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Abstract

In this paper we consider the process of one-dimensional redistri-
bution of two immiscible and incompressible fluids in a heterogeneous
porous medium. We treat in detail the special case in which the initial
saturation as well as the properties of the porous medium have a single
coinciding discontinuity. Then the time-dependent saturation profile is
of self-similar form, i.e. depends only on z/+/t. This self-similar pro-
file can be used to validate numerical algorithms describing two-phase
flow in porous media with discontinuous heterogeneities. We discuss
the construction of the similarity solution, in which we give special at-
tention to the matching conditions at the interface where the medium
properties are discontinuous. We also outline a numerical procedure to
obtain the similarity solution and we provide applications in terms of
the Brooks-Corey and the Van Genuchten model.

AMS Subject Classification (1991): 34B15, 76T05

Keywords and Phrases: two-phase immiscible flow, capillary pressure,
discontinuous heterogeneities, similarity solution.

1 Introduction

Numerical models are effective tools to study two-phase flow in heterogeneous
porous media. These models need to be verified and validated, however. For
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the purpose of verification of the underlying mathematical model, laboratory
experiments and field tests are indispensable. The validation of the numerical
model is often established by comparing the numerical solutions to analytical
solutions of specific test problems.

A well-known test problem is the Buckley-Leverett problem [5]. The solu-
tion of this problem describes the flow of two phases in a homogeneous porous
medium in the absence of capillarity. When capillary forces are present, ana-
lytical solutions are known for some specific cases only. For instance, Sunada
& McWorther [8] incorporated the capillary pressure in their formulation, and
derived a similarity solution for the one-dimensional displacement of a nonwet-
ting phase with a total flow rate varying inversely proportional to the square
root of time. They also derived a similarity solution for two-dimensional radial
flow with a constant total flow rate. Similarity solutions in the case that there
is no convection, but only redistribution of the two phases, were found by Philip
[9],[10], Van Duijn & Peletier [13] and Van Duijn & Floris [11] (non-Newtonian
fluids). All these papers are dealing with homogeneous porous media.

To our knowledge, not so many exact solutions are known for porous media
that contain heterogeneities. Yortsos & Chang [15] have obtained steady-
state solutions for a heterogeneous medium, in which two regions of constant
permeability are connected by a linear transition. Van Duijn, Molenaar & De
Neef [12] derived steady-state solutions for a discontinuous heterogeneity. No
time-dependent exact solutions for two-phase flow through porous media with
a heterogeneity were found in the literature.

In this paper we present a method to construct a time-dependent solution
of self-similar form describing the one-dimensional redistribution of two im-
miscible and incompressible phases in a heterogeneous porous medium. The
redistribution of the phases is caused by capillary forces. The porous medium
consists of two homogeneous media of infinite extent which are joined at the
origin, so that the permeability and the porosity have a jump discontinuity
there, and are constant elsewhere. We will show that this problem possesses
a similarity solution if one medium is initially saturated by the wetting phase,
and the other by the nonwetting phase.

The interface conditions at surfaces where the permeability or porosity are
discontinuous play a crucial role in the construction of the solution. The two
conditions that need to be imposed have been derived by Van Duijn, Molenaar
& De Neef [12]. One condition is that the flux must be continuous across
the interface. The other, which is called the extended pressure condition, is a
nonlinear relation between the wetting phase saturation at the left- and right-
hand side of the discontinuity. It strongly depends on the qualitative behaviour
of the capillary pressure.

One aspect in particular plays an important role: the entry pressure. The
entry pressure, also known as the displacement pressure or threshold pres-
sure, 1s the minimum pressure that is needed for a nonwetting fluid to enter a
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medium that is initially saturated by wetting fluid. When the entry pressure
is positive, it may happen that the capillary pressure is not continuous across
the interface. Nonetheless, we shall show that the interface conditions still
lead to a unique similarity solution.

The diffusion problem discussed here resembles in many respects the one-
dimensional hysteresis problem studied by Philip [10]. In that paper he con-
siders the redistribution of water in an unsaturated soil with different capillary
pressure curves on the left- and right-hand side of the origin: a drying curve on
one side, a wetting curve on the other side. By a so-called flux-concentration
method, Philip obtains approximate solutions for this problem. The solutions
in his case always have continuous capillary pressure, since the drying and the
wetting curve form a closed loop (the hysteresis loop) with zero entry pressure.
In this work we give the procedure to obtain solutions without approximations,
we outline a numerical method to approximate the exact solution, and we allow
the solutions to have discontinuous capillary pressure.

