). The reasons for this are basi-
cally that the source and jet typically have different spectra
and the synchrotron lifetimes are too short for the electrons
to have retained their energy during their journey to the

00 02 04 05 08 " 10

Figure 9. (a) Pressure contours at ¢=2.3267. There are 10 linear contours equally spaced between 0.0 and 1.0. (b) Density contours and
velocity vectors at £=2.3267. There are 10 linear contours of density equally spaced between 0.0 and 4.79. The maximum velocity is 6.86 and

occurs just upstream of the reconfinement shock at z=1.18.
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radio lobes. It follows that the electrons must be accelerated
in the jet flow itself and the most likely candidate for this is
some kind of Fermi process. Shocks are a particularly attrac-
tive location for this since they can drive the very efficient
first-order process that has also been invoked to explain the
acceleration of the galactic cosmic rays (Drury 1983). This
idea receives some observational support from studies of
synchrotron ageing in classical doubles which suggest that
the bulk of the acceleration occurs at the working surface
where the shocks are dissipating the most energy (Alexander
& Leahy 1987).

It is also possible that the turbulence associated with the
jet boundary and the vortices could feed a second order
Fermi process (Coleman & Bicknell 1987). We have argued
in Section 2 that for case I the jet eventually becomes turbu-
lent downstream of the reconfinement shock and subsequent
shocks become much weaker. Turbulent acceleration would
then become the dominant mechanism and its lower effici-
ency provides a natural explanation for the lower radio
power of FRI sources.

Intriguing as these possibilities are, we do not really want
to get too involved with the details of the emission mecha-
nism. Our primary interest is in the large-scale structure, and
for that we do not need an elaborate emission model. All we
need to assume is that the observed jet boundary more or
less coincides with the real one and that shocks and high-
pressure regions mean enhanced radio emission.

That given, we should look for radio sources whose
morphology is consistent with our calculations. We have
already seen that at very large times we expect to get FRI
sources, but our detailed calculations only apply to early and
intermediate times. The self-similar flow at intermediate
times resembles an FRII source and this is rather gratifying
since these are extremely common. We would expect sources
in the earlier stages of evolution to be rarer, but it is obvi-
ously interesting to see if we can find any that fit the bill.

If we look through Leahy & Williams’ (1984) list of 39 3C
sources, we do find a number with recessed hotspots. The
best candidate is 3C134 which has quite prominent recessed
hotspots on both sides in addition to the main ones at the
ends of the jets. The ratio of the distances to the inner hot-
spots to the jet length is 0.36 on one side and 0.6 on the other
and is thus in the range we would expect at early times. The
aspect ratio is hard to estimate, but it seems to be about 0.3.
That this agrees almost exactly with our numerical calcula-
tion must be pure coincidence since the strength of the
recessed hotspots suggests that the flow is not self-similar. It
is much more likely that the initial opening angle of the
3C134 jet is much smaller than that in our calculation and
that the aspect ratio is still increasing. This is entirely con-
sistent with it still being fairly young.

In the other sources the recessed hotspots are somewhat
less pronounced and their positions are harder to estimate,
but the trend seems to be what we expect. 3C52 has fairly
bright features on each side at 0.66 and 0.4 of the distance to
the lobes, while in 3C103 they are much weaker and the
ratios are 0.32 and 0.17. In 3C103 there are actually two
recessed hotspots on one side and we have taken the distance
to the inner weaker one. While this is hardly overwhelming
evidence, it is encouraging since our theory says that the
reconfinement should be less dramatic the smaller the rela-
tive distance to the reconfinement shock.

Of the other sources, 3C139, 3C234 and 3C244 all have
recessed hotspots on one or both sides and we could claim
that they look like our computations at one stage or another.
Whether or not this means anything, only time can tell, but it
does at least suggest that this kind of purely gas-dynamical
model is still worth pursuing.

