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SELF-SIMILAR MEASURES
AND INTERSECTIONS OF CANTOR SETS

YUVAL PERES AND BORIS SOLOMYAK

Abstract. It is natural to expect that the arithmetic sum of two Cantor sets
should have positive Lebesgue measure if the sum of their dimensions exceeds
1, but there are many known counterexamples, e.g. when both sets are the
middle-α Cantor set and α ∈ ( 1

3
, 1
2
). We show that for any compact set K

and for a.e. α ∈ (0, 1), the arithmetic sum of K and the middle-α Cantor set
does indeed have positive Lebesgue measure when the sum of their Hausdorff
dimensions exceeds 1. In this case we also determine the essential supremum,
as the translation parameter t varies, of the dimension of the intersection of
K + t with the middle-α Cantor set.

We also establish a new property of the infinite Bernoulli convolutions νp
λ

(the distributions of random series
∑∞

n=0±λn, where the signs are chosen

independently with probabilities (p, 1 − p)). Let 1 ≤ q1 < q2 ≤ 2. For p 6= 1
2

near 1
2

and for a.e. λ in some nonempty interval, νp
λ is absolutely continuous

and its density is in Lq1 but not in Lq2 . We also answer a question of Kahane

concerning the Fourier transform of ν1/2
λ .

1. Introduction and main results

In this paper we consider one-parameter families of homogeneous Cantor sets,
and determine the measure-theoretic properties of their sums and intersections
for typical values of the parameter. We also obtain new results on the densities of
infinite Bernoulli convolutions. In all previous works we know where absolute conti-
nuity of a parametrized family of measures for almost all parameters is established
(e.g., Erdős [6], Kaufman [13], Mattila [18], Solomyak [25], Peres and Solomyak
[23]) this is done by proving the existence of densities in L2; a novel feature of the
present work is that almost sure absolute continuity is established in cases where
the densities are only in Lq for certain q < 2.

Let us first indicate our results for the special case of the sets

Kλ =
{
(1 − λ)

∞∑
n=0

anλ
n : an ∈ {0, 1}

}
.(1)

(It is easily checked that Kλ is the middle-α Cantor set for α = 1 − 2λ.) Let
K ⊂ R be any compact set. We show that for a.e. λ ∈ (0, 1/2) such that the sum
of Hausdorff dimensions dimH K + dimH Kλ is greater than 1:

1. the arithmetic sum K+Kλ has positive Lebesgue measure (see Theorem 1.1);
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4066 YUVAL PERES AND BORIS SOLOMYAK

2. if K has positive Hausdorff measure in its dimension, then the equality

dimH [(K + t) ∩ Kλ] = dimH K + dimH Kλ − 1(2)

holds for a set of parameters t of positive Lebesgue measure (see Theorem
1.2).

The proofs of Theorems 1.1–1.2 rely on techniques developed by Mattila [19],
Ch. 9-10, to prove projection and intersection theorems. Our situation is different
since the dependence on the parameter λ is nonlinear, but appropriate estimates of
power series allow us to handle this. For the simplest application of this technique
in a nonlinear setting, see Peres and Solomyak [23].

Next, to illustrate our results on self-similar measures, we consider the special
case of the infinite Bernoulli convolutions νp

λ. For each λ, p ∈ (0, 1), the measure
νp

λ is defined as the distribution of the random series
∞∑

n=0

±λn,(3)

where the signs are chosen independently at random with probabilities (p, 1 − p).
The symmetric case p = 1/2 has received the most attention, ever since the work
of Erdős [5], [6]. For p 6= 1/2 near 1/2, Corollary 1.4 below reveals an interesting
phenomenon: νp

λ is singular for all λ < pp(1 − p)1−p, and is absolutely continuous
for a.e. λ > pp(1 − p)1−p; moreover, for any q1 < q2 in [1,2] there is an interval
I(q1, q2) such that for Lebesgue-a.e. λ ∈ I(q1, q2), the density of νp

λ is in the space
Lq1 but not in Lq2 . See Theorems 1.3 and 4.1 for more general statements. These
generalizations allow us to answer a question of Kahane [12] on the rate of decay
of the Fourier transform of ν1/2

λ ; see Corollary 1.6.

Background. Palis and Takens [22] and the references therein show that the struc-
ture of arithmetic sums of Cantor sets is relevant to natural questions in smooth
dynamics. Palis and Takens asked about the structure of the sums Kγ + Kλ and
conjectured that “typically” they have either zero Lebesgue measure or non-empty
interior. Solomyak [27] showed that for each γ ∈ (0, 1/2), the set Kγ + Kλ has
positive Lebesgue measure for a.e. λ ∈ (0, 1/2) such that dimH Kγ + dimH Kλ > 1.
Theorem 1.1 extends this to more general sums of Cantor sets, where one of the
summands is arbitrary.

Questions about arithmetic sums and differences of Cantor sets can be expressed
using intersections of their translates, since F −K = {t ∈ R : (K + t) ∩ F 6= ∅}.
When the intersection (K + t) ∩ F is nonempty, it is natural to inquire about its
dimension. A classical result of Marstrand [17] implies that for any two compact
sets K,F ⊂ R

dimH((K + t) ∩ F ) ≤ dimH(K × F )− 1 for Lebesgue-a.e. t ∈ R .(4)

(See Theorem 8.1 in Falconer [7], or Mattila [19], 13.12.) If one of K and F is
a middle-α Cantor set (and more generally, if its Hausdorff dimension equals its
upper Minkowski dimension), then dimH(K × F ) = dimH(K) + dimH(F ); see
Mattila [19], 8.10.

Without further assumptions on K and F the inequality (4) can be strict; indeed
Mattila [19], 13.18, exhibits two compact sets K,F ⊂ R of Hausdorff dimension 1
such that (K + t) ∩ F is either empty or a single point for every t ∈ R. Hawkes
[10] showed that when K,F are both the middle-third Cantor set, the left-hand
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SELF-SIMILAR MEASURES AND INTERSECTIONS OF CANTOR SETS 4067

side of (4) equals log 2
3 log 3 for a.e. t ∈ [−1, 1], so the inequality in (4) is strict for

a.e. t ∈ R; Hawkes’ result was extended by Kenyon and Peres [16] to other Cantor
sets defined via expansions in integer bases. Theorem 1.2 indicates that such a
“dimension drop” (for a.e. translate) is exceptional when one of K,F is fixed and
the other is chosen from a one-parameter family of homogeneous Cantor sets.

Erdős [5], [6] studied the symmetric infinite Bernoulli convolutions ν1/2

λ defined
as the distribution of the random series (3) with p = 1/2.

For λ < 1/2 the measure ν1/2

λ is supported on a Cantor set, but for λ ∈ [1/2, 1)
its closed support is an interval. Extending a classical result of Erdős [6], Solomyak
[25] proved that for a.e. λ ∈ (1/2, 1) the measure ν1/2

λ is absolutely continuous and
has a density in L2 (see Peres and Solomyak [23] for a shorter proof). Here we
study more general one-parameter families of measures, where the transition from
singularity to having an L2-density can be more gradual.

Statement of results. Consider the family of homogeneous self-similar sets in R,

Cλ =
{ ∞∑

j=0

xj(λ)λj : xj(λ) ∈ D(λ)
}
, for λ ∈ (0, 1),

where D(λ) = {d1(λ), . . . , dm(λ)} is a set of digits depending on λ, with di(λ) ∈
C1[0, 1]. “Self-similar” means that Cλ is a union of m rescaled copies of itself, and
“homogeneous” means that the similarity ratio λ is the same for all copies. The
Cantor set Kλ corresponds to m = 2 and the digits d1(λ) = 0 and d2(λ) = 1 − λ.
Say that the strong separation condition holds for λ ∈ (0, 1) if

[di(λ) + λCλ] ∩ [dj(λ) + λCλ] = ∅ for i 6= j.(5)

An easily checked sufficient condition for (5) is λ(b+ 1) < 1, where

b := sup
{∣∣∣∣di(λ) − dj(λ)
dk(λ) − dl(λ)

∣∣∣∣ : λ ∈ [0, 1], i, j, k, l ≤ m, k 6= l

}
<∞.(6)

The strong separation condition implies dimH Cλ = log m
log(1/λ) < 1, so λ < m−1.