This paper is organised as follows. In Section 2 we present the mathemat-
ical model describing the redistribution of two immiscible phases in a porous
medium. Further we explain the interface conditions needed at a discontinuity
in the permeability or porosity.

In Section 3 we use a similarity transformation to transform the partial
differential equation into an ordinary differential equation. For this latter
equation we shall explain how the solution can be constructed. We give a
criterion to determine whether the solution has discontinuous capillary pressure
or not. This can be checked before the actual construction of the solution. The
technical details of the mathematical justification are presented elsewhere [6].
Furthermore we provide a numerical method and we discuss the qualitative
behaviour of the solution.

In Section 4 we give two illustrative examples. We consider similarity so-
lutions for two different models of the capillary-hydraulic properties of the
porous medium: the Brooks-Corey model [4] and the Van Genuchten model
[14]. Since a Brooks-Corey type of porous medium has a positive entry pres-
sure, solutions may occur with discontinuous capillary pressure. We provide
an example of such a solution.

2 Mathematical Model

In this section we give the mathematical formulation of the redistribution of
two immiscible and incompressible phases in a saturated and heterogeneous
porous medium. We assume that the heterogeneity of the porous medium, i.e.
porosity ¢ and permeability &, varies in one direction only, say the z-direction.
Further we assume that the fluid flow is one-dimensional in that direction.
We characterise the phases by their reduced saturations: .S, (saturation of the
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wetting fluid) and S, (saturation of the nonwetting fluid), with 0 < S,,, S, < 1.
Since the porous medium is assumed to be saturated we have

Sy + 5, =1. (1)

The equations governing the flow of each phase are (e.g. Bear [3]) the fluid-
balance equations

85’2 8(12' B .
¢at —I_ax_()? Z—U,,n, (2)
and Darcy’s law,
5= N izwn 3)

Here ¢;, A; and p; (i = w,n) denote the specific discharge, the mobility and
the pressure of the wetting and nonwetting phase. In writing equation (3) we
assumed that the flow is horizontal, so that gravitational forces in the direction
of the flow are absent. The mobility of each phase is given by
A = 7]{:@)]{”(5“, 1= w,n, (4)
i

where k is the absolute permeability of the porous medium, and k,; and y; the
relative permeability and viscosity of phase .

Because of interfacial tension on the microscopic pore level, the pressures
of the wetting and the nonwetting fluid differ. This pressure difference, which
is called the capillary pressure p., obeys the Leverett-relationship (cf. [7])

Pa = pu = pele, Su) = 0| 22 g (5., (5)

where o is the interfacial tension, and .J the Leverett function.

Equations (1)-(5) can be combined into one equation for the saturation of
the wetting phase S,,. When we add the equations (2) for 1 = w and 1 = n,
and use (1), we find that the total flow rate ¢, defined by

q=qu+ G, (6)

is constant in space. Using this observation and combining equations (1)—(6)
we obtain a non-linear convection-diffusion equation for the water saturation
Sw. Because we want to describe the redistribution of the phases only, we set
g = 0, which results in a nonlinear diffusion problem for 5.

To put the equation into an appropriate dimensionless form, we choose
characteristic quantities 7' (time), L (length), k* (permeability), and ¢* (poros-
ity), and redefine the variables according to

ki=—, ¢:=—. (7)
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This yields

ou 0, -, 0

a7+ a0 (R = (Ve/k T (u)) =0, (8)
where u = u(x,t) denotes the reduced saturation of the wetting fluid. Further

- () ke (1)
Alu) = “Fera(t0) + o (u) /M

with
N = OVOR 4 m= b
,LLn(b*(L/T) Hw
The positive numbers N, and M are called the capillary number and the
mobility ratio.
We assume throughout this work that the relative permeabilities k,.,, and
k., are continuous on [0, 1], and that ./ is continuous on (0, 1] and continuously
differentiable on (0, 1). Further we assume that they satisfy

1.

?

e k., is strictly increasing such that k,.,(0) = 0 and k(1)

o k., is strictly decreasing such that k,,(0) = 1 and k(1)

0;
e lim.J(u) =00, J'<0on (0,1)and J(1) > 0.