We have made much of the presence of strong recessed
hotspots in these sources, and so it is worth asking whether
there is any other way to produce such features. What we
need is something that causes a strong shock in the jet which
dissipates a significant fraction of the kinetic energy.
Norman, Burns & Sulkanen (1988) have considered a jet
propagating in a galactic wind and have shown that the jet
can be disrupted if it encounters the terminating shock in the
wind. They were particularly interested in flaring of jets and
so their shock needed to be strong enough to make the jet
flow subsonic. We do not need such an extreme event if all
we want is recessed hotspots, but the basic idea is the same.

It seems quite likely that this sort of thing does happen, but
it is not clear that it is relevant to the sources we have dis-
cussed. Pressure variations in the external medium can only
become important at late times when the pressure in the
cavity has become comparable to the external pressure and
the bounding shock has largely disappeared. None of the
sources we have considered look like this. The jets are rela-
tively short and the radio maps do seem to suggest the
presence of a distinct cavity, so it does not seem very likely
that the recessed hotspots are due to something special in the
external medium.

5 CONCLUSIONS

Our intention in this paper has been to study the large-scale
structure of supersonic jets in an external medium of varying
density. One obvious advantage of this approach is that, for
most sources, the only thing the radio maps tell us anything
about is the large-scale structure. It also means that we can
dispense with the kind of detailed model of the emission that
would be necessary if we were to try and understand small-
scale features.

What we have found is really quite encouraging. The
behaviour of the flow seems to depend crucially on how
rapidly the external density decreases with distance from the
source. If this decrease is more rapid than 1/R?, where R is
the distance from the source, then the jet behaves as if it were
exhausting into a vacuum and ought to be completely
invisible. Only if it at some point enters a region where the
density decreases more slowly does it become visible and it
will then look like a classical double. However, this case is
probably very rare since there seem to be few galaxies in
which the density decreases as fast as this over an extended
region.

An external density which decreases slower than 1/R? is
much more likely and in any case more interesting. The
evolution can be divided into three distinct stages with quite
different morphologies. At early times we get a very compli-
cated flow dominated by periodic vortex shedding and
strong shocks in the jet before it reaches the working surface.
In this context strong means that the post-shock pressure is
comparable to the jet ram pressure and these shocks can at
times disrupt the jet completely. The result is a source with
recessed hotspots which can actually be stronger than those
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at the working surface. We have been able to find a number
of sources which fit this picture and there are no doubt many
more, but the flow varies so rapidly with time that it is diffi-
cult to make any detailed comparisons with the observations.

This violent stage eventually gives way to a sort of self-
similar solution in which the size of the disturbed region
grows as a power of time in a power-law external density.
The jet is reconfined at some distance form the source, but
this does not lead to much energy dissipation and there
should therefore be a prominent hotspot at the working sur-
face. Such a flow looks like a clasical double with a faint jet
and edge-brightened radio lobes. There is still some vortex
shedding to give an interesting structure to the lobes, but its
importance is on the wane.

At very large times the reduction in opening angle and
Mach number brought about by the reconfinement shock
allows the jet to become turbulent. This reduces the ram
pressure in the jet and hence the strength of the hotspots at
the end of the jet. Although the cavity blown by the jet still
expands according to the same formula as before, the
morphology is completely different and resembles that of an
FRI source. The lower radio power of such sources would
then be a consequence of the fact that particle acceleration
by turbulence is a much less efficient process than shock
acceleration.

The point we are trying to make is that the jets propagate
in an environment which is largely of their own making. This
is an old idea and was first explored in detail by Scheuer
(1974), but more recent numerical work has tended to some-
what neglect this aspect. What we have shown is that quite
reasonable assumptions give us a picture which seems to be
consistent with the observations.