Theorem 1.1. Suppose that K is a compact set on the real line and J ⊂ (0, 1) is
an interval such that the family {Cλ} satisfies the strong separation condition (5)
for all λ ∈ J . Then
(a) for a.e. λ ∈ J such that dimH K + dimH Cλ < 1, we have

dimH(K + Cλ) = dimH K + dimH Cλ ;

(b) for a.e. λ ∈ J such that dimH K + dimH Cλ > 1, the set K + Cλ has positive
Lebesgue measure.

Let L denote Lebesgue measure on R. In the case when dimH K+dimH Cλ > 1,
Theorem 1.1(b) implies that for almost every λ we have L(Cλ−K) > 0. This means
that there exists a set Aλ with L(Aλ) > 0, such that (K + t) ∩ Cλ 6= ∅ for t ∈ Aλ.
The next theorem gives much more accurate information about these intersections.
Denote by Hα(K) the α-dimensional Hausdorff measure of the set K.

Theorem 1.2. Suppose K ⊂ R is compact with Hα(K) > 0, and J ⊂ (0, 1) is an
interval such that the family Cλ satisfies the strong separation condition (5) for all
λ ∈ J . Then for a.e. λ ∈ J such that α + dimH Cλ > 1, there exists a set Aλ of
positive Lebesgue measure such that

dimH [(K + t) ∩ Cλ] ≥ α+ dimH Cλ − 1 for t ∈ Aλ.(7)
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4068 YUVAL PERES AND BORIS SOLOMYAK

Figure 1. The (γ, λ)-plane: on the structure of Kγ +Kλ

If α = dimH K (which means that K has positive Hausdorff measure in its dimen-
sion), then the inequality (7) becomes an equality for a.e. t ∈ Aλ.

Example: The Cantor sets Kλ. The situation for the Cantor sets Kλ is illus-
trated in Figure 1. The region labelled S is where log 2

log(1/γ) + log 2
log(1/λ) = dimH Kγ +

dimH Kλ < 1, so dimH(Kγ + Kλ) < 1. Theorem 1.1(a) says that in this region
for a.e. point on each horizontal line, (and so by symmetry, every vertical line),
dimH(Kγ + Kλ) = dimH Kγ + dimH Kλ. The region L is where λ

1−2λ
γ

1−2γ > 1.
Then by the Gap Lemma of Newhouse [21], the set Kγ +Kλ is an interval. In the
region R, Theorem 1.1(b) says that for a.e. point (on each horizontal and vertical
line) the sum Kγ +Kλ has positive Lebesgue measure. (This special case was origi-
nally obtained by Solomyak [27] using the Fourier transform, rather than the more
direct method based on differentiation of measures employed here.)

Theorem 1.2 implies that for a.e. point (γ, λ) ∈ R ∪ L, the set of translation
parameters t such that (2) holds with K = Kγ has positive Lebesgue measure.

The words “for almost every λ” cannot be omitted in Theorems 1.1 and 1.2.
Indeed, it is well-known that the sum Kλ+Kλ is a Cantor set of Hausdorff dimension

log 3
log(1/λ) for λ < 1/3. Thus, on the diagonal γ = λ ∈ (0, 1/3), the Hausdorff
dimension is lower than that given by Theorem 1.1. Some other exceptions were
obtained by Keane and Smorodinsky [14]; see Solomyak [27].

We derive Theorem 1.1(b) from a criterion for absolute continuity of the con-
volution of a self-similar measure and an arbitrary measure satisfying a Frostman
condition (Theorem 2.1 below). Self-similar measures have been studied extensively
in their own right (see, e.g., Hutchinson [11] and Strichartz [28]). Given a prob-
ability vector p = (p1, . . . , pm) and the digit set D = {di(λ)}m

i=1, the self-similar
measure νλ = νλ(D,p) on R may be defined as the unique probability measure
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which satisfies

νλ =
m∑

i=1

pi(νλ ◦ S−1
i ) ,(8)

where Si(x) = λx+di(λ) (see Hutchinson [11]). Alternatively, consider the sequence
space Ω = {1, . . . ,m}Z+ with the Bernoulli product measure µ = pZ+ on it, and
the map Πλ : Ω → R given by

Πλ(ω) =
∞∑

j=0

dωj (λ)λ
j .(9)

Then Cλ = Πλ(Ω) and

νλ(D,p) = µ ◦Π−1
λ .(10)

In the special case when Cλ = Kλ and µ is Bernoulli (1/2, 1/2), this is the usual
Cantor-Lebesgue measure.

Note that the strong separation condition (5) on an interval J is equivalent to
the property:

λ 7→ Πλ(ω)−Πλ(τ) has no zeros on J for ω 6= τ.

Next we consider self-similar measures νλ without assuming strong separation. Say
that the transversality condition holds on an interval J ⊂ (0, 1) if

λ 7→ Πλ(ω)−Πλ(τ) has no double zeros on J for ω 6= τ.(11)

Here a “double zero” for f means λ0 such that f(λ0) = f ′(λ0) = 0 (so it includes
zeros of higher order as well). An equivalent way to state the transversality condi-
tion is to say that the graphs of the functions λ 7→ Πλ(ω) and λ 7→ Πλ(τ) defined
on J intersect transversally (if at all).

If a measure ν is absolutely continuous (with respect to Lebesgue measure L),
then dνλ

dx will denote its Radon-Nikodým derivative, referred to as its density.

Theorem 1.3. Suppose that J ⊂ (0, 1) is an interval such that the family {Πλ}
satisfies the transversality condition (11) on J .
(a) The self-similar measure νλ is absolutely continuous for a.e. λ >

∏m
i=1 p

pi

i

such that λ ∈ J , and singular for all λ <
∏m

i=1 p
pi

i .
(b) Let q ∈ (1, 2]. Then for a.e. λ > [pq

1 + · · · + pq
m]

1
q−1 such that λ ∈ J , the

measure νλ is absolutely continuous with a density in Lq.
(c) For any q > 1 and all λ ∈ (0, 1), if νλ is absolutely continuous with respect to

Lebesgue measure and its density dνλ

dx is in Lq(R), then λ ≥ [pq
1+· · ·+pq

m]
1

q−1 .

In Section 5 we discuss how to verify transversality. An easily checked sufficient
condition for transversality is λ(

√
b+ 1) < 1, where b is given by (6). This is useful

only for m > 2; the case m = 2 is discussed below. The singularity assertion in part
(a) is straightforward, and is included only for comparison. Observe that if νλ(D,p)
is absolutely continuous with bounded density, then necessarily λ ≥ max pi.

Example: The case of two digits. Let m = 2. Then, up to an affine change
of variable, we can assume that D = {±1}, so νλ(D,p) is the distribution of the
random series

∑∞
n=0±λn, where the signs are chosen independently with proba-

bilities p = (p, 1 − p). In this case we denote νλ(D,p) simply by νp
λ. We will see

in Corollary 5.2 that the transversality condition holds for λ ∈ [0, 0.64]. Thus, for
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p ∈ [0.17, 0.83] Theorem 1.3(a) implies absolute continuity of νp
λ for a.e. λ in some

interval. Sometimes one can go up to λ = 1 using additional considerations. In
Solomyak [25] this is done for p = 1

2 . Here we extend this to p in a neighborhood
of 1/2:

Corollary 1.4. Let m = 2 and p ∈ [1/3, 2/3]. Then νp
λ is absolutely continuous

for a.e. λ ∈ [pp(1−p)1−p, 1), and has Lq-density for a.e. λ ∈ [(pq +(1−p)q)
1

q−1 , 1),
where q ∈ (1, 2].

Remarks. 1. The interval [1/3, 2/3] in this corollary can be enlarged with more
work, but another new idea is needed to extend the corollary to all p ∈ (0, 1).

2. The measure νp
λ is known to be singular if λ is a reciprocal of a PV-number

(an algebraic integer whose conjugates lie inside the unit disk). This was proved
by Erdős [5] for p = 1/2, and his proof works for all p ∈ (0, 1).

Example: D = {−1, 0, 1} and p = (1
4 ,

1
2 ,

1
4 ). Denote by ηλ = νλ(D,p) the

corresponding self-similar measure. It is easy to see that ηλ is the convolution
square of the measure ν1/2

λ . The density of ηλ, when it exists, solves a functional
equation known as the “Schilling equation”, see e.g. Borwein and Girgensohn [3]
and Baron, Simon and Volkmann [1]. Derfel and Schilling [4] noted that the result
mentioned above, that ν1/2

λ has a density in L2 for a.e. λ ∈ (1
2 , 1), implies that the

convolution square ηλ has a continuous density for a.e. λ ∈ (1
2 , 1).