10
The conditions k., (1), k-, (0) = 1 can be relaxed to allow for k., (1), k., (0) # 1.
This would only affect the mobility ratio M and the capillary number N..
Because .J'(u) may be unbounded as u tends to zero or one, the diffusiv-

ity —J'(u)A(u) can be unbounded there as well. To avoid this we assume in
addition that J'(u)A(u) is continuous on [0, 1], and hence bounded. This con-
dition is satisfied for most of the functions .J and A found in the literature, e.g.

Brooks-Corey and Van Genuchten functions (cf. Section 4).

2.1 Medium with a single discontinuity

In order to construct similarity solutions later on, we need to restrict ourselves
to a porous medium of which the permeability and porosity change abruptly
at some point, say at x = 0, and are constant elsewhere. The permeability
and the porosity then satisfy

ki x <0, n x <0,
k(x):{ki x>0 and qb(a:):{zi x > 0. (9)

For such a medium we obtain the equations

Ju 0 Ju

5 = h;a—x(D(u)a—x) for z <0, t >0, (10)
Ou 0 ou
5 = h,,a—w(D(u)a—m) for 2 >0, t >0, (11)
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Figure 1: Capillary pressure p. as a function of the reduced water saturation u.
The dashed curves correspond to fine, and the solid ones to coarse materials.
The entry pressure at u = 1 is either zero (left) or positive (right).

where B
D(u) = =J'(u)A(u), (12)
and where we introduced for convenience
hi = (ki/é)'"? and  h, = (k. /)2 (13)

The conditions imposed on k., k., and .J imply that D(u) is nonnegative and
continuous on [0, 1], and D(u) > 0 on (0,1).

At x = 0 where k£ and ¢ have a discontinuity, the equations do not hold.
At this point we need to impose two interface conditions for all ¢ > 0. The
first condition is continuity of the flux,

du L Ju
1;%1(—¢;th(1¢)8—$) = 1;?3(—¢ThrD(u)a—x). (14)

The second interface condition is an extension of a continuity condition for
the capillary pressure. This extended pressure condition, which is derived by
Van Duijn, Molenaar and De Neef [12], is explained as follows.

The media to the left and right of z = 0 have different values of h :=
(k/$)'/2. As a result they have different capillary pressure curves, which fol-
lows directly from the Leverett-relationship (5). If for example h; > h,, i.e.
coarse material to the left and fine material to the right of x = 0, then the
capillary pressure curve corresponding to the fine material lies above the curve
corresponding to the coarse material (cf. Figure 1). We distinguish capillary
pressure curves for which the entry pressure is zero, Figure 1 (left), and curves
for which it is positive, Figure 1 (right).

If the entry pressure is zero, then to every saturation on one side of the
interface, there corresponds a saturation on the other side so that the capillary
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pressure is continuous (cf. Figure 1 (left)). In this case the second interface
condition is simply continuity of capillary pressure, which is expressed by
J(ur) J(ul)

= 1
hr hl ? ( 5)

where u, and u; denote the right and left limit value of v at = = 0. Condition
(15) is used in the analysis by Philip [10].

If, however, the entry pressure is positive, we see from Figure 1 (right)
that there is a threshold saturation u* such that continuity of capillary pres-
sure cannot be established unless the wetting phase saturation on the side
corresponding to the lower curve is less than or equal to u*. The threshold
saturation u* is determined by (assuming h; > h,.)

J(w) _J()

=2 1
h; ) (16)

If the wetting phase saturation on the side of the interface that corresponds
to the lower curve is greater than u*, then the saturation on the other side is
equal to one, and the capillary pressure across the interface is discontinuous.
The extended pressure condition is then given by (assuming h; > h,)

S(ur) _ J(w)
= fou < u*
I 3 if up <, (17)
u, =1 ifu* <u < 1.

If Ay < h, then the second interface condition is given by (17) with the sub-
scripts [ and r reversed; the threshold saturation u* follows then from (16)
with h; and h, reversed.

A typical example of a porous medium with zero entry pressure is given by
the Van Genuchten model [14], one with positive entry pressure by the Brooks-
Corey model [4]. We shall discuss both these models, and the corresponding
solutions, in Section 4.

