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ABSTRACT

We consider a strong ultrarelativistic shock moving through a star whose envelope has a polytrope-like density
profile. When the shock is close to the star’s outer boundary, its behavior follows the self-similar solution given by
Sari for implosions in planar geometry. Here we outline this solution and find the asymptotic solution as the shock
reaches the star’s edge. We then show that the motion after the shock breaks out of the star is described by a self-
similar solution remarkably like the solution for the motion inside the star. In particular, the characteristic Lorentz
factor, pressure, and density vary with time according to the same power laws both before and after the shock breaks
out of the star. After emergence from the star, however, the self-similar solution’s characteristic position corresponds
to a point behind the leading edge of the flow rather than at the shock front, and the relevant range of values for the
similarity variable changes. Our numerical integrations agree well with the analytic results both before and after the
shock reaches the star’s edge.

Subject headinggs: hydrodynamics — shock waves — stars: general

1. INTRODUCTION

The surge of activity over the past decade or so in the fields of
supernovae and of gamma-ray bursts and their afterglows has led
to renewed investigation into the behavior of strong shocks.Much
of the analytic work on strong shock propagation to date has
focused on self-similar solutions to the hydrodynamic equations.
In these solutions, the profiles of the hydrodynamic variables as
functions of position have constant overall shapes whose time
evolution consists simply of scalings in amplitude and position.
As a result, self-similarity allows us to reduce the nominal system
of two-dimensional partial differential hydrodynamic equations
to a system of one-dimensional ordinary differential equations.
The existence of self-similar solutions thus enables a significant
simplification of problems free of spatial scales in regions far from
the initial conditions. The best-known such solutions are the
pioneering Sedov-Taylor solutions for nonrelativistic point ex-
plosions propagating into surroundings with power-law density
profiles (Sedov 1946; von Neumann 1947; Taylor 1950).

Self-similar solutions are traditionally divided into two cate-
gories (see, e.g., Zel’dovich & Raizer 1967 for a detailed dis-
cussion). ‘‘Type I’’ solutions are those in which the time evolution
of the shock position and hydrodynamic variables follows from
global conservation laws such as energy conservation. The Sedov-
Taylor solutions are type I; their ultrarelativistic analogs were
found by Blandford & McKee (1976). By contrast, global con-
servation laws are useless in ‘‘type II’’ solutions, which are instead
characterized by the requirement that the solution remain well
behaved at a singular point known as the ‘‘sonic point.’’ If, for
instance, the density of the surroundings falls off very quicklywith
distance, type II solutions found byWaxman& Shvarts (1993) for
nonrelativistic spherical explosions hold instead of the Sedov-
Taylor solutions and relativistic solutions found by Best & Sari
(2000) hold instead of the Blandford-McKee solutions.

Here we study the case of an ultrarelativistic shock wave
moving outward through a star whose envelope has a polytrope-
like density profile. After the shock front reaches the outer edge
of the star, an event we refer to as ‘‘breakout,’’ the shock front
itself ceases to exist but the shocked fluid continues outward into
the vacuum originally surrounding the star. We focus on the flow

at times just before and just after breakout. As explained in x 2,
the shock evolution just inside the star’s surface is identical to
that expected for an imploding planar shock in a medium with a
power-law density profile. Such a shock follows a type II self-
similar solution as discussed by Sari (2006) and Nakayama &
Shigeyama (2005) and outlined briefly here. Section 3 describes
the asymptotic solution as the shock front reaches the surface of
the star, a singular point. In x 4 we investigate the flow after
breakout.We show that the self-similar solution for the evolution
inside the star also describes the behavior outside the star except
in that a different range of the similarity variable applies and in
that the physical interpretation of the characteristic position
changes. We show in x 5 that the analytic results of xx 2, 3, and
4 agree with our numerical integrations of the relativistic time-
dependent hydrodynamic equations, and in x 6 we summarize
our findings. Throughout our discussion, we take the speed of
light to be c ¼ 1.

2. SHOCK PROPAGATION WITHIN THE STAR

Since we are interested in the shock after it has reached the
envelope or the outermost layers of a star, we assume that themass
and distance lying between the shock front and the star’s outer
edge are much less than the mass and distance between the shock
front and the star’s center. In this region, we can take the star’s
gravity g to be constant and the geometry to be planar. We also
assume that the stellar envelope has a polytrope-like equation of
state, that is, p / �q where p is the pressure, � is the mass density,
and q is a constant. This type of equation of state occurs in various
contexts including fully convective stellar envelopes, in which
case q is the adiabatic index, in radiative envelopes where the
opacity has a power-law dependence on the density and temper-
ature, and in degenerate envelopes.
Under these assumptions we can find the density profile from

hydrostatic equilibrium and the equation of state as follows. Let
x be the radial coordinate such that x ¼ 0 at the star’s surface and
x < 0 inside the star. Then

0 ¼ dp

dx
þ �g; ð1Þ
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and with the boundary condition � ¼ p ¼ 0 at the edge of the
star, we have

q

q� 1
�q�1 / �gx; ð2Þ

� / (�x)1=(q�1) ¼ (�x)�k : ð3Þ

For convective and degenerate envelopes, q is between 4/3 and
5/3; for radiative envelopes with Kramers opacity, q ¼ 30/17.
These give k values between �1 and �3.