Corollary 1.5. The measure ηλ is absolutely continuous for a.e. λ ∈ ( 1
2
√

2
, 1) and

singular for all λ < 1
2
√

2
. For all q > 1 and λ < λ∗q = (2−q +2 ·4−q)

1
q−1 the measure

ηλ cannot have a density in Lq, but ηλ has an Lq-density for a.e. λ ∈ [λ∗q , 1) provided
that q ∈ (1, 2].

The Fourier transform of ν1/2

λ and a question of Kahane. Kahane [12] con-

sidered the Fourier transform ν̂1/2

λ (u) =
∏∞

n=0 cos(λnu) of ν1/2

λ and the function

g(λ) = sup{β |ν̂1/2

λ (u) = O(u−β)} which measures the rate of decay of this trans-
form. In Question 3 (p. 121) of that paper, Kahane asked whether g(λ) = − log 2

2 log λ for
a.e. λ ∈ (0, 1). The following corollary implies a negative answer to Kahane’s ques-
tion, and yields some positive information as well. It shows that the generalizations
considered in Theorem 1.3 are useful even if one only cares about ν1/2

λ .

Corollary 1.6. Let n ≥ 1 and denote λ̃n =
(
2n
n

)
2−2n. The Fourier transform

ν̂1/2

λ (·) is in L2n(R) for a.e. λ ∈ (λ̃n, 1) and is not in L2n(R) for all λ < λ̃n.

Taking n = 2, we see that ν̂1/2

λ /∈ L4 for all λ < 3/8, while the a.e. formula for

g(λ) suggested by Kahane would require ν̂1/2

λ to be in L4 for a.e. λ > 1/4.
The rest of the paper is organized as follows. In Section 2 we derive Theorem

1.1 from a more general theorem on absolute continuity of convolutions. This
convolution result is also used in the proof of Theorem 1.2 concerning intersections,
given in Section 3. A generalization of Theorem 1.3 on densities of self-similar
measures is established in Section 4, which can be read independently of Sections
2–3. In Section 5 we explain how to check the transversality condition (11), and
use it to prove corollaries 1.4 – 1.6. We conclude in Section 6 with some remarks
and open problems.
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2. Absolutely continuous convolutions and proof of Theorem 1.1

Part (a) of Theorem 1.1 is easier to prove than part (b). Part (b) is proved by
convolving a Frostman measure η on K with the self-similar measure νλ(D,p) on
Cλ, where p = (1/m, . . . , 1/m).

This scheme leads naturally to a more general set-up: Let η be a finite measure
on the real line R with compact support such that for some α ∈ (0, 1), the Frostman
condition is satisfied:

η[Br(x)] ≤ Crα, for x ∈ R and r > 0.(12)

Recall the map Πλ defined in (9). For ω and τ in Ω denote |ω∧τ | = min{i : ωi 6= τi}.
Let µ be a probability measure on Ω such that for some s ∈ (0, 1],

(µ× µ){(ω, τ) : |ω ∧ τ | = k} < Cm−ks ,(13)

and consider the projected measure

νλ = µ ◦Π−1
λ .(14)

Theorem 2.1. Suppose that the strong separation condition (5) holds for all λ in
an open interval J , and that the conditions (12) and (13) hold. Then the measure
η ∗ νλ is absolutely continuous and has a density in L2 for a.e. λ ∈ J such that

α+
s logm

log(1/λ)
> 1.

Theorem 1.1(b) will follow by letting η be a Frostman measure on K (see Mattila
[19], 8.8) and taking µ Bernoulli with p = (1/m, . . . , 1/m), so that (13) holds with
s = 1.

We start by introducing some notation. For two sequences ω and τ in Ω let

φω,τ (λ) = Πλ(ω)−Πλ(τ) =
∞∑

j=|ω∧τ |
(dωj (λ)− dτj (λ))λ

j .(15)

Let I = [λ0, λ1] ⊂ J be a closed interval. Since the strong separation condition (5)
holds for λ ∈ I, there exists δI > 0 such that

∀ω, τ ∈ Ω, (ω0 6= τ0) ⇒ |φω,τ (λ)| ≥ δI for λ ∈ I.(16)

Indeed, the absolute value in (16) represents the distance between a point in dω0 +
λCλ and a point in dτ0 + λCλ.

The proofs of Theorems 1.1, 1.2 and 2.1 rely on the derivative of φω,τ (λ) being
nonzero for all ω 6= τ such that |ω ∧ τ | is sufficiently large. Denote

G = max{|dj(λ)| : j ≤ m, λ ∈ [0, 1]},
G′ = max{|d′j(λ)| : j ≤ m, λ ∈ [0, 1]}

and let

NI = b4δ−1
I (Gλ1(1 − λ1)−2 +G′λ1(1 − λ1)−1)c+ 1,(17)

where δI comes from (16).

Lemma 2.2. For φ = φω,τ and k = |ω ∧ τ | ≥ NI we have

|φ′(λ)| ≥ (1/2)kδIλk−1 for λ ∈ I.
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Proof. Let φ(λ) =
∑∞

j=k φj(λ)λj . We have

|φ′(λ)| =

∣∣∣∣∣∣k
∞∑

j=k

φj(λ)λj−1 +
∞∑

j=k+1

(j − k)φj(λ)λj−1 +
∞∑

j=k

φ′j(λ)λ
j

∣∣∣∣∣∣
≥ kλk−1

∣∣∣∣∣∣
∞∑

j=0

φj+k(λ)λj

∣∣∣∣∣∣− λk−1

∣∣∣∣∣∣
∞∑

j=1

jφj+k(λ)λj

∣∣∣∣∣∣− λk

∣∣∣∣∣∣
∞∑

j=0

φ′j+k(λ)λj

∣∣∣∣∣∣ .
Since φk(λ) 6= 0, it follows from (16) that

∣∣∣∑∞
j=0 φj+k(λ)λj

∣∣∣ ≥ δI . Together with
the inequalities |φj(λ)| ≤ 2G and |φ′j(λ)| ≤ 2G′, this implies for λ ∈ I = [λ0, λ1]
that

|φ′(λ)| ≥ kλk−1δI − λk−12G
λ

(1− λ)2
− λk2G′

1
1− λ

≥ λk−1

[
kδI − 2Gλ1

(1− λ1)2
− 2G′λ1

(1− λ1)

]
≥ (1/2)kδIλk−1,

since 2Gλ1
(1−λ1)2 + 2G′λ1

(1−λ1) ≤ NIδI/2 ≤ kδI/2 by (17).

Lemma 2.3. Let I = [λ0, λ1] ⊂ J and assume that k = |ω ∧ τ | ≥ NI , where NI is
given by (17). Then:
(a) There exists C1 such that for all y, z ∈ R,

L
{
λ ∈ I : |y − z + φω,τ (λ)| ≤ r

}
< C1 min{1, rλ−k

0 } .
(b) There exists C2 such that

|φω,τ (λ)| ≤ C2

2
λk

1 for λ ∈ I = [λ0, λ1] .(18)

(c) For any β ∈ (0, 1) there exists C3 = C3(β) such that∫
I

|y − z + φω,τ (λ)|−β dλ ≤
{
C3λ

−kβ
0 for all y, z

2β |y − z|−β if |y − z| > C2λ
k
1 .

Proof. (a) Let φ(λ) = φω,τ (λ) and consider ψ(λ) = y − z + φ(λ). We need to
estimate the length of Λr = {λ ∈ I : |ψ(λ)| ≤ r}. By Lemma 2.2, |ψ′(λ)| =
|φ′(λ)| ≥ (1/2)kδIλk−1

0 for λ ∈ I, so Λr is at most a single interval by monotonicity
of ψ, and

L(Λr) ≤ 2r
(1/2)kδIλk−1

0

<
4r
δIλk

0

.

The inequality L(Λr) ≤ 1 is obvious.
(b) Using the definition of G and summing a geometric series gives |φω,τ (λ)| ≤

2Gλk(1 − λ)−1 ≤ 2Gλk
1(1 − λ1)−1 for λ ∈ I, so setting C2 = 4G(1 − λ1)−1 yields

(18).
(c) Since β < 1, the first inequality is a consequence of part (a), where the

distribution function of the integrand was bounded. The second inequality follows
from (b).
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Proof of Theorem 1.1(a). The estimate dimH(K+Cλ) ≤ dimH K+dimH Cλ is well-
known, so we only need to get the lower bound. Recall that dimH Cλ = log m

log(1/λ) .
Fix an arbitrary α∗ < dimH K and let α ∈ (α∗, dimH K). Suppose that λ0 ∈ J

satisfies α∗ + log m
log(1/λ0) < 1. Then we can find λ1 > λ0 so that I = [λ0, λ1] ⊂ J ,

β = α∗ +
logm

log(1/λ1)
< 1,(19)

and

β log(1/λ0)− α log(1/λ1) < logm.(20)

Since α < dimH K, there is a measure η on K satisfying the Frostman condition
(12), see e.g. Mattila [19], Ch.8. Let µ be the Bernoulli measure on Ω which assigns
equal probability 1/m to each symbol. To apply the preceding lemmas, we need
to restrict the measure µ to a fixed cylinder set W of the order NI given by (17).
Consider the measure σλ given by

σλ = µ|W ◦Π−1
λ .