3 Similarity solutions
In this section we study the equations (10)—(11) subject to the initial condition

1 if z <0,
u(,0) _{ 0 ifz>0. (18)

The resulting problem admits solutions of self-similar form. If we set

u(z,t) = f(n), with 5= W (19)
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we obtain for f the ordinary differential equations

il + i (D)) = 0 forn <0, (20)
wf' +h (DY = 0 forn>0. (21)

Here the primes denote differentiation with respect to n. The initial condition
for u yields the boundary conditions

f(—=o0)=1 and f(oco)=0. (22)
At n = 0, the solution has to satisfy the flux continuity condition

lim (=i D)) = lim (~ vk, D)) (23)

=1
740

and the extended pressure condition (17) with u, and u; replaced by f, =
limyao £(7) and fy = limyo £(n).

3.1 Construction of the solution

To construct the similarity solution, we first solve (20), (21) and (22) and then
match the corresponding solutions at n = 0 so that the interface conditions
(17) and (23) are satisfied.

Thus we start with the subproblems

P {%nf/-l-hz(D(f)f’)/:O, —oo < n <0,
T f(=ee) =1, S(0) = £,
and
{%ﬁf’—khr(D(f)f’)':O, 0 <1< oo,
T FO) = £ floc) =0,

where 0 < f;, f, <1 have to be determined from the interface conditions.

It is well-known (e.g. De Neef [6] and Van Duijn & Peletier[13]) that Prob-
lem P_ has a unique solution f_ = f_(n) for every f; € [0,1]. If f; =1 then
f-(n) =1 for all n < 0; if fi < 1 then there exists a number —oo < a_ < 0

such that
=1 forn <a_,
f-(n) . .
< 1 and strictly decreasing for a_ < n < 0.

The behaviour of the diffusion coefficient near f = 1 determines whether a_ =
—o0 or a_ > —oo. The precise condition is given in Section 3.2.
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Similarly, Problem P, has a unique solution f, = f1(n) for every f. € [0, 1].
If f, =0 then fi(n) = 0 for all n > 0; if f, > 0 then there exists a number
0 < ay < oo such that

) > 0 and strictly decreasing for 0 < n < ay,
w1 2 0 fornp > ay.

Here the behaviour of the diffusion coefficient near f = 0 determines whether
ay = o0 or ap < oo. For the precise condition we refer to Section 3.2.
To apply the interface conditions we need to know the fluxes at n = 0. Let

Fy = —gihy D(f1) fL(0)

and
F. = _QbrhrD(fr)f-/I—(O)'

For every value of f; € [0, 1], which determines the solution f_ of Problem P_,
a unique Fj results. We denote this dependence by writing F; = Fi(f;). This
function is continuous and decreasing in f; € [0,1] such that Fj(1) = 0. An
analytic proof of these statements is given by Van Duijn & Peletier [13]; a
computational result is shown in Figure 2, where the flux function Fj is given
for the Brooks-Corey and the Van Genuchten model.

In a similar fashion F, can be considered as a function of f,.. This function,
which is continuous and increasing in f. € [0,1] with F,.(0) = 0, is shown in
Figure 2.

Having discussed these preliminary results, we can now outline the match-
ing procedure.

3.1.1 Existence of a unique pair (f}, f,)

We consider in detail the case ~; > h,.. In Figure 2 the graphs of the capillary
pressure and the fluxes are shown, both as functions of the saturation at each
side of the origin. Note that here the lower capillary pressure curves correspond
to the left-hand side of the origin, the upper curves to the right-hand side. The
fluxes were obtained by numerically solving transformed versions of Problems
P_ and P, for different f; and f.. The details of the transformation and
computation are given in Section 3.1.2. We treat the cases with and without
entry pressure separately.

Zero entry pressure

If the entry pressure is zero, then the saturations at the origin have to sat-
isfy condition (15), reflecting continuity of the capillary pressure. Since the
capillary pressure functions are strictly decreasing, it follows from continuity
of the capillary pressure that the right saturation depends monotonically on
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Pc

25

0.08

0.04 |

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
f f

Figure 2: Capillary pressure (upper figures) and flux (lower figures) as a func-
tion of the saturation. The solid curves correspond to the left, the dashed
curves to the right side of the origin. The left figures are obtained for the
Van Genuchten model (zero entry pressure), the right figures for the Brooks-
Corey model (positive entry pressure). The data used for the computation of
the fluxes are given in Table 1.

the left saturation (cf. Figure 2 (left)): for instance, when we increase the
left saturation f;, then the right saturation f,. increases as well. Furthermore,
for increasing f;, the left flux F; decreases while the corresponding right flux
increases.

