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Self-similar solutions for conic cusps formation at the surface of dielectric liquids in electric field

Nickolay M. Zubarev*
Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 106 Amundsen Street, 620016 Ekaterinburg, Russ

~Received 11 January 2002; published 3 May 2002!

The nonlinear dynamics is studied for the free surface of an ideal dielectric fluid in an electric field.
Self-similar solutions of electrohydrodynamic equations describing the formation of surface conic cusps are
revealed. The behavior of physical quantities~field strength, fluid velocity, and surface curvature! near the
singularity is established. The threshold value of the fluid dielectric constant required for the proposed mecha-
nism of a cusp development is found.
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It is well known @1–5# that free surfaces of both conduc
ing fluids and liquid dielectrics, which conductivity is a
sumed to be negligibly small, are unstable in a strong ex
nal electric field. In the former case the interaction of t
electric field and the free-surface charges induced by
field causes conic cusps to form in a finite time~see, for
example, Refs.@6–10#!. What is the fluid behavior at the
stage of a singularity formation in the latter case, when
surface contains only bound polarization charges? Des
different physical nature of the instabilities, equations of m
tion for an ideal dielectric liquid in a vertical electric field
and the equations of perfectly conducting liquid motion ha
similar structures. Furthermore, they completely coincide
the formal limit of infinite permittivity of a dielectric,«
→`, when the field does not penetrate into the mediu
Then there are good grounds to believe that instabilities
both conducting liquids and deionized dielectric liquids w
high « values will develop through a common scenario. S
the aim of the present paper is to study the transient prob
of the cusp formation at the surface of a perfect dielect
and, in particular, to find allowable values of dielectric co
stant« required for conic structures development.

The essential progress in understanding of nature of c
cusps at a charged fluid surface is associated with Tayl
work @7#, where it was demonstrated that the surface elec
static pressurePE for an equipotential cone with angle 98.6
depends on the distance from its axis asr 21 and, hence, can
be counterbalanced by the surface pressurePS}r 21. This
result was extended by Ramos and Castellanos@11,12# to the
case of dielectric liquids with arbitrary permittivity. The
have shown that the pressuresPS and PE cancellation is
possible if the following condition is valid:

P1/28 ~cosu0!P1/2~2cosu0!

P1/28 ~2cosu0!P1/2~cosu0!
52«, ~1!

whereu05p2b/2 (b is the cone angle!, P1/2 is the Leg-
endre function of order 1/2, andP1/28 is its derivative with
respect to the argument. It follows from the relation~1! that
the stationary conic structures can exist only for«.17.6.
The corresponding cone angleb falls in the range
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0°,b,98.6°. ~2!

As for the nonstationary problem, a model for the Tay
cone formation on the conducting fluid boundary was p
posed in my recent paper@13#. There it was shown that the
surface evolution near the singularity could be adequa
described by the self-similar solutions of the electrohydro
namic equations. It might be supposed for pure dielec
liquids that, as for conducting liquids, the self-similar sol
tions are responsible for cusps formation.

Let us check the validity of this hypothesis. Consider t
potential motion of an ideal dielectric fluid occupying th
region bounded by free surfacez5h(x,y,t). We will assume
that the vector of an external electric field is directed alo
the z axis. The velocity potentialF and the electric-field
potentialsw andw8 in and above the liquid obey the Laplac
equations

¹2F50, ¹2w50, ¹2w850. ~3!

The evolution of the free surface is determined by the
namic and kinematic boundary conditions

F t1
u¹Fu2

2
5

~«21!2~]nw!21~«21!u¹wu2

8pr

1
a

r
¹'•

¹'h

A11~¹'h!2
, z5h~x,y,t !,

~4!

h t5Fz2¹'h•¹'F, z5h~x,y,t !, ~5!

wherea is the surface-tension coefficient,r is the mass den-
sity of a medium, and]n denotes the derivative along th
normal to the fluid surface. Since the electric field poten
and normal component of the displacement vector have to
continuous at the interface, we should add the following c
ditions at the boundary:

w5w8, z5h~x,y,t !, ~6!