Gratifying as this is, there is still much to be done. We have
not really been able to follow the flow far enough into the
self-similar regime, nor have we looked in detail at the
dynamical effects of turbulence. This is not due to lack of
computing resources, but to the fact that the flow becomes
self-similar so slowly that any computation on a fixed mesh
would exhaust the power of current machines without getting
much further than we have. What is needed is an adaptive
algorithm which automatically refines the mesh in compli-
cated regions and uses lower resolution in the bland parts of
the flow. Such a code is currently under development for
industrial applications and we will soon be able to apply it to
this problem. However, this is not enough by itself. We have
argued that turbulence plays an important role even in the
early stages and we must therefore include some kind of
turbulence model in our calculations. There are a number of
possibilities, none of them entirely satisfactory, but it does
seem that a modified version of the k —& model works quite
well for the shear layer at the edge of supersonic jets (Dash &
Wolf 1983). It is therefore a good idea to incorporate this
into future calculations.

ACKNOWLEDGMENTS

This work benefited from numerous conversations with J. R.
Giddings and M. J. Wilson. I would also like to thank the
referee for several useful suggestions. The computations
were carried out on a Sun 4/110 at Mantis Numerics Ltd.

Self-similar jets 593

REFERENCES

Alexander, P. & Leahy, J. P., 1987. Mon. Not. R. astr. Soc., 225, 1.

Baldwin, J. E., 1982. IAU Symp. No. 97, Albuquerque, USA, p. 21,
eds Heeschen, D. S. & Wade, C. M., D. Reidel, Dordrecht.

Begelman, M. C,, Blandford, R. D. & Rees, M. J., 1984. Rev. mod.
Phys., 56, 255.

Blandford, R. D. & Rees, M. J., 1974, Mon. Not. R. astr. Soc., 169,
395.

Boris, J. P. & Book, D. L., 1973. J. Comp. Phys., 11, 38.

Canto, J. & Raga, A. C., 1990. Astrophys. J., submitted.

Canto, J., Raga, A. C. & Binette, L., 1989. Rev. Mex. Astr. Astrofis.,
17, 65.

Chakrabarti, S. K., 1988. Mon. Not. R. astr. Soc., 235, 33.

Collela, P. & Woodward, P.R., 1984. J. Comput. Phys., 54,174.

Coleman, C. S. & Bicknell, G. V., 1987. Mon. Not. R. astr. Soc., 230,
497.

Daly, R. A. & Marscher, A. P.,, 1988. Astrophys. J., 334, 539.

Dash, S. M. & Wolf, D. E., 1983. AIAA Paper83-0704.

Drury, L. O’C,, 1983. Rep. Prog. Phys., 46,973.

Dyson, J. E., Falle, S. A. E. G. & Perry, J. J., 1980. Mon. Not. R. astr.
Soc., 191, 785.

Falle, S. A. E. G., 1988. Supernova Shells and their Birth Events,
p. 63, ed. Kundt, W,, Springer.

Falle, S. A. E. G. & Wilson, M. J., 1985. Mon. Not. R. astr. Soc.,
216, 79.

Falle, S. A. E. G. & Wilson, M. J., 1988. Numerical Methods for
Fluid Dynamics I1I, p. 418, eds Morton, K. W. & Baines, M. J.,
Clarendon Press, Oxford.

Federenko, V. N. & Zentsova, A. S., 1986. Soviet Astr., 30, 24.

Fraenkel, L. E., 1970. Proc. R. Soc. London A, 316, 29.

Godunov, S. K., 1959. Mat. Sb., 47, 357.

Heavens, A. F. & Meisenheimer, K., 1987. Mon. Not. R. astr. Soc.,
225, 335.

Kossl, D., Miiller, E. & Hillebrandt, W., 1988. Asir. Astrophys., 206,
204.

Kossl, D., Miiller, E. & Hillebrandt, W., 1990a. Astr. Astrophys.,
229, 378.

Kossl, D., Miiller, E. & Hillebrandt, W., 1990b. Astr. Astrophys.,
229,401.

Kossl, D., Miiller, E. & Hillebrandt, W., 1990c. Astr. Astrophys.,
229, 397.

Leahy, J. P. & Williams, A. G., 1984. Mon. Not. R. astr. Soc., 210,
929.

Norman, M. L., Burns, J. O. & Sulkanen, M. E., 1988. Nature, 335,
146.