Now using continuity and monotonicity of the graphs in Figure 2 (left), we
find, for f; increasing from zero, a unique pair (fi, f.) such that both pressure
and flux are equal. The continuity of the fluxes combined with F(0) > F.(0)
and Fi(1) < F,(1) yields the existence of such a pair. The monotonicity of the
fluxes implies the uniqueness.
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Positive entry pressure

If the entry pressure is positive, as in Figure 2 (right), then the situation is
different in the sense that now the saturations at the discontinuity are related
to each other through the extended pressure condition (17). Increasing the
left saturation f;, we see that the right saturation increases only if f; < u*,
but is constant (f, = 1) if f; > u*. Moreover, for increasing f;, the left flux F}
decreases while the corresponding right flux F) increases only if f; < u*, but
is constant (F, = F.(1)) if f; > u*.

So, if Fi(u*) > F.(1), then f; must be greater than «* in order to have
continuity of the flux. In that case f, = 1, and F, = F,.(1). Since Fi(f;) is
a strictly decreasing function of f; with Fy(1) = 0, it follows that there is a
unique f; such that continuity of the flux is satisfied. Note that the capillary
pressure is discontinuous in this case.

If Fi(u*) < F.(1), then it is necessary that f; < «* in order to have conti-
nuity of flux. Consequently the capillary pressure is continuous, and again as
in the case of zero entry pressure, there is a unique pair (f;, f.), such that the
interface conditions are satisfied.

Remark. The case h; < h, can be treated in a similar manner. In that
case too, the pair (fi, f,) is uniquely determined. However now the capillary
pressure is always continuous, since f; must be less than one in order to have
a positive flux Fj, and therefore f, < u*.

3.1.2 Computation of the solution

To obtain a solution, first determine the pair (f;, f.) that satisfies the interface
conditions, and then use these values to solve Problems P_ and Py. It is not
necessary to solve these problems directly: we can obtain their solutions by
the method that will be used to compute the fluxes F; and F,.

We first explain how to obtain the pair (fi, f.). For the time being, let us
assume that the functions Fi(f;) and F,.(f,) are known: later on we discuss
how they can be approximated numerically. We distinguish between the cases
hi > h, (capillary pressure possibly discontinuous) and h; < h, (capillary
pressure continuous).

If Ay > h, we first have to check whether the capillary pressure is continu-
ous. Determine to that purpose Fj(u*) and F,(1). If Fj(u*) > F.(1), then the
capillary pressure is discontinuous, and hence f, = 1. In that case we have to

find the root f; € (u*,1) of

Fi(f) = F(1). (24)
If Fi(u*) < F.(1), then the capillary pressure is continuous, and hence f; < u*.
In that case determine f. as a function of f; using continuity of capillary
pressure. Then find the root f; < u* that solves the equation

E(f)) = F.(f-(1))- (25)
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If h; < h,, then the capillary pressure is continuous and we proceed as above:
determine f, as a function of f; using continuity of capillary pressure, and find
the root f; € (0,1) that solves (25). To find the root of (24) or (25) we used
the bisection method.

Crucial in the construction are the flux functions Fi(f;) and F,(f.). Of
course it is not necessary to determine the entire graphs of F; and F,.. The
functions F; and F, only have to be evaluated at the iteration points resulting
from the algorithm that is used to find the root of (24) or (25). We discuss
below how F.(f,), with 0 < f. < 1, can be approximated numerically. The
function Fi(f;) is approximated in an entirely analogous way. Therefore those
details are omitted.