«]nw5]nw8, z5h~x,y,t !. ~7!
©2002 The American Physical Society01-1
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The system of equations is closed by the conditions of
velocity field decay and the electric-field uniformity at infi
nite distance from the surface

u¹Fu→0, z→2`, ~8!

w→2Ez/«, z→2`, ~9!

w8→2Ez, z→`, ~10!

where E is the magnitude of the external electric-fie
strength.

We are interested in the dynamics of formation of a s
gular profile for the fluid surface. It is natural to assume t
the electric field near the cusp appreciably exceeds the e
nal field; i.e., u¹wu@E/« and u¹w8u@E. In this case, the
interface evolution is fully determined by the induced fie
which decreases with distance from the singularity. One
thus use the conditions

u¹wu→0, z→2`, ~11!

u¹w8u→0, z→1`, ~12!

instead of the field uniformity conditions~9! and ~10!. This
agrees with the assumption about the universal behavior
fluid in the formation of a singular surface profile, becaus
allows the fluid motion near the singular point to be analyz
without regard for the particular geometry of the proble
~the fluid ‘‘forgets’’ the boundary conditions at infinity at th
final stages of the instability!. The applicability of these con
ditions will be discussed below in more detail after establi
ing some regularities for the dynamics of a dielectric flu
near the singularity.

Note that the equations of motion with conditions~11!
and ~12! allow the self-similar substitution

F~x,y,z,t !52a~p/r!1/2E21F̃~ r̃ ,z̃!t1/3,

w~x,y,z,t !54paE21w̃~ r̃ ,z̃!t1/3,

w8~x,y,z,t !54paE21w̃8~ r̃ ,z̃!t1/3,

h~x,y,t !54paE22h̃~ r̃ !t2/3,

r̃ 5E2~4pa!21r t22/3,

z̃5E2~4pa!21zt22/3,

t5E3~64p3a2r!21/2~ tc2t !,

which corresponds to the most important case of the axi
symmetric protrusion on the surface~here,r 5Ax21y2 is the
distance from the symmetry axis andtc is the blow-up time!.
Substituting these expressions in Eqs.~3!–~8!, ~11!, and~12!,

one finds that the dimensionless functionsF̃, w̃, w̃8, andh̃
obey the following set of partial differential equations:

F̃ r̃ r̃1 r̃ 21F̃ r̃1F̃ z̃z̃50, z̃,h̃~ r̃ !, ~13!
05530
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w̃ r̃ r̃1 r̃ 21w̃ r̃1w̃ z̃z̃50, z̃,h̃~ r̃ !, ~14!

w̃ r̃ r̃
8 1 r̃ 21w̃ r̃

81w̃ z̃z̃
8 50, z̃.h̃~ r̃ !, ~15!

2F̃ r̃ r̃ 12F̃ z̃h̃2F̃

3
1

F̃ r̃
2
1F̃ z̃

2

2

5
1

A11h̃ r̃
2 S h̃ r̃ r̃

11h̃ r̃
2

1
h̃ r̃

r̃
D

1
~«21!2~]nw̃ !21~«21!~ w̃ r̃

2
1w̃ z̃

2
!

2
, z̃5h̃~ r̃ !,

~16!

2h̃ r̃ r̃ 22h̃53F̃ z̃23h̃ r̃ F̃ r̃ , z̃5h̃~ r̃ !, ~17!

w̃5w̃8, «]nw̃5]nw̃8, z̃5h̃~ r̃ !, ~18!

F̃ r̃
2
1F̃ z̃

2→0, r̃ 21 z̃ 2→`, ~19!

w̃ r̃
2
1w̃ z̃

2→0, w̃ r̃
82

1w̃ z̃
82→0, r̃ 21 z̃ 2→`, ~20!

F̃ r̃50, w̃ r̃50, w̃ r̃
850, h̃ r̃50, r̃ 50. ~21!

For the self-similar solutions concerned, the surface pro
forms first at the periphery and then extends to the centr
5z50 ~the spatial scale decreases ast2/3). This implies that
the formation of conic cusps att5tc is described by those
solutions to the set of Eqs.~13!–~21! which provide conic
asymptotic shape of the surface. In such a situation, the p
ence of asymptotic solutions for whichh̃} r̃ at r̃→` is the
necessary condition for the validity of our assumption ab
the self-similar nature of conic points.