Norman, M. L., Smarr, L., Winkler, K. H. A. & Smith, M. D., 1982.
Astr. Astrophys., 113, 285.

Osher, S., 1982. Numerical Methods for Fluid Dynamics, p. 179, eds
Morton, K. W. & Baines, M. J., Academic Press, Oxford.

Rayburn, D. R., 1977. Mon. Not. R. astr. Soc., 179, 603.

Roe, P.L.,1981. J. Comp. Phys., 43, 357.

Roe, P. L., 1985. Lectures in Applied Mathematics, 22, 163.

Roe, P. L., 1986. Ann. Rev. Fluid Mech., 18, 337.

Sanders, R. H., 1983. Astrophys. J., 266, 73.

Scheuer, P. A. G., 1974. Mon. Not. R. astr. Soc., 166, 513.

Smith, M. D., Norman, M. L., Winkler, K. H. A. & Smarr, L., 1985.
Mon. Not. R. astr. Soc., 214, 67.

van Leer, B., 1982. Lect. Notes in Phys., 170, 507.

van Leer, B., 1977. J. Comp. Phys., 23, 276.

Wilson, M. J., 1986. Mon. Not. R. astr. Soc., 224, 155.

Wilson, M. J., 1987. Mon. Not. R. astr. Soc., 226, 447.

Wilson, M. J. & Falle, S. A. E. G, 1985. Mon. Not. R. astr. Soc.,
216,971.

Wilson, M. J. & Scheuer, P. A. G,, 1983. Mon. Not. R. astr. Soc.,
205, 449.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System

220z 1snbny g1 uo Jasn aonsnp jo Juswpedaq ‘S'N A9 GG#866/185/S/05Z/2101He/seluw/woo dno ojwapeoe//:sdpy woly papeojumoq


http://adsabs.harvard.edu/abs/1991MNRAS.250..581F

991 VNRAS 250  J581F

594 S.A.E.G. Falle

APPENDIX

Most modern shock capturing schemes for the Euler equa-
tions are both upwind and conservative. By upwind we mean
that it takes account of all the characteristics, not just the
streamlines, and by conservative we mean that conservation
is satisfied to machine accuracy. These two properties are
important because only for an upwind scheme is it possible
to impose the correct boundary conditions, and conservation
is necessary to guarantee the correct jump conditions at
shocks.

In axisymmetry strict conservation is impossible since then
we have to work with the radial momentum and this is not a
conserved quantity. However, by using a finite-volume for-
mulation, it is possible to construct an algorithm which
becomes conservative at shocks as the mesh spacing tends to
zero. Of course, we cannot actually go to the limit of zero
mesh spacing, but this only causes problems near the axis of
symmetry and these can be minimized by ensuring that the
flow is well resolved there.

A scheme can be described as upwind if it is equivalent to
a characteristic scheme for the linear problem. This can be
achieved in a number of ways, but the simplest, and the one
that we shall adopt, is that due to Godunov (Godunov 1959).
This involves computing the flux of the conserved quantities
from the solution to Riemann problems at the interfaces
between the computational cells. It has subsequently been
shown that the same effect can be obtained in other ways and
this has led to the development of a number of schemes all of
which can be described as characteristic based. Examples are
flux-vector splitting (van Leer 1982), Roe’s scheme (Roe
1981) and Osher’s scheme (Osher 1982). These all use an
approximate solution to the Riemann problem which is exact
for the linear problem and certain other cases. Those inter-
ested in this subject should consult the excellent reviews by
Roe (Roe 1985, 1986).

In axisymmetry the Euler equations can be written in the
form

%]+lr%:+%g=s, (A1)
where

U=(p, pv,, pv,, €) (A2)
is a vector of conserved quantities and

F=[pv,, p+pv}, pv,v,,v(e+p)), (A3)
G=[pv., pv,v., p+pv3, v e +p), (A4)

are the fluxes in the r and z directions. Here p, p are the
pressure and density and e is the total energy per unit volume

1
+§ o(v2+0v). (A5)
The source term is given by
§= [0, Py, 0} (A6)
r

and accounts for the fact that the radial momentum is not
conserved.

