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Ultrashort pulse propagation in high gain optical fiber amplifiers with normal dispersion is studied by
self-similarity analysis of the nonlinear Schrödinger equation with gain. An exact asymptotic solution
is found, corresponding to a linearly chirped parabolic pulse which propagates self-similarly subject
to simple scaling rules. The solution has been confirmed by numerical simulations and experiments
studying propagation in a Yb-doped fiber amplifier. Additional experiments show that the pulses remain
parabolic after propagation through standard single mode fiber with normal dispersion.

PACS numbers: 42.81.Dp, 05.45.Yv, 42.65.Re
The establishment of self-similarity is a key element
in the understanding of many widely differing nonlinear
physical phenomena, including the propagation of thermal
waves in nuclear explosions, the formation of fractures in
elastic solids, and the scaling properties of turbulent flow
[1]. In particular, the presence of self-similarity can be
exploited to obtain asymptotic solutions to partial differ-
ential equations describing a physical system by using the
mathematical technique of symmetry reduction to reduce
the number of degrees of freedom [2]. Although the pow-
erful mathematical techniques associated with the analysis
of self-similar phenomena have been extensively applied
in certain areas of physics such as hydrodynamics, their
application in optics has not been widespread. However,
some important results have been obtained, with previous
theoretical studies considering asymptotic self-similar be-
havior in radial pattern formation [3], stimulated Raman
scattering [4], and in the nonlinear propagation of ultra-
short pulses with parabolic intensity profiles in optical
fibers with normal dispersion [5]. This latter case has
also been studied using numerical simulations, with results
suggesting that parabolic pulses are generated in the ampli-
fication of ultrashort pulses in nonlinear optical fiber am-
plifiers with normal dispersion [6]. To date, however, there
has been no experimental demonstration of self-similar
parabolic pulse propagation either in optical fibers or in
nonlinear optical amplifiers.

In this Letter we present results of calculations using
self-similarity methods [1–4] to analyze pulse propagation
in an optical fiber amplifier described by the nonlinear
Schrödinger equation (NLSE) with gain and normal
dispersion. These calculations show that parabolic pulses
are, in fact, exact asymptotic solutions of the NLSE with
gain, and propagate in the amplifier self-similarly subject
to exponential scaling of amplitude and temporal width.
In addition, the pulses possess a strictly linear chirp. Our
theoretical results are confirmed both by numerical simu-
lations and by experiments which have taken advantage of
the current availability of high gain optical fiber amplifiers
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and of recent developments in methods of ultrashort pulse
characterization. In particular, the use of the pulse charac-
terization technique of frequency-resolved optical gating
(FROG) [7] has allowed us to measure the intensity and
chirp of parabolic pulses generated in a Yb-doped fiber
amplifier, and to compare these experimental results
directly with theoretical predictions. Additional experi-
ments have demonstrated that the pulses remain parabolic
in profile during propagation in normally dispersive
fiber, confirming the self-similar nature of propagation in
this regime.