To determine the right flux F.(f,) we need to solve Problem P, and com-
pute the flux at » = 0. The complication here is the boundary condition
f+(oc0) = 0 which is not always easy to verify. Fortunately there is a more
direct way to obtain the flux-saturation relation at n = 0. The idea is to
transform equation (21) into a differential equation for the flux with the satu-
ration as independent variable (see e.g. Van Duijn & Floris [11]). Since fy is
strictly decreasing on (0,ay) we can invert

fv=Jf+m)  for  0<n<ay,

to obtain
n:J-I-(f) for nggfm

where o4 is the inverse of f; with 0.(0) = a4 and o4(f.) = 0. Next consider
the scaled flux (up to the porosity) as a function of saturation, i.e.

y(f) = =k D()) [ (o4 (f) for 0< [ < fr. (26)

Note that y(f) > 0 for 0 < f < f,, because f; is monotonically decreasing.
Using equation (21), one easily verifies that

dy

df(f) = %U'F(f) f0r0<f<f7“7 (27)

and
%y _ _y, f
yﬁz—g SD(f) for0 < f<f. (28)
Since the flux vanishes whenever the saturation vanishes we also have y(0) = 0.
Thus for given f, € [0, 1], we want to solve the boundary value problem

de 1
yﬁ__ihrl)(f) for 0 < f < f,,
(BVP) dy

df (fr) =0, y(O) =0,
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0.04 | . a
C
> b
0.02 |
0 £ |
0 fr=0.6 . 1

Figure 3: Shooting procedure to solve Problem (BVP): (a) y, = 0.04, (b)
y- = 0.03, and (¢) y, = 0.03752, required y, limit value. The Van Genuchten
model is used here, with data taken from Table 1.

such that y > 0 on (0, f.). Having established the solution y = y(f), we know
the flux at n = 0 through the relation

Fr(fr) - Qbry(fr)- (29)

Problem (BVP) is solved by a shooting technique. Instead of the boundary
conditions of Problem (BVP), we consider the initial conditions

y(fr) =y, (>0, a priori unknown),

dy

%(fr) - 07
and solve the differential equation of Problem (BVP) with a Runge-Kutta
method in the interval 0 < f < f.. The parameter y, is chosen such that the
boundary condition y(0) = 0 is satisfied. We used the bisection method to
obtain fast convergence to the required value of y,.. The shooting procedure is
illustrated in Figure 3.

The method to compute y(f) can be conveniently employed to determine
the approximate solution f; of Problem P,. In the Runge-Kutta procedure,
the second-order differential equation in y is rewritten into a system of first-
order differential equations in the dependent variables y and dy/df. Now, from
(27) we have
W) = for0 <1 < (30)

where a, is given by
dy
ﬁ(m) = za+ (< 00). (31)
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Hence, using equation (30), the algorithm directly gives for every value of f the
corresponding value of n. This yields the approximate solution of Problem P,
as illustrated in Figure 4.

fr

0 at 0.3
eta

Figure 4: Solution of Problem P, with f. = 0.6, obtained by using (30) with
y = y(f) from Figure 3.

3.2 Structure of the solution

From what we learned so far we deduce that the self-similar form of the so-
lution, u(z,t) = f(n) with n = 2/y/1, has a discontinuity at the origin = 0
(n = 0), where the initial saturation as well as the properties of the porous
medium are discontinuous. Moreover, there exist numbers —oco < a; < 0 <
a, < oo such that

1 for n < ay,
f(n)q €(0,1) and strictly decreasing for a; <np < 0and 0 <7 < a,,
=0 for n > a,.

Let us assume for the moment that the numbers a; and a, are finite. They
characterise moving or free boundaries in the z,{-plane, given by

z(t) = aV't and z,.(t) = a\Vt, fort>0. (32)

This implies that the saturation as a function of position and time satisfies

1 for & < x(t), t >0
u(z,t)q €(0,1) for z(t) <z <0and 0 <z < z.(t), >0,
0 for z > x.(t), t > 0.



3 SIMILARITY SOLUTIONS 15

Moreover

h%lu(:u )= fi and hﬁ)lu(l’ t)y=f. for all ¢t > 0.

