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Self-similar solutions for conic cusps formation at the surface of dielectric liquids in electric field
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The nonlinear dynamics is studied for the free surface of an ideal dielectric fluid in an electric field.
Self-similar solutions of electrohydrodynamic equations describing the formation of surface conic cusps are
revealed. The behavior of physical quantitiéeld strength, fluid velocity, and surface curvafurear the
singularity is established. The threshold value of the fluid dielectric constant required for the proposed mecha-
nism of a cusp development is found.
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It is well known[1-5] that free surfaces of both conduct- 0°<3<98.6°. (2
ing fluids and liquid dielectrics, which conductivity is as-
sumed to be negligibly small, are unstable in a strong exter-
nal electric field. In the former case the interaction of the

electric field and the free-surface charges induced by thiﬁosed in my recent papét3]. There it was shown that the
field causes conic cusps to form in a finite tir(@ee, for g, t306 evolution near the singularity could be adequately
example, Refs[6-10)). What is the fluid behavior at the yeqcribed by the self-similar solutions of the electrohydrody-

stage of a singularity formation in the latter case, when the,smic equations. It might be supposed for pure dielectric
surface contains only bound polarization charges? Despitgy,igs that, as for conducting liquids, the self-similar solu-
different physical nature of the instabilities, equations of Mo+;qns are responsible for cusps formation.

tion for an ideal dielectric liquid in a vertical electric field, Let us check the validity of this hypothesis. Consider the
and the equations of perfectly conducting liquid motion have,sential motion of an ideal dielectric fluid occupying the
similar structures. Furthermore, they completely coincide Negion bounded by free surfage: 7(x,y,t). We will assume
the formal limit of infinite permittivity of a dielectrice  hat the vector of an external electric field is directed along
—, when the field does not penetrate into the mediumy,q ; ayis The velocity potentialb and the electric-field

Then there are good grounds to believe that instabilities of i htialse ande’ in and above the liquid obev the Laplace
both conducting liquids and deionized dielectric liquids with Equaﬁon? ¢ aHicobey The =ap

high & values will develop through a common scenario. So,

the aim of the present paper is to study the transient problem

of the cusp formation at the surface of a perfect dielectric,

and, in particular, to find allowable values of dielectric con- . . )

stante required for conic structures development. The _evolut|o.n of th.e free surface |s.Qeterm|ned by the dy-
The essential progress in understanding of nature of conig@mic and kinematic boundary conditions

cusps at a charged fluid surface is associated with Taylor’s

As for the nonstationary problem, a model for the Taylor
cone formation on the conducting fluid boundary was pro-

V2d=0, V?%p=0, V?%p'=0. ®)

work [7], where it was demonstrated that the surface electro- VD2 (e—1)%(dh¢)%+(e—1)|Vo|?

static pressur®g for an equipotential cone with angle 98.6° et 2 8mp

depends on the distance from its axisras and, hence, can

be counterbalanced by the surface pres®ger 1. This N aV V.g 2= (X y.t)
result was extended by Ramos and Castellafibsl2 to the VL T o e AT YL,
case of dielectric liquids with arbitrary permittivity. They P 1+ (Vo)

have shown that the pressurPg and Pg cancellation is (4)

possible if the following condition is valid:
77t:q)Z_VJ_ n'VJ_(I)Y z= W(X:y,t), (5)

P1o(€0S0g) Py —Cosby)

P}, — COSBg) P COSBp) - @ wherea is the surface-tension coefficieptjs the mass den-
sity of a medium, and), denotes the derivative along the
normal to the fluid surface. Since the electric field potential
and normal component of the displacement vector have to be
continuous at the interface, we should add the following con-
ditions at the boundary:

where 6= m7— /2 (B is the cone ang)e Py, is the Leg-
endre function of order 1/2, anBly,, is its derivative with
respect to the argument. It follows from the relatidn that
the stationary conic structures can exist only or17.6.
The corresponding cone angtefalls in the range

!

e=¢', z=n(Xy1), (6)
*Electronic address: nick@ami.uran.ru ednp=0dne', Z=n(XY,t). (7)
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The system of equations is close(_j by the qondit_ions (_)f fche To+T Y+ en=0, z<7(7), (14)
velocity field decay and the electric-field uniformity at infi-
nite distance from the surface ‘NPrLF”L?_r‘;”r’”LA‘;’;“z:Ov (3] (15)

[V®|—0, z——, (8 e e o o~

2071 + 23— P+ Dy
—EzZe, — oo, 9 +
o— g, Zo—® 9 3 >
'-—Ez, z—o», (10 ~ ~

¢ 1 ( L
where E is the magnitude of the external electric-field - 2 ~2 |~
strength. N1+ \1tm o

We are interested in the dynamics of formation of a sin- 5~ ~y ~2

gular profile for the fluid surface. It is natural to assume that (e=D)dne)"+(e=Dlertez)  _ _ _
the electric field near the cusp appreciably exceeds the exter- 2 o z=(r),
nal field; i.e.,|V¢|>Ele and|V¢'|>E. In this case, the
interface evolution is fully determined by the induced field, (16)
which decreases with distance from the singularity. One can .~ o~ o
thus use the conditions 291 —=27=303;-3; @7,  z=7(r), 17