The convolution η ∗σλ is supported on K+Πλ(W ) ⊂ K+Cλ, and we want to show
that

J :=
∫

I

∫
R

∫
R

|x− v|−β d(η ∗ σλ)(x) d(η ∗ σλ)(v) dλ <∞.(21)

Using the definition of convolution and then making a change of variable, we get

J =
∫

I

∫
K

∫
Cλ

∫
K

∫
Cλ

|(y + y′)− (z + z′)|−β dσλ(y′) dη(y) dσλ(z′) dη(z) dλ

=
∫

I

∫
K

∫
W

∫
K

∫
W

|(y + Πλ(ω))− (z + Πλ(τ))|−β dµ(ω) dη(y) dµ(τ) dη(z) dλ.

By Fubini’s Theorem and (15),

J =
∫ ∫

K2

∫ ∫
W 2

∫
I

|(y − z) + φω,τ (λ)|−β dλ dµ(ω) dµ(τ) dη(y) dη(z) .

(22)

Since (µ×µ){(ω, τ) : |t∧u| = k} < m−k, the energy bounds in Lemma 2.3(c) yield

J ≤ C̃

∫ ∫
K2

 ∑
k: |y−z|≤C2λk

1

λ−βk
0 m−k +

∑
k: |y−z|>C2λk

1

|y − z|−βm−k

 dη(y) dη(z)
=: C̃(I1 + I2).

First we estimate I1. By (12),

I1 =
∑
k≥0

λ−βk
0 m−k(η × η){(y, z) : |y − z| ≤ C2λ

k
1} ≤ C

∑
k≥0

λ−βk
0 m−kλkα

1 .

Condition (20) implies λ−β
0 m−1λα

1 < 1, so I1 < ∞. Next, setting κ(y, z) =
log(C−1

2 |y−z|)
log λ1

, we get

I2 ≤ C∗
∫ ∫

K2
|y − z|−βm−κ(y,z) dη(y) dη(z)
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and

|y − z|−βm−κ(y,z) = C′|y − z|−β|y − z| log m
log(1/λ1) = C′|y − z|−α∗ .

Now, since α∗ < α, condition (12) implies∫ ∫
K2
|y − z|−α∗ dη(y) dη(z) <∞;

see e.g. Mattila [19], Ch.8. Thus I2 <∞ and (21) is established. Therefore η ∗ σλ

has finite β-energy for Lebesgue-a.e. λ ∈ I; hence for all such λ we have

dimH(K + Cλ) ≥ β ≥ α∗ +
logm

log(1/λ)
;

see e.g. Mattila [19], Ch.8. Letting α∗ tend to dimH K completes the proof of
Theorem 1.1(a).

Proof of Theorem 2.1 (which implies Theorem 1.1(b)). We are given a finite mea-
sure η on R satisfying the Frostman condition (12). The measure µ on Ω is arbitrary
satisfying (13), and νλ = µ ◦ Π−1

λ . Let λ0 ∈ J be such that α+ s log m
log(1/λ0) > 1. One

can find λ1 > λ0 so that (16) holds on I = [λ0, λ1], and

α >
log(λ0m

s)
logλ1

.(23)

It suffices to prove that the convolution η ∗ νλ has a density in L2 for a.e. λ ∈ I =
[λ0, λ1].

As in the proof of Theorem 1.1(a), we restrict µ to a cylinder set W of order NI ,
where NI is given by (17), and let σλ = µ|W ◦Π−1

λ . Since νλ is a linear combination
of mNI translated copies of σλ, if η ∗ σλ has a density in L2 then so does η ∗ νλ.
Consider the lower density of η ∗ σλ,

D(η ∗ σλ, x) = lim inf
r↓0

(2r)−1(η ∗ σλ)[Br(x)],

where Br(x) = [x− r, x+ r]. As in Mattila [19], 9.7, if

Jλ :=
∫
R

D(η ∗ σλ, x) d(η ∗ σλ)(x) <∞,

then D(η ∗ σλ, x) is finite for (η ∗ σλ)-a.e. x, and η ∗ σλ has a density in L2. Thus,
it is enough to show that

S :=
∫

I

Jλ dλ <∞ .

By Fatou’s Lemma,

S ≤ S1 := lim inf
r↓0

(2r)−1

∫
I

∫
R

(η ∗ σλ)[Br(x)] d(η ∗ σλ)(x) dλ.

Using the definition of convolution and making a change of variable, we obtain

S1 = lim inf
r↓0

(2r)−1

∫
I

∫
R

∫
W

(η ∗ σλ)[Br(y + Πλ(ω))] dµ(ω) dη(y) dλ.

(24)
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Next, denoting by 1A the indicator function of a set A,

(η ∗ σλ)[Br(y + Πλ(ω))] =
∫
R

1Br(y+Πλ(ω))(w) d(η ∗ σλ)(w)

=
∫
R

∫
W

1{(z,τ): z+Πλ(τ)∈Br(y+Πλ(ω))}(z, τ) dµ(τ) dη(z),

Substituting this into (24) and reversing the order of integration yields

S1 = lim inf
r↓0

(2r)−1

∫
R

∫
W

∫
R

∫
W

L(Λr(y, z, ω, τ)) dµ(τ) dη(z) dµ(ω) dη(y),

(25)

where

Λr(y, z, ω, τ) := {λ ∈ I : |(y + Πλ(ω))− (z + Πλ(τ))| ≤ r}
= {λ ∈ I : |y − z + φω,τ (λ)| ≤ r} .(26)

Split the integral in (25) according to the distance between y and z:∫
R

∫
W

∫
R

∫
W

L(Λr(y, z, ω, τ))

=
∫ ∫

{|y−z|<2r}

∫ ∫
W 2

+
∫ ∫

{|y−z|≥2r}

∫ ∫
W 2

:= I1 + I2.
(27)

To complete the proof, it is sufficient to show that I1 ≤ Cr and I2 ≤ Cr. By
Lemma 2.3(a), (12) and (13),

I1 ≤ C(2r)α
∞∑

k=NI

min{1, rλ−k
0 }m−ks.

Therefore, setting kr = log r
log λ0

, we get

I1 ≤ C(2r)α

∑
k≤kr

rλ−k
0 m−ks +

∑
k>kr

m−ks

 .
Recall that the strong separation condition (5) implies λ0 < 1/m, so λ−1

0 m−s > 1.
Summing the geometric series and using λkr

0 = r, we obtain

I1 ≤ Crαm−krs .(28)

Since α − log m
log r skr = α + s log m

log(1/λ0)
> 1, for r < 1 we have rαm−krs < r, and (28)

implies I1 ≤ Cr.
It remains to estimate I2, the second integral in (27). If C2λ

k
1 < |y− z|, then by

(18), |φω,τ (λ)| < |y − z|/2, and |y − z + φω,τ (λ)| > |y − z|/2. When |y − z| ≥ 2r

this implies that the set Λr(y, z, ω, τ) is empty. Denote κ(y, z) = log(C−1
2 |y−z|)

log λ1
. We
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obtain from Lemma 2.3(a) and (13), keeping in mind that λ0m
s < 1 :

I2 ≤
∫ ∫

R2

∑
k≤κ(y,z)

rλ−k
0 m−ks dη(y) dη(z)

≤ Cr

∫ ∫
R2

(λ0m
s)−κ(y,z) dη(y) dη(z)

= C ′r
∫ ∫

R2
|y − z|− log(λ0ms)

log λ1 dη(y) dη(z).

But log(λ0ms)
log λ1

< α by (23), so I2 < C′′r by (12), and the proof of Theorem 2.1 is
complete.