In the mathematics literature, precise results are known concerning the finite-
ness of a; and a,, and concerning the behaviour of the similarity solution near
these points, e.g. Atkinson & Peletier [1], [2] or Van Duijn & Floris [11]. These
results are related to the behaviour of the diffusion coefficient near f = 1 and
near f = 0. Following [1], we find that

LD
a; > —oo if and only if / | () ds < o0, (33)
o 1—s
and -
a, < 0o if and only if / ﬂ ds < oc. (34)
0o s

When free boundaries exist, we can easily find them from the solution in the
flux-saturation plane (cf. Figure 3). Using (27) we obtain

and similarly,

The behaviour of the solution in the neighbourhood of the free boundary
follows directly from the differential equations (20) and (21). We have

1y~ pi (PO () . D(f(n))
a0 = lim —f'(n) = lm ) ()f( mht; (35)

(DU ), DU)
a = lim F'(n) hr = lim F(n)

F'(m)hs. (36)

1
2

These expressions imply that

=0 if Dl(l_) = —0Q,
gfi}f( ) € (_0070) if D/(l_) S (_0070)7 (37)
=00 i D(17)=0,
and
=0 it D'(0%) = oo,
%lznf( ) € (—O0,0) if D/(O+) € (0700)7 (38)
' — oo i D/(0%) =0
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Expressions (35) and (36) can also be obtained by relating the speed of
the free boundaries in the x,t-plane to the speed of the fluid particles. For
instance,

Jou/0xz(x,t)
ot (1) u(z,t)
(

he o D) ()
Vit f(n)

Finally we observe that volume (or mass) conservation is ensured by the con-
tinuity of the flux. Mathematically this is expressed by

o[ (= gmydy =on [ sn)an,

indicating that the volume of the oil penetrating the water is equal to the

volume of water penetrating the oil.

4 Examples: Brooks-Corey and Van Genuchten
models

In this section we consider two examples of capillary diffusion, each for different
capillary-hydraulic properties of the porous medium. The Leverett .J-function
reflects the capillary properties of the porous medium, the relative permeabili-
ties reflect its hydraulic properties. We shall consider here two different sets of
functions which are frequently used in hydrology: the Brooks-Corey functions
and the Van Genuchten functions.

For a Brooks-Corey medium, the Leverett J-function is given by

J(u) = u A
with A > 0, and the relative permeabilities are given by
kr(u) = u3+2“, krp(u) = (1 — u)2(1 — UIHM).
For a Van Genuchten medium .J is given by
T(w) = (1)
with 0 < m < 1, and the relative permeabilities are given by

km(u) = u1/2 (1 — (1 — ul/m>m)27 krn(U) _ (1 . u)1/2(1 B u1/m)2m
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25+

0 0.2 0.4 0.6 0.8 1
u

Figure 5: A Brooks-Corey J-curve for A = 2 (solid), and a Van Genuchten
J-curve for m = 2/3 (dashed).

The parameters A and m are related to the distribution of the pore sizes in the
porous medium. In Figure 5 we have given the graphs of a Brooks-Corey and
a Van Genuchten .J-curve. The parameters A and m were chosen such that
both curves have the same asymptotic behaviour as the saturation u tends to
7ero.

The important difference between the two cases is that Brooks-Corey has a
nonzero entry pressure, whereas Van Genuchten has .J(1) = 0. Consequently,
the second (pressure) interface condition for a Van Genuchten medium is con-
tinuity of the capillary pressure, while for a Brooks-Corey medium the second
interface condition is given by the extended pressure condition.

The extended pressure condition for a Brooks-Corey curve leads to the
following relation between u; and u, when h; > h,.:

wfu* i 0 <y < wur
Uy, = (39)

1 ifu* <wu <1,
with

oo (B) o

To obtain the interface condition if h; < h,, we have to interchange u; and wu,
as well as h; and A, in (39) and (40).

The interface condition for a Van Genuchten type of medium is given by

1+ hr/hl 1/(1=m) ul_l/m —1 - if0<u < 1,
o] ()
' 0 if = 0.

The graphs of the relations between u, and u; for the Brooks-Corey and the
Van Genuchten model are given in Figure 6.
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0.8 08}
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a
0.6 | 06}
b
b
0.4 04+
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0.2 c 1 0.2

0 - - - - 0 - - - -

0 0.2 0.4 0.6 0.8 | 1 0 0.2 0.4 0.6 0.8 | 1
u u

Figure 6: Second interface condition for a Brooks-Corey (left) and a
Van Genuchten (right) medium, with A = 2 and m = 2/3, for different ra-
tios of h,/h;: (a) 0.5, (b) 1, (c) 2.

0.04

0.03

0.02

0.01

0 0.2 0.4 0.6 0.8 1
u

Figure 7: Diffusion functions of a Brooks-Corey (solid) and a Van Genuchten
(dashed) medium, for A =2, m =2/3 and N.= M = 1.