With the power-law density profile � / (�x)�k , the evolution
of an ultrarelativistic shock propagating through the envelope is
given by a type II converging planar self-similar solution to the
hydrodynamic equations representing energy, momentum, and
mass conservation,

@

@t
�2(eþ � 2p)
� �

þ @

@x
�2�(eþ p)
� �

¼ 0; ð4Þ

@

@t
�2�(eþ p)
� �

þ @

@x
�2(�2eþ p)
� �

¼ 0; ð5Þ

@

@t
(�n)þ @

@x
(��n) ¼ 0; ð6Þ

with the ultrarelativistic equation of state

p ¼ 1

3
e: ð7Þ

Here we simply state the solution; for a detailed derivation, see
Sari (2006) or Nakayama & Shigeyama (2005). We assume that
the effect of the star’s gravity on the shock propagation is negli-
gible. Following Sari (2006), we let R(t) be the solution’s charac-
teristic position, which we choose to be the position of the shock
front while the shock is within the star. We take t ¼ 0 at the time
the shock reaches the star’s surface (R ¼ 0), and we take R < 0
when t < 0. We take �(t);P(t), and N (t) to be, respectively, the
characteristic Lorentz factor, pressure, and number density, and
we define

t�̇

�
¼ �m

2
;

tṖ

P
¼ �m� k;

tṄ

N
¼ � m

2
� k: ð8Þ

Following Blandford & McKee (1976), we define the similarity
variable as

� ¼ 1þ 2(mþ 1)
R� x

R=�2
: ð9Þ

Note that for R < 0; x � R and the relevant range in � is �1 <
� < 1 as long asm > �1.Wedefine the hydrodynamic variables—
the Lorentz factor �, the pressure p, and the number density n—
as follows:

�2(x; t) ¼ 1

2
�2(t)g(�); ð10Þ

p(x; t) ¼ P(t) f (�); ð11Þ

n(x; t) ¼ N (t)
h(�)

g1=2(�)
: ð12Þ

Here g, f, and h give the profiles of �, p, and n; expressions for
the dependence of m on k and for g, f, and h as functions of �
make up the entire self-similar solution. The above definitions
and the ultrarelativistic hydrodynamic equations in planar ge-
ometry put the sonic point, the point separating fluid elements
that can communicate with the shock front via soundwaves from
those that cannot, at g� ¼ 4� 2

ffiffiffi
3

p
. Requiring that the solution

pass smoothly through this point gives

m ¼ 3� 2
ffiffiffi
3

p� �
k; ð13Þ

g ¼ Cg
g�

3k � 2k
ffiffiffi
3

p
þ 1

� 2(2þ
ffiffiffi
3

p
)

����
����
�ð3�2

ffiffi
3

p
Þk
; ð14Þ

f ¼ Cf �g�� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p��� ����ð4�2
ffiffi
3

p
Þk
; ð15Þ

h ¼ Ch g�þ 2k
ffiffiffi
3

p
� 4� 2

ffiffiffi
3

p��� ����½ð2
ffiffi
3

p
�3Þ(2k�1)k�=(�1þk

ffiffi
3

p
�

ffiffi
3

p
)

; jg�� 2jk= �1þk
ffiffi
3

p
�

ffiffi
3

pð Þ: ð16Þ

The boundary conditions g (� ¼ 1) ¼ f (�¼ 1) ¼ h (�¼ 1) ¼ 1,
which hold inside the star, allow us to determine the constants of
integration Cg , Cf , and Ch and write

g ¼ �g�� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p

�1� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p
� �� 3�2

ffiffi
3

pð Þk
; ð17Þ

f ¼ �g�� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p

�1� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p
� ��(4�2

ffiffi
3

p
) k

; ð18Þ

h ¼ g�þ 2k
ffiffiffi
3

p
� 4� 2

ffiffiffi
3

p

1þ 2k
ffiffiffi
3

p
� 4� 2

ffiffiffi
3
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� �� 2

ffiffi
3
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�3ð Þ(2k�1)k½ �= �1þk
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3

p
�
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3

pð Þ

; 2� g�ð Þk= �1þk
ffiffi
3

p
�

ffiffi
3

pð Þ: ð19Þ

3. TRANSITION AT BREAKOUT

To know what happens to the shocked material after the shock
front emerges from the star, we need the behavior of the shock
just as the front reaches the surface—the ‘‘initial conditions’’ for
the evolution of the shock after breakout. Specifically, we are
interested in the limiting behavior of each fluid element and in
the asymptotic profiles of �, p, and n as functions of x as t and R
approach 0.