3. Intersecting translates

Proof of Theorem 1.2. Since Hα(K) > 0, there is a Frostman measure η on K
satisfying (12). Let η̃(E) = η(−E). As in the proof of Theorem 1.1(a), µ is now
the Bernoulli measure on Ω which assigns equal probability 1/m to each symbol.
Let νλ = µ ◦ Π−1

λ . Then (13) holds with s = 1, so by Theorem 2.1, η̃ ∗ νλ is
absolutely continuous with respect to L for a.e.

λ ∈ J ′ :=
{
λ ∈ J : α+

logm
log(1/λ)

> 1
}
.

We will show that for Lebesgue-a.e. λ ∈ J ′ and (η̃ ∗ νλ)-a.e. t ∈ R,

dimH [(K + t) ∩ Cλ] ≥ α+
logm

log(1/λ)
− 1.(29)

Define the set Aλ to be the set of t such that (29) holds. For Lebesgue-a.e. λ ∈ J ′
this set must have positive Lebesgue measure if it has full (η̃ ∗ νλ)-measure; indeed
it will follow that Aλ contains Lebesgue a.e. t, where the density of η̃∗νλ is positive.
This will yield the statement of Theorem 1.2. If the set of “bad” λ ∈ J ′ (where Aλ

does not have full (η̃ ∗ νλ)-measure) had positive Lebesgue measure, it would have
a point of density; see Mattila [19], 2.14. To rule that out it is enough to prove
that for any λ0 ∈ J ′ and any γ such that

1 < γ < γ∗ := α+
logm

log(1/λ0)
,

there exists λ1 > λ0 such that

dimH [(K + t) ∩ Cλ] ≥ γ − 1 for L-a.e. λ ∈ I = [λ0, λ1] and (η̃ ∗ νλ)-a.e. t.

(30)

Fix γ ∈ (1, γ∗). One can choose λ1 > λ0 so that (16) holds and

α− log(λ0m)
logλ1

> γ − 1.(31)

Denote

lt = {(x, x′) ∈ R2 : x′ = x+ t}.
As in Mattila [19], 13.12, we have

dimH [(K + t) ∩ Cλ] = dimH [(K × Cλ) ∩ lt].
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The plan is to show that for L-a.e. λ ∈ I, the conditional measure of η × νλ on
(K × Cλ) ∩ lt has finite (γ − 1)-energy for (η̃ ∗ νλ)-a.e. t. This will imply (30). In
fact, as in Theorem 1.1 we will work with a restricted measure σλ = µ|W ◦ Π−1

λ ,
where W is a cylinder of order NI given by (17). Thus (30) will be proved for
(η̃ ∗ σλ)-a.e. t ∈ R. However, since W can be any cylinder and since νλ is the sum
of measures σλ corresponding to all cylinders of order NI , the full strength of (30)
will follow.

The first step is to define the conditional measure. This can be done as in Mattila
[19], Ch.10: for L-a.e. t ∈ R there exists a non-negative Radon measure θt,λ on
(K × Cλ) ∩ lt, such that for all g ∈ C+

0 (R2),

∫
lt

g(y, y′) dθt,λ(y, y′) = lim
r↓0

(2r)−1

∫ ∫
{(y,y′): |y′−y−t|≤r}

g(y, y′) dη(y) dσλ(y′).

(32)

We are going to show that

J :=
∫

I

∫
R

∫
lt

∫
lt

||(y, y′)− (z, z′)||1−γ dθt,λ(y, y′) dθt,λ(z, z′) dt dλ <∞,

(33)

where

||(y, y′)− (z, z′)|| = |y − y′|+ |z − z′|.
Inequality (33) will imply that for a.e. λ ∈ I and a.e. t ∈ R, the measure θt,λ is
either zero or positive with finite (γ − 1)-energy. Now recall that by Theorem 2.1
the measure η̃ ∗ σλ is absolutely continuous for a.e. λ ∈ I. For such λ, by the
definition of convolution we have for L-a.e. t ∈ R

d(η̃ ∗ σλ)
dx

(t) = lim
r↓0

(2r)−1

∫ ∫
{(y,y′): |y′+y−t|≤r}

dη̃(y) dσλ(y′)

= lim
r↓0

(2r)−1

∫ ∫
{(y,y′): |y′−y−t|≤r}

dη(y) dσλ(y′) = θt,λ(lt),

using (32). Thus, θt,λ is positive for (η̃ ∗ σλ)-a.e. t ∈ R, as desired.
It remains to establish (33). Any lower semicontinuous function g : R2 → [0,∞)

is an increasing limit of a sequence of continuous functions, so we get from (32)
that∫

lt

g(y, y′) dθt,λ(y, y′) ≤ lim inf
r↓0

(2r)−1

∫ ∫
{(y,y′): |y′−y−t|≤r}

g(y, y′) dη(y)dσλ(y′).

Taking g(y, y′) = ||(y, y′) − (z, z′)||1−γ and applying Fatou’s Lemma and Fubini’s
Theorem, we get

J ≤ lim inf
r↓0

(2r)−1

∫
I

∫
R

∫
lt

∫ ∫
{(y,y′): |y′−y−t|≤r}

||(y, y′)− (z, z′)||1−γ dη(y) dσλ(y′)

× dθt,λ(z, z′) dt dλ

= lim inf
r↓0

(2r)−1

∫
I

∫ ∫
K×Cλ

∫
{t: |y′−y−t|≤r}

∫
lt

||(y, y′)− (z, z′)||1−γ

× dθt,λ(z, z′) dt dη(y) dσλ(y′) dλ.
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To the two innermost integrals we apply the inequality (10.6) from Mattila [19]:
for any Borel set B and lower semicontinuous function h,∫

B

∫
lt

h(z, z′) dθt,λ(z, z′) dt ≤
∫ ∫

{(z,z′): z′−z∈B}
h(z, z′) dη(z) dσλ(z′).

Using h(z, z′) = ||(y, y′)− (z, z′)||1−γ and B = {t : |y′ − y − t| ≤ r}, we get

J ≤ lim inf
r↓0

(2r)−1

∫
I

∫ ∫
K×Cλ

∫ ∫
{(z,z′): |(y′−y)−(z′−z)|≤r}

||(y, y′)− (z, z′)||1−γ

× dη(z) dσλ(z′) dη(y) dσλ(y′) dλ.

Next we change variables, and apply Fubini’s Theorem:

J ≤ lim inf
r↓0

(2r)−1

∫ ∫
K2

∫ ∫
W 2

∫
Λr

(|y − z|+ |Πλ(ω)−Πλ(τ)|)1−γ

× dλ dµ(τ) dµ(ω) dη(y) dη(z).

where Λr = Λr(y, z, τ, ω) was defined in (26). By Lemma 2.3(a),

L(Λr) ≤ C1 min{1, rλ−k
0 },

and (16) implies |Πλ(ω)−Πλ(τ)| ≥ δIλ
k
0 . We obtain∫

Λr

≤ L(Λr(y, z, τ, ω))
(|y − z|+ δIλk

0)γ−1
≤ Cmin{1, rλ−k

0 }
(|y − z|+ λk

0)γ−1
.

Next we write∫ ∫
K2

∫ ∫
W 2

=
∫ ∫

{(y,z): |y−z|<2r}

∫ ∫
W 2

+
∫ ∫

{(y,z): |y−z|≥2r}

∫ ∫
W 2

:= I1 + I2,

and show that I1 ≤ Cr and I2 ≤ Cr. The rest of the proof repeats that of Theorem
2.1 almost identically. We estimate the denominator as follows:

(|y − z|+ λk
0)γ−1 >

{
λ

k(γ−1)
0 , if |y − z| < 2r ;
|y − z|γ−1, if |y − z| ≥ 2r.

Thus, by (12), since (µ× µ){(ω, τ) : |ω ∧ τ | = k} < m−k,

I1 ≤ C(2r)α
∞∑

k=NI

min{1, rλ−k
0 }λk(1−γ)

0 m−k.

Then, splitting the sum at k ≈ log(1/r)
log(1/λ0) as in the proof of Theorem 2.1, we get

I1 ≤ Crα(λ1−γ
0 m−1)

log r
log λ0 .

Taking logarithms and using α+ log m
log(1/λ0) > γ, we see that I1 ≤ Cr.