To construct a scheme for equations (A1), we divide the
computational domain into cells with mesh spacing / such
that the i, j cell occupies the region (i—1)h=<r<ih,
(j— 1) h=< z<jh, whose volume is

V,=n(2i—1)h. (A7)

Now suppose that we know the solution at some time ¢ =1,
and we want to calculate that at a later time ¢, ,,. We inte-
grate (A1) over the i, j cell and from t=¢,to £ =1, to get

Uijk+1_Uijk+ 2

(lFiH/zij/z _(i_l) E—I/2jk+l/2)

it (2i—1)h
1
+;1(Gij+l/2k+l/2_Gij—l/2k+l/2)=sijk+l/2- (A8)
Here
20 [ ih
UUk=T/EJ J U(r, 2, tk)rdrdz’ (Ag)
i Jy-nrJi-1)n

is the mean value of U in the i, j cell at time ¢.

1 terr | Jh
Fpprip=—""13
e (tier =t R Ji-nn

2 tevs | iR
Gi"+ + = . G > hyt d dta
ARk (tk+l—tk)(21_1>hJ J(i—l)h (r] )r ’

i

F(ih, z, t)dzdt, (A10)

(A11)

are the fluxes averaged over time and the cell interfaces and

S i 27 ]‘m, J'jh Jih
TS e
(i =) Vi ) Ji-vmJi-vm

is the source term averaged over time and the volume of the
cell.

Equation (A8) is exact and forms the basis of all conserva-
tive schemes for the axisymmetric Euler equations. It is the
way in which the quantities with half-integral suffices are
approximated that distinguishes one such scheme from
another.

In a first order Godunov type scheme the approximations
to the fluxes and source term are derived by assuming that
the solution is uniform within each cell and constant over a
time-step. The fluxes are determined by ignoring the source
terms and solving a one-dimensional Riemann problem at
the cell interfaces. A Riemann problem for a hyperbolic sys-
tem of non-linear conservation laws is defined to be an initial
value problem with discontinuous initial data of the form

S(r,z,t)rdrdz dt,
(A12)

U(x)=U,=const for x<0,
U(x)=U,=const for x>0 at t=0.

For the Euler equations, the solution for such initial data
will in general involve shocks, centred rarefaction waves and
contact discontinuities, but it will always be true that the
value of U (the resolved state) at x=0 is constant for >0,
although not in general equal to either U, or U,. The resolved
state is given by a set of non-linear algebraic equations which
have to be solved iteratively, but this can be done very effici-
ently (van Leer 1977). In any case the discontinuity in U is
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O(h) in smooth regions so that most of the Riemann prob-
lems that occur can be linearized.

If we let U, (U, U,) be the resolved state, then in a first-
order Godunov scheme the fluxes are given by

Fi+1/2jk+1/2 = F[U*(Uijk, UH-ljk)]’
(A13)
Gij+]/2k+l/2= G[U*(Uijka Uij+lk)]a

i.e. the left and right states are those in the cells on either side
of the interface and the flux is that in the corresponding
resolved state.

The source term has to be treated with some care. It is no
good assuming that § is uniform in each cell since it depends
upon the radial coordinate. Instead we have to evaluate § by
setting the pressure constant and then integrating over the
cell. The result for the non-zero component of § is

=" pa
g (G —8) V" 6 JU-nrJi-1n

__ 2pi
(2i—-1)h"

This form of § ensures that a state with uniform pressure and
zero velocity is an exact steady solution of the difference
equations.

The above is a straightforward extension of Godunov’s
scheme to axisymmetry. To make this second order in time
and space we have to introduce some structure inside the
cells and allow for the variation in U over the time step.
Second order time accuracy can be achieved by using the
first order scheme to obtain an intermediate solution Uy .,
at the half time ¢=(¢, ,, +¢,)/2, which is then used to deter-
mine the second-order fluxes.