The graphs of the diffusion functions for each type of medium are given in
Figure 7. Note that in both cases D(0) = D(1) = 0. Hence free boundaries
may occur.

The diffusion function (12) for a Brooks-Corey medium has the asymptotic
behaviour:

1

D(u) ~ Xu”l/A as u |0, (41)
24\
D(u) ~ ; (1= asutl. (42)

Therefore, the integrability conditions in (33) and (34) are satisfied for all
A > 0. Hence we have free boundaries as v 1 1 and as v | 0 for all A > 0.
Furthermore we see from (41) and (42) that D'(0Y) = 0 and D'(17) = 0

for all A > 0. Therefore, the similarity solution satisfies f'(a;) = —oo and
f(af) = —oo for all A > 0.
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Parameter | Value || Parameter | Value
N, 1 M 1

ky 1 k, 0.3

le 1 957“ 1

A 2 m 2/3

Table 1: Data set of parameters

The diffusion function for a Van Genuchten medium yields:

D(u) ~ m(1— m)u(2+m)/2m as u |0, (43)
1 —

D(u) ~ Z(l — u)m+1/2 as u T 1. (44)
mm

Again the integrability conditions in (33) and (34) are satisfied, now for all
relevant values values of m (0 < m < 1). Further, we obtain from (43) that

D'(07) =0 for all 0 < m < 1, and from (44) that

—o0  if0<m< 3,

0 if% <m <1l
So, the similarity solution satisfies f'(a;) = —oo for all 0 < m < 1, and
0 if0<m< 3,
f’(G?—) = al/(thﬂ) if m= %7
—o0 if 1 <m<1.

In Figures 8 and 9, solutions corresponding to a Brooks-Corey and a
Van Genuchten medium are shown as curves in the flux-saturation plane and
as similarity profiles f = f(n). The data are given in Table 1.

Note that for this data set the capillary pressure for the solution corre-
sponding to the Brooks-Corey medium is discontinuous at the origin (f; > u*).
Further note that the nonwetting front (n = a;) for the solution corresponding
to the Van Genuchten medium is much further to the left than the nonwetting
front for the solution corresponding to the Brooks-Corey medium. This is due
to the diffusion near f = 1 which is much greater for a Van Genuchten medium
than for a Brooks-Corey medium because of the steeper slope of the .J-curve
near f =1 (cf. Figure 5 and 7). Therefore, in a Van Genuchten medium the
nonwetting phase easier enters the region originally occupied by the wetting
phase than in a Brooks-Corey medium.
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Figure 8: Solutions in the flux-saturation plane for a Brooks-Corey (left) and
a Van Genuchten type of porous medium (right).
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Figure 9: Similarity profiles f = f(n) for a Brooks-Corey (left) and a
Van Genuchten (right) porous medium.

For both types of porous media we can say more about the way the solution
approaches the free boundaries. Substituting the asymptotic formulas (41) and
(42) into (35) and (36), we obtain for a Brooks-Corey medium

w(l —f)*f'(n) = sa asnla,

and therefore
L= f~Ef(n—a)'? asnla

1/3
Ko = (Sl "
2(2 4+ Ay

Similarly, as f tends to zero we find

with

f ~ ]/(oc(ar - n)A/(l—}—Q)\)
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with . \
e _ (@420 )
2h, ’

In the case of a Van Genuchten medium we find
L= f ~ K{"(n—a)C®" asn|a,
[~ K, =)0 as gt

with

Kv9 |Gz|(2m + 1)mm+1 2/(2m+1)
8% =
1 Ahi(1—m)

ar(m +2) )Qm/ (m+2)

d K? =
and fo (4hrm2(1 —m)

Finally we show in Figure 10 the time-dependent behaviour of the Brooks-
Corey similarity solution. Observe that the values at the origin are fixed and
that the behaviour near the free boundaries remains unchanged, except for the
V1 scaling in the coefficients K¢ and K!°. Furthermore we note that for fixed
z < 0, limygoo u(z,t) = fi € (0,1), while for fixed > 0 limi_ o u(z,t) = f, =
1.

05 ¢t

u*~

-0.4 -0.2 0 0.2 0.4
X

Figure 10: Similarity solution in a Brooks-Corey medium for (a) ¢t = 1, (b)
t =2 and (c) t = 3, and the initial distribution.
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