To estimate I2 we observe that when |y− z| ≥ 2r, the set Λr(y, z, τ, ω) is empty
unless λk

1 ≥ |y − z|/C2, where C2 > 0 is from (18). Denote κ(y, z) = log(C−1
2 |y−z|)

log λ1
.
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Then

I2 ≤
∫ ∫

K2

∑
k≤κ(y,z)

rλ−k
0 |y − z|1−γm−k dη(y) dη(z)

≤ Cr

∫ ∫
K2

(λ0m)−κ(y,z)|y − z|1−γ dη(y) dη(z)

= C ′r
∫ ∫

K2
|y − z|1−γ− log(λ0m)

log λ1 dη(y) dη(z)

By (31) and (12), the last integral converges, so I2 ≤ C′′r. We have shown (33),
so the proof of Theorem 1.2 is complete.

4. Densities in Lq
: Proof of Theorem 1.3

In this section we prove a generalization of Theorem 1.3. In order to formulate
it, we need the notion of the Lq-dimension of a measure µ on the product space
Ω (see e.g. Strichartz [28] for the definition of Lq dimensions of a measure in Rn).
A cylinder set of order k is a set {ω ∈ Ω : ωi = ui, i = 0, 1, . . . , k− 1} for some
u = u0u1 . . . uk−1 with ui ∈ {1, . . . ,m}. Denote by Wk the family of all cylinder
sets of order k. Define for q > 1 :

Dq(µ) =
1

q − 1
lim inf
k→∞

− log
∑

W∈Wk
[µW ]q

k logm
.(34)

The quantity D2(µ) is sometimes called the correlation dimension; it can be
expressed as follows:

D2(µ) = lim inf
k→∞

− logµk

k logm
,

where µk = (µ× µ){(ω, τ) : |ω ∧ τ | ≥ k}.
Theorem 4.1. Let µ be a finite measure on Ω and νλ a family of measures on
R defined by (14). Let J ⊂ (0, 1) be an open interval on which Πλ satisfies the
transversality condition (11).
(a) Let q ∈ (1, 2]. Then for Lebesgue-a.e. λ ∈ J such that λ > m−Dq(µ), the

measure νλ is absolutely continuous with a density in Lq.
(b) For any q > 1 and all λ ∈ (0, 1), if νλ is absolutely continuous, then

dνλ

dx
∈ Lq(R) ⇒ λ ≥ m−Dq(µ).

(c) Suppose that µ is shift-invariant and ergodic. Denote by h(µ) the entropy of
µ with respect to the shift. Then the measure νλ is absolutely continuous for
a.e. λ > e−h(µ) such that λ ∈ J , and singular for all λ < e−h(µ).

Proof. (a) Let I = [λ0, λ1] be a subinterval of J , such that λ0 > m−Dq(µ). Set
α = q − 1; we have α ∈ (0, 1] by assumption. We are going to prove that

S :=
∫

I

∫
R

(D(νλ, x))α dνλ(x) dλ <∞,

where

D(νλ, x) = lim inf
r↓0

(2r)−1νλ[Br(x)].
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Then by Mattila [19], 2.12, the measure νλ is absolutely continuous for a.e. λ ∈ I.
For such λ we will have D(νλ, x) = dνλ

dx and dνλ(x) = dνλ

dx dx, so dνλ

dx ∈ Lq(R) for
a.e. λ ∈ I.

First we apply Fatou’s Lemma and then make a change of variable to obtain

S ≤ lim inf
r↓0

(2r)−α

∫
I

∫
R

(νλ[Br(x)])α dνλ(x) dλ

= lim inf
r↓0

(2r)−α

∫
I

∫
Ω

(νλ[Br(Πλ(ω))])α dµ(ω) dλ.

Next we reverse the order of integration and use Hölder’s inequality
∫

I
fα ≤

C(
∫

I f)α for α ∈ (0, 1] and f ≥ 0, to get

S ≤ C lim inf
r↓0

(2r)−α

∫
Ω

(∫
I

νλ[Br(Πλ(ω))] dλ
)α

dµ(ω).

We have ∫
I

νλ[Br(Πλ(ω))] dλ =
∫

I

∫
R

1Br(Πλ(ω)) dνλ dλ

=
∫

I

∫
Ω

1{τ : |Πλ(ω)−Πλ(τ)|≤r} dµ(τ) dλ

=
∫

Ω

L(Φr(ω, τ)) dµ(τ),

where

Φr(ω, τ) = {λ ∈ I : |Πλ(ω)−Πλ(τ)| ≤ r}.
Thus,

S ≤ C lim inf
r↓0

(2r)−α

∫
Ω

(∫
Ω

L(Φr(ω, τ)) dµ(τ)
)α

dµ(ω).(35)

Lemma 4.2. There exists C > 0 such that for all ω and τ in Ω,

L(Φr(ω, τ)) ≤ Crλ
−|ω∧τ |
0 .

Proof. Let k = |ω ∧ τ |. We have

φω,τ (λ) = Πλ(ω)−Πλ(τ) = λk
∞∑

j=0

bj(λ)λj ,

where bj(λ) ∈ D(λ) −D(λ) and b0(λ) 6≡ 0. Let ψ(λ) =
∑∞

j=0 bj(λ)λ
j . If we show

that

L{λ ∈ I : |ψ(λ)| ≤ ρ} ≤ Cρ(36)

for ρ > 0, the lemma will follow by taking ρ = λ−k
0 r. The class of all functions

ψ (corresponding to all possible choices of bj(λ) ∈ D(λ) − D(λ) with b0(λ) 6≡ 0)
is compact in C1(I). Then it follows easily from the transversality condition (11)
that for some ε > 0, depending on I only,

|ψ(λ)| < ε ⇒ |ψ′(λ)| > ε.(37)

If ρ ≥ ε then (36) holds with C = 1/ε. Otherwise,

{λ ∈ I : |ψ(λ)| ≤ ρ} ⊂ Ψε := {λ ∈ I : |ψ(λ)| ≤ ε} .
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The property (37) implies that Ψε is a union of intervals of monotonicity for ψ. In
each of these intervals, the portion where |ψ(λ)| < ρ has Lebesgue measure at most
2ρ/ε. On the other hand, |ψ′(λ)| has a uniform upper bound on I, so each of these
intervals (except maybe the first and the last one) has length ≥ ε/C′. Thus, their
number is certainly less that C ′/ε, and so L{λ ∈ I : |ψ(λ)| ≤ ρ} ≤ (C ′/ε)(2ρ/ε).
This proves (36).

Let us continue with the proof of part (a). By Lemma 4.2, we get from (35):

S ≤ C lim inf
r↓0

(2r)−α

∫
Ω

(∫
Ω

rλ
−|ω∧τ |
0 dµ(τ)

)α

dµ(ω).

Denote by Wω,k the cylinder set {τ ∈ Ω : τj = ωj, j < k} of order k. Clearly,
{τ ∈ Ω : |ω ∧ τ | = k} ⊂Wω,k for k ≥ 1. We have

S ≤ C

∫
Ω

(
1 +

∞∑
k=1

λ−k
0 µWω,k

)α

dµ(ω).

Now apply the inequality (
∑
bi)α ≤∑ bαi for bi ≥ 0 and α ∈ (0, 1], to get

S ≤ C

[
1 +

∫
Ω

∞∑
k=1

λ−kα
0 (µWω,k)α dµ(ω)

]

= C1 + C2

∞∑
k=1

∑
W∈Wk

λ−kα
0 (µW )α+1

= C1 + C2

∞∑
k=1

λ
−k(q−1)
0

∑
W∈Wk

(µW )q

Let δ > 0 be such that

λ0 > m−(Dq(µ)−δ).(38)

By the definition of Dq(µ), for k sufficiently large,∑
W∈Wk

(µW )q < m−k(Dq(µ)−δ)(q−1),

so we obtain

S ≤ C1 + C2

∞∑
k=0

(
λ−1

0 m−(Dq(µ)−δ)
)(q−1)k

.

The series converges by (38), and the proof of part (a) is complete.
(b) Now q ∈ (1,∞). Suppose that νλ is absolutely continuous with a density

dνλ

dx in Lq(R). Then

lim
r→0

(2r)−q

∫
R

(νλ[Br(x)])q dx =
∫
R

∣∣∣∣dνλ

dx

∣∣∣∣q dx <∞.(39)

This follows from the Hardy-Littlewood Maximal Theorem, or see Hardy and Lit-
tlewood [9], Th.22, for an elementary proof. We have for k > 0:

νλ =
∑

W∈Wk

νW
λ , where νW

λ := µ|W ◦Π−1
λ .
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Observe that each measure νW
λ is supported on the set Πλ(W ). Let IW be the

smallest interval containing Πλ(W ). It is clear that L(IW ) = aλk for W ∈ Wk,
where a = diam Πλ(Ω). Set r = aλk. Then

νW
λ [Br(x)] = νW

λ (R) = µW for x ∈ IW ;

hence ∫
R

(νW
λ [Br(x)])q dx ≥ aλk(µW )q.