Second-order space accuracy requires a knowledge of the
gradients within each cell, but we cannot just use central dif-
ferences for this since Godunov’s theorem (Godunov 1959)
warns us that such a scheme will not be monotonic in the
neighbourhood of shocks and tangential discontinuities.
Instead we have to use a non-linear switch which has the
effect of reducing the order of the scheme in such regions.
Broadly speaking there are two approaches to this. The first
is flux corrected transport, which uses a flux limiter to
modify the second-order flux so that it does not cause oscil-
lations in regions where the second derivatives are large
(Boris & Book 1973). Although this is a sound idea, it is very
complicated in more than one dimension and has a number
of unpleasant side effects. The alternative is to apply a non-
linear averaging function to the gradients which has the effect
of taking the smallest of the two gradients on either side of
the cell (van Leer 1977).

We shall adopt van Leer’s approach except that it is better
to work with the vector of primitive variables.

drdz dt

(A14)

P=(p, v,, v, p) (A15)

The gradients in these variables is calculated from

(O_P) —av (Rjkﬂ/z“Pi—]jkﬂ/z Pi+1jk+l/2 _Pi/‘k+1/2)
ik +1/2

ar r(i)=r(i=1) 7 rli+1)=ryi)
(Al6)

(2’_’) =av (Rjkﬂ/z_Plj—lkn/z Pijﬂkﬂ/z_ ijk+l/2)

0Z) i +1p2 h ’ h ’
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where av(a, b) is the averaging function and r,(i) is the radial

coordinate of centre of gravity of the cells with r-index i,

(3i*=3i+1)

2i-1) (A17)

Ri)=3

The averaging function has to have the following proper-
ties

av(a, b)—3(a+b) asa—b,
=0 if ab <0,
~a  as|bl/la|->eo,
-b as|al/|b|~ .

There are obviously an infinite number of functions with
these properties, but our attitude is that the simplest is the
best. We therefore use

(a*b +ab?)

A if > +b°>0,
(a2+b2) na

av(a, b)=
(A18)
=0 if ab<0,

which clearly has the desired behaviour.

Once we have got suitable gradients in each cell, we can
set up the left and right states for the Riemann problems. For
the radial fluxes we have

. ~ | OP!
Py=Py 1p+[ih—ryi)] (_) )
ik +1)2

61 jl+l/'k+l/2

Fi+1/2jk+1/2 =F[U*{U(Pl), U(Pr)}]9

and similarly for the axial fluxes.

Having dealt with the second-order fluxes, we must now
derive an expression for the source term. All we have to do is
to use our linear pressure distribution to evaluate the integral
in equation (A12). The result is

p _ 2 1) (9P
(7),»,-“1,2_(2:'—1)»:[” ""“””[h(’ 2) ’g(’)}(ar).-,-m,z}'

(A20)

Once we have calculated the second-order fluxes and source
term in this way, we can use them in equation (A8) to
advance the solution through the complete time-step. The
resulting explicit upwind scheme is as conservative as it is
possible to be in axisymmetry and is second order in smooth
regions. Being explicit, it is subject to the usual Courant
stability condition

Pr=Pi+Ijk+]/2+[ih_rg<i+1)] (A19)

biyy — {<min (—h‘) ) (A21)
i ijk

where

Aijk=[(yp/p)l/z"'(”z"'vbl/z]ijk (A22)

is the maximum wave speed in the i, j cell at time ¢ =1¢,.
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As we have already remarked in Section 3, this scheme
has been applied to a number of industrial problems and
although much of this work is not available in the open litera-
ture, some of the results are given in Falle (1988) and Falle &
Wilson (1988). Although it is much simpler than the Piece-
wise Parabolic Method (PPM), it seems to perform just as
well in most multidimensional applications. The reason for

this seems to be that although PPM is superior in one
dimension, most of these advantages are lost when it is
operator split to cope with several space dimensions. Our
scheme is only partially operator split in that, although we
solve one-dimensional Riemann problems, we do not
factorize the scheme into » and z operators.
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