Analysis of Eqs. ~13!–~21! in the limit R5Ar̃ 21 z̃ 2

→` showed that they have an asymptotic solution of
form

F̃5F̃0~ r̃ ,z̃!5sR21, ~22!

w̃5w̃0~ r̃ ,z̃!5F2R~s02s!

q~«21! G1/2

P1/2~2cosu!, ~23!

w̃85w̃08~ r̃ ,z̃!52F2R~s02s!

p~«21! G1/2

P1/2~cosu!, ~24!

h̃5h̃0~ r̃ !52s0r̃ , ~25!

p5P1/2
2 ~cosu0!/41sin2u0P1/28 2~cosu0!/«,

q5P1/2
2 ~2cosu0!/41« sin2u0P1/28 2~2cosu0!,

s052cotu0 ,

whereu5arctan(r̃/z̃) ands is a constant satisfying inequalit
0,s,s0 ~the quantitiesR andu are the radial and angula
1-2
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spherical polar coordinates!. This solution describes a coni
surface of the angleb52p22u0 whose« dependence is
given by the relation~1!. It may be considered as a dynam
generalization for the static solutions obtained in Re
@11,12#.

According to Eq. ~22!, the fluid motion is spherically
symmetric, and fluid moves to the sink pointR50 along the
tangent to the surface~25!. Since the surface shape att→0
is determined by the asymptotic solutions of Eqs.~13!–~21!,
a conic cusp forms at timetc in accordance with the expres
sion ~25!. The electric field at the cusp increases ast21/3, the
cusp growth velocity increases ast21/3, and the cusp curva
ture increases ast22/3. Returning to dimensional quantitie
we get at the protrusion apex

]nwur 50;a1/3r1/6~ tc2t !21/3,

]nw8ur 50;a1/3r1/6~ tc2t !21/3,

]nFur 50;a1/3r21/3~ tc2t !21/3,

h rr ur 50;a21/3r1/3~ tc2t !22/3.

One can see that all these quantities become infinite
finite time.

This analysis is valid only if the solutions of the set
partial differential Eqs.~13!–~21! with the asymptotics~22!–
~25! satisfy the conditionh̃,2s0r̃ , i.e., if the fluid surface
z̃5h̃( r̃ ) is positioned below the asymptotic cone~see Fig.
1!. Otherwise, the surface velocity would be directed in o
position to thez axis that certainly contradicts our notion o
the fluid behavior at the blow-up stage. Let us check h
this condition is fulfilled in the limit of larger̃ . We will seek
the solutions of the system~13!–~21! at R→` as the
asymptotic expansion with leading terms given by the
pressions~22!–~25!,

w̃~ r̃ ,z̃!5w̃0~ r̃ ,z̃!1 (
n51

`

an

]3n

] z̃3n
@R1/2P1/2~2cosu!#,

FIG. 1. Schematic drawing of a surface of dielectric fluidz̃

5h̃( r̃ ) corresponding to the self-similar solutions of the equatio
of motion.
05530
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w̃8~ r̃ ,z̃!5w̃08~ r̃ ,z̃!1 (
n51

`

an8
]3n

] z̃3n
@R1/2P1/2~cosu!#,

F̃~ r̃ ,z̃!5F̃0~ r̃ ,z̃!1 (
n51

`

bn

]3n

] z̃3n
@R21#,

h̃~ r̃ !5h̃0~ r̃ !1 (
n51

`

cnr̃ 123n.

It turns out that, to the first order of the expansion, the s
face is conic

a150, a1850, b152
s2~11s0

2!3/2

18s0~322s0
2!

, c150.

The correction to Eq.~25! for the surface shape appears
the next order. One finds from kinematic boundary condit
~17! that

c252
s2~4s0

221!

8s0~11s0
2!2~322s0

2!
.

It is clear that the surface shape deviates from the conic
in the direction specified by the sign of thec2 coefficient.
Indeed, the evolution of the fluid boundary away from t
singularity is determined by the leading terms of the exp
sion in small (tc2t) value,

h52s0r 1c2~a/r!2~ tc2t !4r 25,

from whence it follows that, when forming a conic cusp, t
fluid moves upwards only atc2,0. As is seen from the
expression for the coefficientc2, its value is negative only if
1/4,s0

2,3/2 or, what is the same, if

A2/3,2tanu0,2.