Using the inequality (
∑
bi)q ≥∑ bqi for bi ≥ 0, we obtain

(2r)−q

∫
R

(νλ[Br(x)])q dx ≥ (2aλk)−q
∑

W∈Wk

∫
R

(νW
λ [Br(x)])q dx

≥ (2a)−qλ−qkaλk
∑

W∈Wk

(µW )q

= C(λ1−q)k
∑

W∈Wk

(µW )q.

This, together with (39), implies∑
W∈Wk

(µW )q ≤ C′λ(q−1)k.

Taking logarithms, dividing by −k logm and taking lim inf, yields

Dq(µ) ≥ logλ/(− logm).

Hence λ ≥ m−Dq(µ), as desired.
(c) For ω ∈ Ω, denote by Wk(ω) the cylinder of order k containing ω. The

Shannon-McMillan-Breiman Theorem asserts that

lim
k→∞

1
k

log(µWk(ω)) = −h(µ) a.e. [µ](40)

By Egorov’s theorem, for any ε > 0 there is a subset Ωε of Ω such that µ(Ωε) > 1−ε
and the convergence in (40) is uniform on Ωε. Denote by µε the restriction of
µ to Ωε. By (34), Dq(µε) ≥ h(µ)

log m for all q > 1, so part (a) implies that the
measure µεΠ−1

λ is absolutely continuous for a.e. λ ∈ J greater than e−h(µ). Letting
ε→ 0 proves the absolute continuity assertion of part (c). It remains to prove the
singularity assertion. Billingsley [2] used the Shannon-McMillan-Breiman Theorem
to deduce that the Hausdorff dimension of the measure µ equals h(µ)/ logm. Here
dimH µ = inf{dimH X ⊂ Ω : µ(X) = 1} and the space Ω is equipped with the
metric d(ω, τ) = m−|ω∧τ |. The map Πλ : Ω → R is Hölder:

|Πλ(ω)−Πλ(τ)| ≤ Cλ|ω∧τ | = C[d(ω, τ)]α, where α =
log(1/λ)
logm

.

Thus,

dimH νλ ≤ (1/α) dimH µ = h(µ)/ log(1/λ) .(41)

If λ < e−h(µ) then dimH νλ < 1, so νλ is singular.
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Remarks. (i) In part (c), a variation of the proof shows that for a.e. λ < e−h(µ) in
the transversality interval J , the inequality in (41) is actually an equality.

(ii) The assumption in (c) that µ is invariant and ergodic can be relaxed; it
suffices that the limiting relation (40) holds µ-a.e. (and the limit there could be
replaced by a lim sup.)

Proof of Theorem 1.3. Recall that µ is a Bernoulli measure on Ω with weights
(p1, . . . , pm). The entropy of µ is h(µ) = −∑m

i=1 pi log pi, and direct calculation
shows that

m−Dq(µ) = [pq
1 + · · ·+ pq

m]1/(q−1)

(the expression following the liminf in (34) is independent of k). Thus the theorem
follows immediately from Theorem 4.1.

5. Checking transversality, and proof of Corollaries 1.4–1.6.

The transversality condition (11) is used in part (a) of Theorem 4.1. It also arises
in the study of self-similar sets (Pollicott and Simon [24], Solomyak [25], [26]).

Recall that D = {d1(λ), . . . , dm(λ)} is a set of digits depending on λ ∈ (0, 1)
with dj ∈ C1[0, 1]. Let us assume also that dk(λ) − dl(λ) is bounded away from
zero for k 6= l, so that

b = b(D) = sup
{∣∣∣∣di(λ) − dj(λ)
dk(λ)− dl(λ)

∣∣∣∣ : λ ∈ [0, 1], i, j, k, l ≤ m, k 6= l

}
<∞.

(42)

Setting k = |ω ∧ τ |, we can write

Πλ(ω)−Πλ(τ) = λk
(
dωk

(λ)− dτk
(λ)
)1 +

∞∑
j=1

dωj+k
(λ)− dτj+k

(λ)
dωk

(λ)− dτk
(λ)

λj

 .

Transversality means absence of double zeros for all functions Πλ(ω) − Πλ(τ). A
sufficient condition for this is the absence of double zeros for power series of the
form

g(x) = 1 +
∞∑

n=1

gnx
n, with gn ∈ [−b, b].(43)

Let

y(b) = inf{λ > 0 : ∃ g of the form (43) such that g(λ) = g′(λ) = 0}.
Then transversality holds on (0, y(b)). It turns out that y(b) can be estimated
rather easily, using the following extension of a lemma from Peres and Solomyak
[23]. We include the brief proof for completeness.

Lemma 5.1. Let b ≥ 1. Suppose that for some k = k(b) ≥ 1 and γ = γ(b) ∈ R
there exists a function

fb(x) = 1−
k−1∑
n=1

bxn + γxk +
∞∑

n=k+1

bxn

such that for some xb ∈ (0, 1)

fb(xb) > 0 and f ′b(xb) < 0.

Then y(b) > xb.
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Proof. Since f ′′b has at most one zero on (0, 1), it easily follows that fb(x) > δ and
f ′b(x) < −δ for all x ∈ [0, xb]. (Consider separately the cases k = 1 and k > 1).

Let g(x) be a power series of the form (43) and consider h(x) = g(x) − fb(x).
Then (43) and the definition of fb imply that h(x) =

∑l
i=1 cix

i−∑∞
i=l+1 cix

i, where
ci ≥ 0 and l = k − 1 or l = k. Thus for any x ∈ [0, xb],

g(x) < δ ⇒ h(x) < 0 ⇒ h′(x) < 0 ⇒ g′(x) < −δ ,
where the middle implication is a consequence of one coefficient sign change of h.
Hence g has no double zeros in [0, xb], and the lemma follows from the definition of
y(b).

Corollary 5.2. The transversality condition holds on the interval (0, y(b)), where
b is defined in (42) and
(i) y(1) > 0.64, y(2) = 0.5, y(3) > 0.415;
(ii) y(b) ≥ (1 +

√
b)−1 for all b ≥ 1 and y(b) = (1 +

√
b)−1 for b ≥ 3 +

√
8.

Proof. (i) Let f1(x) = 1− x− x2 − x3 + 0.1x4 +
∑∞

n=5 x
n. Then f1(0.64) > 0 and

f ′1(0.64) < 0, so y(1) > 0.64 by Lemma 5.1. The function f2(x) = 1 − 2x − 2x2 +
2x3+

∑∞
n=4 2xn satisfies f2(x) > 0, f ′2(x) < 0 for x ∈ (0, 0.5), and has a double zero

at 0.5; hence y(2) = 0.5. The function f3(x) = 1− 3x− 0.7x2 +
∑∞

n=3 3xn satisfies
f3(0.415) > 0 and f ′3(0.415) < 0; hence y(3) > 0.415. We found the functions f1
and f3 using Mathematica.

(ii) The inequality y(b) ≥ (1 +
√
b)−1 follows from the proof of Lemma 1 in

Pollicott and Simon [24]. Alternatively, let fb(x) = 1− (1 + 2
√
b)x+

∑∞
n=2 bx

n. It
is easy to check that fb(x) > 0 and f ′b(x) < 0 for x ∈ (0, (1+

√
b)−1), so Lemma 5.1

implies the desired estimate. Furthermore, (1+
√
b)−1 is a double zero for fb; hence

y(b) = (1 +
√
b)−1 provided 1 + 2

√
b ≤ b (so that all coefficients are not greater

than b in modulus), which is equivalent to b ≥ 3 +
√

8.

In the opposite direction, it is known that the whole interval (2−1/2, 1) is filled
with double zeros of power series with coefficients −1, 0, 1 (see Solomyak [26]), so
the transversality condition for m = 2 does not hold there. In Solomyak [25] it is
shown that λ = 0.682328 . . . , the positive root of x3 + x = 1, is also a double zero
of such a series.

Proof of Corollary 1.4. To deduce the statement from Theorem 1.3, we must verify
the transversality condition. Since m = 2, we have b(D) = 1 in (42), so transver-
sality holds on (0, 0.64) by Corollary 5.2(i). For p ∈ [1/3, 2/3] and q ≤ 2 we have
[pq + (1− p)q]

1
q−1 ≤ p2 + (1− p)2 ≤ (1/3)2 + (2/3)2 = 5/9 < 0.64, so it remains to

show that νp
λ has a density in L2 for a.e. λ ∈ (0.64, 1).