These asymptotic self-similar parabolic pulses are of
fundamental interest since they represent a new class of so-
lution to the NLSE with gain and, from a practical point of
view, their linear chirp facilitates efficient pulse compres-
sion. In particular, the asymptotic pulse characteristics are
found to be determined only by the incident pulse energy
and the amplifier parameters, with the initial pulse shape
determining only the map toward this asymptotic solution.
In addition, all of the incident pulse energy contributes to
the output parabolic pulse. This is in contrast to the bet-
ter known soliton solutions of the NLSE in the absence
of gain [8], which require accurate control of the input
pulse energy and where a given input pulse develops into a
soliton of fixed amplitude shedding the remaining energy
into a continuum. “Parabolic fiber amplifiers” therefore
have potential wide-ranging applications in many areas
of current optical technology, allowing the generation of
well-defined linearly chirped output pulses from an optical
amplifier, even in the presence of input pulse distortions.
High power linearly chirped parabolic pulses can be effi-
ciently compressed and indeed, after compression of the
parabolic pulses generated in our experiments, we have
generated pulses of 80 kW peak power having 70 fs du-
ration. Parabolic amplifiers thus allow access to a conve-
nient fiber-based method of generating and transmitting
high-power optical pulses, rivaling soliton propagation,
stretched-pulse Gaussian pulse propagation [9], as well as
existing chirped pulse amplification systems.
© 2000 The American Physical Society
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Our theoretical analysis considers the evolution of
pulses in an optical amplifier in the absence of gain
saturation and for pulses with spectral bandwidths less
than the amplifier bandwidth. In this case, propagation
can be described by the NLSE with gain [10]:
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Here, A�z, T � is the slowly varying pulse envelope in a co-
moving frame, b2 is the group velocity dispersion (GVD)
parameter, g is the nonlinearity parameter, and g is the dis-
tributed gain coefficient. In the absence of gain �g � 0�, it
is possible to solve the NLSE exactly using the inverse
scattering method to obtain the well-known soliton so-
lutions [7], but, in the presence of gain, solutions usu-
ally require numerical simulations. However, the NLSE
with gain can also be analyzed using symmetry reduction,
with the solutions obtained in this way representing exact
self-similar solutions which appear in the asymptotic limit
z ! ` [1–4].

For the NLSE with gain in Eq. (1), this technique yields
an asymptotic self-similar solution in the limit z ! `, pro-
vided that g fi 0 and that gb2 . 0. The solution is

A�z, T � � A0�z� �1 2 �T�T0�z��2�1�2 exp�iw�z, T ��,

jT j # T0�z� , (2)

with A�z, T � � 0 for jT j . T0�z�. This corresponds to a
compactly supported pulse with a parabolic intensity pro-
file, and a quadratic phase given by

w�z, T � � w0 1 3g�2g�21A2
0�z� 2 g�6b2�21T2, (3)

where w0 is an arbitrary constant. The corresponding
constant linear chirp is given by dv�T� � 2≠w�z, T ��
≠T � g�3b2�21T . In the asymptotic regime, this pulse
propagates self-similarly, maintaining its parabolic shape
subject to the exponential scaling of its amplitude A0�z� �
jA�z, 0�j and effective width parameter T0�z� according to

A0�z� � 0.5�gEIN�1�3�gb2�2�21�6 exp�gz�3� , (4)

T0�z� � 3g22�3�gb2�2�1�3E
1�3
IN exp�gz�3� , (5)

where EIN is the energy of the input pulse to the ampli-
fier. Significantly, these results imply that it is only the
energy of the initial pulse (and not its specific shape) which
determines the amplitude and width of the asymptotic para-
bolic pulse.

These theoretical predictions have been confirmed by
numerical simulation of the NLSE using the standard split-
step Fourier method [8]. Gaussian input pulses having a
range of pulse durations (FWHM) from 100 fs–5 ps, but
fixed energy EIN � 12 pJ, were propagated in a 6 m long
fiber amplifier with realistic parameters corresponding to
Yb-doped fiber: g � 5.8 3 1023 W21 m21, b2 � 25 3

1023 ps2 m21, g � 1.9 m21 [11]. Figure 1(a) compares
the evolution of the amplitude of the propagating pulse
FIG. 1. (a) Simulation results showing the evolution of pulse
amplitude as a function of propagation distance for Gaussian
pulses of duration 100 fs–5 ps, compared with calculated
asymptotic result (see legend). (b) Simulated output intensity
(circles, left axis) and chirp (circles, right axis) corresponding to
the 200 fs input pulse, compared with the asymptotic parabolic
pulse results (dotted lines).

obtained from simulations with the analytic prediction for
A0�z� given by Eq. (4). The evolution of the pulse in
the amplifier approaches the asymptotic limit in all cases.
Indeed, Fig. 1(b) shows the output pulse characteristics for
the input 200 fs pulse, illustrating the excellent agreement
(over 10 orders of magnitude) between the intensity and
chirp of the simulation output (circles) and the expected
asymptotic pulse profile from Eq. (2) (dashed line).