This condition restricts the applicability of our approach
the description of the process of the conic cusps format
which is based on the analysis of self-similar solutions.
suggests that the cone angleb52p22u0 should be in the
range 78.5°,b,126.9°. Comparing the allowable values
b with the inequality~2!, one can see that the followin
condition must hold:

78.5°,b,98.6°.

Taking into account the relation~1!, we find that the corre-
sponding value of the fluid dielectric constant« must be
more than«c'22.2 ~note that«'26 for ethyl alcohol and
«'81 for water!. For«,«c it holdsc2.0 and our solutions
are physically meaningless.

Let us now define the velocity of the fluid boundary at t
protrusion apex. According to the proposed model, we h

h tur 505
2~a/r!1/3

3~ tc2t !1/3
uh̃~0!u.

s

1-3
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It is possible to estimate the involved in this expression d
tance uh̃(0)u from the cone apex to the fluid surface~our
asymptotic expansion diverges for smallr̃ ). Multiplying ki-
nematic boundary condition~17! by p r̃ /3 and integrating it
over r̃ , one obtains after simple mathematics

V5
E3r1/2

16ta2p3/2ES
]nFdS,

whereSstands for the fluid surfacez5h(x,y,t), andV is the
volume of a region bounded from above by the conic surf
z̃52s0r̃ and from below by the surfacez̃5h̃( r̃ ). The inte-
gral on the right-hand side of this expression is the fl
velocity flux through the surfaceS. Since the functionF is
harmonic, the flux of the vector-field¹F through any closed
surface is zero. This fact allows the flux through the surfa
S to be determined using the asymptotic form of veloc
potential atr 21z2→`. Taking into account that the fluid
flows into a solid angle 2p(11cosu0) at infinity, one can get
from Eq. ~22!

V5ps~11cosu0!.

Notice that the volume of a region bounded by the co
surfacez̃52s0r̃ and the planez̃52h ~a circular right cone
of heighth) equalsV at

h5h~s,s0!5@3scot2u0~11cosu0!#1/3.

Clearly, if the volumeV is fixed and the condition2s0

,h̃ r̃( r̃ )<0 is fulfilled for any r̃ ~for the conditions~21! to
be valid, the surface near the cone apex must be ‘‘roun
off,’’ the quantity uh̃(0)u cannot exceed the cone height~see
Fig. 1!. That is, the inequality

uh̃~0!u<h~s,s0!

connecting the characteristic spatial dimension at smaR
with the asymptotic parameters is satisfied. Since the maxi
mum possible value ofh for the fixed permittivity« and,
hence, for the fixed angleu0 corresponds to the maximum
allowed values0 of the s constant, the following estimate i
also valid:
05530
-

e

e

c

d

uh̃~0!u<h~s0 ,s0!52cotu0~313cosu0!1/3,

which does not involve the free parameters.
Let us return to the question of the applicability of th

conditions~11! and~12!. As was pointed out above, they ca
be used instead of Eqs.~9! and ~10! only if the external
electric field is much weaker than the cusp field. After t
transition to the self-similar variables, this requirement
recast as

w̃ r̃
2
1w̃ z̃

2
@«22t2/3, w̃ r̃

82
1w̃ z̃

82
@t2/3.

It is clear that for smallt ~i.e., immediately before the col
lapse! this condition is fulfilled near the singularity in a natu
ral way. In this case,R0 andT values exist for which models
~13!–~21! with 0<r 21z2,R0

2 and tc2T,t<tc adequately
describes the strongly nonlinear stages of electrohydro
namic instability development for the surface of a dielect
fluid in an external electric field. One can find that the fo
lowing inequalities must hold:

R0!l;aE22, T!T0;ar1/2E23,

wherel andT0 are respectively the characteristic spatial a
temporal scales at the linear stage of the instability.

Note also that, together with the asymptotic solution
the velocity potential~22!, the system of the Eqs.~13!–~21!
admits the more general solution,

F̃5s1R211s2R1/2P1/2~2cosu!,

which demands a separate consideration. This expression
incides with Eq.~22! for s250. In any case~i.e., for arbitrary
s1 ands2), the self-similar solutions describe the formatio
of conic cusps with«-dependent angles at the free surface
dielectric liquids in an applied electric field.
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