Vel—=0, z——e, (11) e=9¢', edp=dne’', z=7(1), (18)

Ve'|=0, 2=+, (12) D+ D0, T24+72-0, (19
instead of the field uniformity condition®) and (10). This ~p ~2 ~19 ~y2 ~p o
agrees with the assumption about the universal behavior of a et e;—0, ¢t =0, rotzi—e=, (20
fluid in the formation of a singular surface profile, because it ~ 5 _ _ _
allows the fluid motion near the singular point to be analyzed $7=0, ¢;=0, grr'zo, 7,=0, r=0. (21

without regard for the particular geometry of the problem

(the fluid “forgets” the boundary conditions at infinity at the For the self-similar solutions concerned, the surface profile
final stages of the instabilily The applicability of these con- forms first at the periphery and then extends to the center
ditions will be discussed below in more detail after establish-=2z=0 (the spatial scale decreasesr&$). This implies that
ing some regularities for the dynamics of a dielectric fluidthe formation of conic cusps at=t. is described by those

near the singularity.
Note that the equations of motion with conditio(ikl)
and(12) allow the self-similar substitution
(I)(X,y,z,t)=2a(77/p)1/2E_1a)(?,E)7_1/3’
o(x,y,z,t)=4maE o(r,z) 7,
o' (x.y,zt)=4maE Y’ (r,7) 7",
n(x,y,t)=4maE ?5(r) 7?5,
T=EX4ma) trr 23

7=EX4ma) zr 2B,

r=E3(64m3a’p) YAt~ 1),

solutions to the set of Eq$13)—(21) which provide conic
asymptotic shape of the surface. In such a situation, the pres-
ence of asymptotic solutions for whichecr att—o is the
necessary condition for the validity of our assumption about
the self-similar nature of conic points.

Analysis of Egs.(13—(21) in the limit R=/r 2+2z?2
—o showed that they have an asymptotic solution of the
form

D=dy(r,z)=sR 1, (22)
-~ ~~ [2R(sy—9)]¥?
e=go(r,2)= qe-1) Py(—cosd), (23
e 2R(s9—s)|*?
(,D/Z(,Do(r,Z)Z— m Pl/z(COSG), (24)
7="70(r)=—Sof, (25

which corresponds to the most important case of the axially

symmetric protrusion on the surfatieere,r = \x?+y? is the
distance from the symmetry axis anhdis the blow-up timg
Substituting these expressions in E@—(8), (11), and(12),

one finds that the dimensionless functishs ¢, ¢’, and 7
obey the following set of partial differential equations:
Or+7 1+ D=0, z<7(r), (13

05530

p=P3,,(C0Sb,)/4+ sirP 0P} 2(cosby)/ e,
q=P3,,(—c0osbg)/4+ ¢ sir?6,P},.2(— cosby),
So= — cot 00 y

where = arctanf/z) andsis a constant satisfying inequality
0<s<sy (the quantitiesR and 6 are the radial and angular
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FIG. 1. Schematic drawing of a surface of dielectric flzid

=7(r) corresponding to the self-similar solutions of the equations

of motion.

spherical polar coordinatesThis solution describes a conic
surface of the anglg8=2m—26, whosee dependence is
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*© 3n

~ _ _~ o~ Jd
o' ( ,z>=<pa<r,z)+n§1 aa@[Rl’ZPuz(cosen,

~ - — * a3ﬂ
D(1,2)=Do(T,2)+ >, by=5-[R 1],
n=1 ¢gz°"

77<?)=7;o<?>+nZl cort73n,

It turns out that, to the first order of the expansion, the sur-
face is conic

s3(1+5s3)%?
a,;=0, a,=0, bj=————-, ¢;=0.
18s¢(3—2sp)
The correction to Eq(25) for the surface shape appears in
the next order. One finds from kinematic boundary condition

given by the relatiori1). It may be considered as a dynamic (17 that
generalization for the static solutions obtained in Refs.

[11,12.

According to Eq.(22), the fluid motion is spherically
symmetric, and fluid moves to the sink poRt0 along the
tangent to the surfacg5). Since the surface shape at-0
is determined by the asymptotic solutions of E4)—(21),

a conic cusp forms at timg. in accordance with the expres-
sion(25). The electric field at the cusp increasesras”, the
cusp growth velocity increases as'/®, and the cusp curva-
ture increases as . Returning to dimensional quantities,
we get at the protrusion apex

&n(P|r:0~ al/3P1/6(tc_t)71/31

(9n‘P’|r=O~ a,l/3pl/6(tc_t)—1/3,

&ncb |r:0~ a1/3p— 1/3(tc_ t) —1/3’

a,fl/3 l/3(tc_t)72/3.