Additional simulations have been carried out to investi-
gate the dependence on fiber parameters and pulse initial
conditions in more detail. As the fiber gain is increased
for a given input pulse, the exponential growth of the pulse
amplitude and width is correspondingly increased in agree-
ment with Eqs. (4) and (5), and the parabolic asymptotic
limit is reached in a shorter propagation distance. Simu-
lations also show that for a fiber of fixed gain, while the
effect of intensity or phase modulation on an input pulse
modifies the length scale over which the evolution to the
asymptotic limit occurs, the asymptotic parabolic pulse so-
lution is nonetheless reached in all cases after sufficient
propagation distance. In this context, we also note that,
although at jT j � T0�z� the solution in Eq. (2) has infinite
slope, this is the case only in the asymptotic limit. At in-
termediate propagation distances, simulations and analysis
predict low amplitude wings on the parabolic pulse which
decay exponentially as a function of T , and which vanish
in the limit z ! `. Indeed, these wings can be seen in
the simulation results in Fig. 1(b) at instantaneous power
levels less than 1025 W.

To experimentally verify that parabolic pulses are indeed
generated in fiber amplifiers, we injected femtosecond
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pulses into a high gain Yb-doped fiber amplifier, and
carried out FROG characterization of the amplified pulses.
Figure 2 shows the experimental setup. Here, a fiber-
based pulsed seed source was used to generate Gaussian
input pulses of 200 fs FWHM at a wavelength of 1.06 mm
and at a repetition rate of 63 MHz [11]. These pulses were
then injected into a 3.6 m length of Yb-doped fiber co-
directionally pumped at 976 nm, with a gain of 30 dB in
this geometry. The input pulse energy in the fiber was
estimated at 12 pJ. Complete pulse characterization of
the output pulses was carried out using FROG based on
second-harmonic generation (SHG) in a KDP (potassium
dihydrogen phosphate) crystal, with the experimental
configuration used being similar to that described in
[7]. FROG measurements were carried out on the pulses
directly after the Yb-doped fiber amplifier, as well as
after subsequent propagation in 2 m of standard undoped
single mode fiber (SMF). Intensity and chirp retrieval
from the measured FROG traces was carried out using the
standard FROG retrieval algorithm, with the root-mean-
squared error between the measured FROG trace and that
associated with the retrieved pulse being acceptably low
�G , 0.007� in all cases [7].

We first discuss the characterization of the pulses di-
rectly from the amplifier. The solid lines in Fig. 3 show
the measured intensity and chirp for an amplifier gain of
30 dB, corresponding to a distributed gain coefficient of
g � 1.9 m21. In this case, the output pulse energy was
12 nJ, the temporal FWHM was Dt � 2.6 ps, the spec-
tral FWHM was Dl � 32 nm, and the corresponding du-
ration bandwidth product was DtDn � 22. Note that,
in the figure, the arbitrary intensity profile obtained from
the FROG retrieval algorithm has been scaled to show the
instantaneous power in kilowatts. The experimental in-
tensity and chirp are compared with the results of NLSE
simulations (circles) and the predicted asymptotic para-
bolic pulse characteristics (short dashes) for this length
of fiber. Both the measured intensity and chirp are in
good agreement with the results of NLSE simulations. The
experimentally observed weak oscillations in the wings
are attributed to higher order dispersion and resonant ef-
fects not included in Eq. (1). More significantly, however,
the measured intensity profile is also in agreement (over