Writing
∑±λn =

∑±(λ2)n + λ
∑±(λ2)n, we see that

ν̂p
λ(u) = ν̂p

λ2(u)ν̂
p
λ2(λu).(44)

If νp
λ2 has an L2-density, then by Plancherel’s Theorem ν̂p

λ2 ∈ L2(R); hence ν̂p
λ ∈

L1(R) and νp
λ has continuous density. Thus, if we show that νp

λ has an L2-density
for a.e. λ ∈ [p2 + (1 − p)2,

√
p2 + (1− p)2], the result will follow by repeating the

same argument. Since p ∈ [1/3, 2/3], it suffices to cover (0.64,
√

5/9).
Consider the convolution νp

λ ∗ νp
λ. This is a self-similar measure corresponding to

the digit set D = {−2, 0, 2}, with probabilities (p2, 2p(1− p), (1 − p)2). We have
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the following implications:

d(νp
λ∗νp

λ)
dx

∈ L2 ⇒ ν̂p
λ∗νp

λ ∈ L2 ⇒ ν̂p
λ ∈ L4 ⇒ ν̂p√

λ
∈ L2 ⇒ dνp√

λ

dx
∈ L2,

using (44) in the third implication. For νp
λ ∗ νp

λ we have b(D) = 2, so by Corollary
5.2(i), transversality holds on (0, 1/2). By Theorem 4.1, the convolution νp

λ ∗ νp
λ

has an L2-density for a.e. λ ∈ (p4 + 4p2(1 − p)2 + (1 − p)4, 1/2). One can check
that p4 + 4p2(1− p)2 + (1− p)4 is maximal when p = 1/3, so this interval contains
(11/27, 1/2). We conclude that νp

λ has an L2-density for a.e. λ ∈ (
√

11/27, 1/
√

2).
Since

√
11/27 < 0.64, we have covered (0, 1/

√
2).

Finally, consider νp
λ ∗ νp

λ ∗ νp
λ. This is a self-similar measure with the digit set

{−3,−1, 1, 3} and probabilities (p3, 3p2(1 − p), 3p(1 − p)2, (1 − p)3). As above,
one can argue that if νp

λ ∗ νp
λ ∗ νp

λ has L2-density, then νp

λ1/3 has L2-density as well.
Transversality now holds on (0, y(3)) ⊃ (0, 0.415) by Corollary 5.2(i), and after a
computation, we obtain that νp

λ has L2-density for a.e. λ ∈ ((245/729)
1
3 , 0.415

1
3 ).

Since (245/729)
1
3 < 1/

√
2 and 0.415

1
3 >

√
5/9, we are done.

Proof of Corollary 1.5. As mentioned in the introduction, for λ ∈ (1/2, 1) the den-
sity of ηλ is continuous. To see that transversality holds for λ ∈ (0, 1/2), recall
that the digit set defining ηλ is D = {−1, 0, 1}, so b = b(D) = 2 and y(b) = 1/2 by
Lemma 5.2(i).

Proof of Corollary 1.6. For a.e. λ ∈ (1/2, 1) we already know that ν̂1/2

λ is in L2,
so we may restrict attention to λ ∈ (0, 1/2). The nth convolution power of ν1/2

λ is
a self-similar measure assigning binomial probabilities

(
n
k

)
2−n for k = 0, . . . , n to

the n + 1 digits {−n, 2 − n, . . . , n}. The sum of squares of these probabilities is
precisely λ̃n =

(
2n
n

)
2−2n. It follows from Theorem 1.3 that the Fourier transform

of the nth convolution power of ν1/2

λ is not in L2 if λ < λ̃n, but is in L2 for a.e.
λ ∈ (λ̃n, y(n)), where y(n) is estimated in Corollary 5.2. Using Stirling’s formula
with remainder, or directly by induction, it is easily verified that y(n + 1) > λ̃n

for all n ≥ 2. This implies that the intervals (λ̃n, y(n)) for n ≥ 2 form a cover of
(0, 1/2), and the proof is complete.

6. Concluding remarks and unsolved problems

1. The study of arithmetic differences and sums of Cantor sets has been moti-
vated by a question of Palis and Takens whether it is true, at least generically or
typically, that if the difference of two affine Cantor sets has positive Lebesgue mea-
sure, it must have non-empty interior. This problem remains open even for middle-
α Cantor sets, although some information is contained in the work of Mendes and
Oliveira [20]. An important step was the formulation by Keane and Smorodinsky
of a simpler problem involving a self-similar Cantor set defined by a nonstandard
digit set (see Keane, Smorodinsky and Solomyak [15], Pollicott and Simon [24]).

2. If in Theorem 2.1 one could show that the convolution considered there
typically has a continuous density, this would yield a positive answer to Palis and
Takens’ question, at least for middle-α Cantor sets.

3. Is the transversality condition assumed in Theorems 1.3 and 4.1 really needed?
It is certainly used in our proofs, but perhaps it could be removed by a more careful
study of double zeros for the relevant power series.
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4. As mentioned in the introduction, each of the exceptional sets (which have
Lebesgue measure 0) of parameters λ in Theorems 1.1–1.3, is certainly nonempty;
are these sets countable?

In Theorem 1.1(a) it can be shown that the dimension of the exceptional set
in certain closed subintervals is strictly less than 1 (analogously to estimates of
Pollicott and Simon [24]); in the other results of this paper such dimension estimates
seem harder to establish, and it would be particularly interesting to obtain such
estimates in Corollary 1.4.

5. This question concerns the middle-α sets defined in (1). Is it true that for
a.e. pair (γ, λ) such that dimH Kγ + dimH Kλ > 1, the inequality

dimH [(Kγ + t) ∩ Kλ] ≤ dimH Kγ + dimH Kλ − 1

holds for all t ∈ R?
This is analogous to a conjecture of Furstenberg [8] concerning pairs of Cantor

sets in [0, 1] that are invariant under multiplication mod 1 by different (multiplica-
tively independent) integers.

Acknowledgments

We are grateful to Mark Pollicott for suggesting what the critical parameter for
absolute continuity in Corollary 1.4 should be, and to Jörg Schmeling for useful
discussions.

References

1. K. Baron, A. Simon and P. Volkmann (1994). Solutions d’une équation fonctionelle dans
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13. R. Kaufman (1968). On Hausdorff dimension of projections, Mathematika 15, 153–155. MR
40:2030

14. M. Keane and M. Smorodinsky (1990). On the morphology of sums of Cantor sets, unpublished
manuscript.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SELF-SIMILAR MEASURES AND INTERSECTIONS OF CANTOR SETS 4087

15. M. Keane, M. Smorodinsky and B. Solomyak (1996), Morphology of γ-expansions with deleted
digits, Trans. Amer. Math. Soc. 347, 955–966. MR 95h:11079

16. R. Kenyon and Y. Peres (1991). Intersecting random translates of invariant Cantor sets,
Inventiones math. 104, 601–629. MR 92g:28018

17. J. M. Marstrand (1954). Some fundamental geometrical properties of plane sets of fractional
dimensions, Proc. Lond. Math. Soc. 4, 257–302. MR 16:121g

18. P. Mattila (1990). Orthogonal projections, Riesz capacities and Minkowski content Indiana
University Math. J. 39, 185–198. MR 91d:28018

19. P. Mattila (1995). Geometry of sets and measures in Euclidean spaces, C.U.P., Cambridge.
MR 96h:28006

20. P. Mendes and F. Oliveira (1994). On the topological structure of the arithmetic sum of two
Cantor sets, Nonlinearity 7, 329–343. MR 95j:58123

21. S. Newhouse (1979). The abundance of wild hyperbolic sets and non-smooth stable sets for
diffeomorphisms, Publ. Math. I.H.E.S. 50, 101–151. MR 82e:58067

22. J. Palis and F. Takens (1993). Hyperbolicity and sensitive chaotic dynamics at homoclinic
bifurcations, C.U.P., Cambridge. MR 94h:58129

23. Y. Peres and B. Solomyak (1996). Absolute continuity of Bernoulli convolutions, a simple
proof, Math. Research Letters 3:2, 231–239. MR 97i:28006

24. M. Pollicott and K. Simon (1995). The Hausdorff dimension of λ-expansions with deleted
digits, Trans. Amer. Math. Soc. 347, no. 3, 967–983. MR 95h:11080

25. B. Solomyak (1995). On the random series
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