77rr|r:0~ P

One can see that all these quantities become infinite in
finite time.

s(4s3—1)
8so(1+s2)%(3—2s3)

Co=

It is clear that the surface shape deviates from the conic one
in the direction specified by the sign of tltg coefficient.
Indeed, the evolution of the fluid boundary away from the
singularity is determined by the leading terms of the expan-
sion in small (.—t) value,

7= —Sol +Cyo(alp)?(t—t)*r %,

from whence it follows that, when forming a conic cusp, the
fluid moves upwards only at,<0. As is seen from the
expression for the coefficiewt, its value is negative only if
1/4<s3<3/2 or, what is the same, if

V2/3< —tangy<2.

This condition restricts the applicability of our approach to
the description of the process of the conic cusps formation,
which is based on the analysis of self-similar solutions. It
8uggests that the cone angbe=27— 26, should be in the
range 78.5< 3<126.9°. Comparing the allowable values of

This analysis is valid only if the solutions of the set of B with the inequality(2), one can see that the following

partial differential Eqs(13)—(21) with the asymptotic$22)—
(25) satisfy the conditiory< — s, i.e., if the fluid surface
z=7(r) is positioned below the asymptotic cofsee Fig.

1). Otherwise, the surface velocity would be directed in op-
position to thez axis that certainly contradicts our notion of

condition must hold:
78.5°<3<98.6°.

Taking into account the relatiofl), we find that the corre-

the fluid behavior at the blow-up stage. Let us check howsPonding value of the fluid dielectric constantmust be

this condition is fulfilled in the limit of large . We will seek
the solutions of the systenfl3)—(21) at R—o as the

asymptotic expansion with leading terms given by the ex

pressiong22)—(25),

oo

3n

— e m e d
so(r,2)=soo(r,2)+n§:)1 an

= [RY2Py(—cos6)],

3n

more thane ~22.2 (note thate~26 for ethyl alcohol and
e~81 for watej. Fore<e. it holdsc,>0 and our solutions
are physically meaningless.

" Let us now define the velocity of the fluid boundary at the
protrusion apex. According to the proposed model, we have

2(alp)t®

—o=—=|7(0)|.
77t|l' 0 3(tc—t)1/3|77( )|
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It is possible to estimate the involved in this expression dis-

tance|7(0)| from the cone apex to the fluid surfa¢eur
asymptotic expansion diverges for small Multiplying ki-
nematic boundary conditiofl7) by =r/3 and integrating it

overr, one obtains after simple mathematics
E3p1/2

1677

f J,@dS,
S

whereS stands for the fluid surface= n(x,y,t), andVis the

volume of a region bounded from above by the conic surface

z=—s,r and from below by the surface=7(r). The inte-
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|7(0)|<h(sg,Sq) = — Ot fp(3+ 3coshy) 3,

which does not involve the free paramesger

Let us return to the question of the applicability of the
conditions(11) and(12). As was pointed out above, they can
be used instead of Eq$9) and (10) only if the external
electric field is much weaker than the cusp field. After the
transition to the self-similar variables, this requirement is
recast as
AR )

—-2_213
T, ¥

’QB%+A¢'§>8

It is clear that for smallr (i.e., immediately before the col-

gral on the right-hand side of this expression is the fluidizpsg this condition is fulfilled near the singularity in a natu-

velocity flux through the surfac®& Since the functionb is

ral way. In this caseRR, and T values exist for which models

harmonic, the flux of the vector-fiel® through any closed  (13)_(21) with 0<r2+ 22< RZ andt,— T<t<t, adequately
surface is zero. This fact allows the flux through the surfacgascribes the strongly nonlinear stages of electrohydrody-

S to be determined using the asymptotic form of velocity
potential atr?+z?>—. Taking into account that the fluid
flows into a solid angle 2(1+ coséy) at infinity, one can get
from Eq.(22)

V=ms(1+cosby).

namic instability development for the surface of a dielectric
fluid in an external electric field. One can find that the fol-
lowing inequalities must hold:

Ro<A~aE 2, T<Ty~apE"3,

Notice that the volume of a region bounded by the conicwheren andT, are respectively the characteristic spatial and

surfacez= — sy and the plang= —h (a circular right cone
of heighth) equalsV at

h=h(s,sp) =[3scotffy( 1+ cosby)]*°.

Clearly, if the volumeV is fixed and the condition-s,
<7:(r)<0 is fulfilled for anyr (for the conditions(21) to

temporal scales at the linear stage of the instability.

Note also that, together with the asymptotic solution for
the velocity potential22), the system of the Eq$13)—(21)
admits the more general solution,

d=5,R 1+5,RY?P,,(—CcOsH),

be valid, the surface near the cone apex must be “roundewhich demands a separate consideration. This expression co-

off,” the quantity | 7(0)| cannot exceed the cone heigkee
Fig. 1). That is, the inequality

7(0)|<h(s,so)

connecting the characteristic spatial dimension at srRall
with the asymptotic parametsris satisfied. Since the maxi-
mum possible value oh for the fixed permittivitye and,
hence, for the fixed anglé, corresponds to the maximum
allowed values, of the s constant, the following estimate is
also valid:

incides with Eq(22) for s,=0. In any caséi.e., for arbitrary

s, ands,), the self-similar solutions describe the formation
of conic cusps withke-dependent angles at the free surface of
dielectric liquids in an applied electric field.
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