FIG. 2. Experimental setup used for parabolic pulse genera-
tion and measurement. Pulse characterization via FROG was
carried out for the pulses directly from the 3.6 m Yb-doped fiber
amplifier as well as after propagation in 2 m of undoped fiber
(enclosed by dashed lines).
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2 orders of magnitude) with the asymptotic parabolic pulse
predicted by Eq. (2), using the experimental fiber param-
eters given above. To emphasize the parabolic nature of
these pulses, the figure also includes a sech2 fit to the mea-
sured intensity profile (long dashes). These parabolic pulse
characteristics are consistent with the results in Fig. 1 for
a 200 fs input pulse, where asymptotic behavior would be
expected after 3.6 m of propagation. We therefore interpret
these results as the first direct experimental characteriza-
tion of a parabolic pulse from an optical fiber amplifier,
and as a confirmation of our theory of asymptotic pulse
evolution described above.

As previously predicted in Ref. [5], an attractive feature
of high power parabolic pulses is that they propagate self-
similarly in normally dispersive fiber, allowing for highly
nonlinear propagation over substantial fiber lengths with-
out optical wave breaking. We have been able to verify
this prediction experimentally by launching the amplified
pulses shown in Fig. 3(a) into a 2 m length of undoped
fiber (SMF) and using FROG to characterize the output
pulses. The output pulses after propagation had broad-
ened both temporally and spectrally with Dt � 4.4 ps,
Dl � 50.5 nm, and DtDn � 60. Figure 3(b) shows the
measured intensity and chirp (solid lines), together with
parabolic (short dashes) and sech2 (long dashes) fits. The
pulse intensity profile was found to remain parabolic, con-
firming the self-similar nature of pulse propagation, al-
though we note that the dynamic range of the parabolic
profile is reduced due to the presence of a low energy
background having its origin in the weak oscillations in

FIG. 3. (a): Intensity (left axis) and chirp (right axis) for pulses
directly from Yb-doped amplifier for a gain of 30 dB. The
solid lines are the experimental results, compared with NLSE
simulation (circles), asymptotic parabolic pulse profile (short
dashes), and sech2 fit (long dashes). (b) The solid lines show
measured intensity and chirp after propagation through 2 m of
SMF, compared with parabolic (short dashes) and sech2 (long
dashes) fits.
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the wings of the amplified pulses. Importantly, despite the
significant temporal and spectral broadening in this nonlin-
ear regime, the chirp remains linear, a characteristic feature
of parabolic pulse propagation [5]. To demonstrate the po-
tential of high power parabolic pulses in ultrafast optics,
we used a simple dispersive grating pair to compress these
parabolic pulses, obtaining a minimum pulse duration of
Dt � 68 fs with a corresponding peak power of 80 kW.
The pulses do not compress to the expected transform lim-
ited pulse duration of around 30 fs because of third order
dispersion in the bulk grating compressor, but we note that
this can easily be eliminated with an improved compressor
design [12].

In conclusion, we have developed a theoretical treatment
of the amplification of pulses in high gain fiber ampli-
fiers which predicts the formation of high power parabolic
pulses from any input pulse. We have also demonstrated
experimentally that a Yb-doped fiber amplifier with 30 dB
gain does indeed yield parabolic pulses, whose intensity
and chirp characteristics are in quantitative agreement with
our theoretical predictions. This is the first experimental
demonstration of the existence of parabolic pulses. In view
of their self-similar propagation and the ease with which
they can be compressed, we expect that these parabolic
pulses will find wide application. Indeed, we anticipate
that parabolic pulse propagation in optical fibers may well
become as important and as widely studied as the propa-
gation of optical fiber solitons.

Note added in proof.—After acceptance of this manu-
script, we learned of recent results studying the genera-
tion of self-similarity and Cantor set fractals in nonlinear
soliton-supporting systems [13,14]. We also note that self-
similarity techniques have been used to analyze the evolu-
tion of self-written waveguides in photosensitive materials
[15]. It is likely that the study of self-similarity phenomena
in nonlinear optics will become an increasingly important
field of research in the near future.
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