The limiting behavior of a given fluid element may be found
as follows. Due to the self-similarity, we know the time taken for
�, p, and n of a given fluid element to change significantly is the
timescale onwhichR changes by an amount of order itself. Since
R can change by this much only once between the time a given
fluid element is shocked and the time the shock breaks out of the
star, the limiting values of �, p, and n for that fluid element
should be larger only by a factor of order unity from their values
when the fluid element was first shocked.

We can also find the scalings of �, p, and n with x at breakout
via simple physical arguments. We denote by x0, �0, p0, and n0
the position, Lorentz factor, pressure, and number density of a
fluid element just after being shocked and by xf , �f , pf , and nf
those values at the time the shock breaks out. Since the shock
accelerates to infinite Lorentz factors, and since, as we found
above, the Lorentz factor of a given fluid element remains con-
stant up to a numerical factor, this fluid element will lag behind
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the shock by xf � x0/�
2
0 at t ¼ 0. Equation (8) gives � � t�m/2,

so we have �0 � (�x0)
�m/2; then � f � ½(�xf )�

2
f �

�m/2
or

�f � (�xf )
�m=2(mþ1): ð20Þ

Likewise, since P � t�m�k and N � t�m/2�k , we have p0 �
x�m�k
0 and n0 � x�m/2�k

0 ; then

pf � (�xf )�
2
f

h i�m�k

� (�xf )
�(mþk)=(mþ1); ð21Þ

nf � (�xf )
�(m=2þk)=(mþ1): ð22Þ

We can use the equations for the solution before breakout to
perform equivalent calculations of the limiting behavior of fluid
elements and asymptotic profiles of �, p, and n. For the limiting
behavior of a fluid element, we take the advective time deriva-
tive of g� and use the result to relate � and g to time for that fluid
element. The advective derivative is given by

D

Dt
¼ @

@t
þ �

@

@r
¼ �̇

@

@�
þ Ṗ

@

@P
þ mþ 1

t
(2=g� �)

@

@�
:

ð23Þ

We apply this derivative to equation (17) to get

D(g�)

D log t
¼

(2� g�) g�� 4� 2
ffiffiffi
3

p
þ 2

ffiffiffi
3

p
k

	 

g�� 4� 2

ffiffiffi
3

p	 
 ; ð24Þ

and integrate to get

t=t0 ¼ g�� 2j j(3þ
ffiffi
3

p
)=(3k�

ffiffi
3

p
�3)

;
g�� 4� 2

ffiffiffi
3

p
þ 2k

ffiffiffi
3

p

1� 4� 2
ffiffiffi
3

p
þ 2k

ffiffiffi
3

p
����

����
�3k= �

ffiffi
3

p
�3þ3kð Þ

; ð25Þ

where t0 is the time at which the fluid element is shocked, that
is, when g ¼ � ¼ 1.When g�j j31—which becomes true every-
where behind the shock front as t ! 0—this simplifies to

t=t0 ’ g�j j�1
1� 4� 2

ffiffiffi
3

p
þ 2k

ffiffiffi
3

p��� ���3k= �
ffiffi
3

p
�3þ3kð Þ

; ð26Þ

and equation (17) simplifies to

g ’ �g�

�1� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p
� �� 3�2

ffiffi
3

pð Þk
: ð27Þ

We substitute equation (26) into equation (27) to get the limiting
Lorentz factor of the fluid element as t ! 0:

� ¼ �0 1� 4� 2
ffiffiffi
3

p
þ 2k

ffiffiffi
3

p��� ���� 3�3
ffiffi
3

pð Þk= 2 �
ffiffi
3

p
�3þ3kð Þ½ �

; ð28Þ

which is greater only by a numerical factor than the initial Lorentz
factor �0 that the fluid element received right after being shocked.
To relate the limiting p, n to p0, n0, we likewise take equations (18)
and (19) in the limit jg�j31 and use equation (26) and (27) with
the results to get

p ¼ p0 1� 4� 2
ffiffiffi
3

p
þ 2k

ffiffiffi
3

p��� ���� 6�2
ffiffi
3

pð Þk= �
ffiffi
3

p
�3þ3kð Þ

; ð29Þ

n ¼

n0 1�4�2
ffiffiffi
3

p
þ2k

ffiffiffi
3

p��� ���� 4kþk
ffiffi
3

p
�3�

ffiffi
3

pð Þ 3�2
ffiffi
3

pð Þk½ �= 2 k
ffiffi
3

p
�1�

ffiffi
3

pð Þ½ �
;

ð30Þ

which again differ only by numerical factors from their values
just after the fluid element is shocked. This is consistent with the
behavior given above by simple physical considerations.
For the calculation of the asymptotic profiles of �, p, and n as

functions of x, we cannot simply apply equations (10), (11), and
(12): equations (8) and (9) require that � ! �1 everywhere
behind the shock and that �, P, and N diverge as t ! 0. Instead
we take the t ! 0 or, equivalently, � ! 1 limit at a fixed po-
sition x. First we have

� ¼ 1þ 2(mþ 1)(1� x=R)�2 ’ 2(mþ 1)(�x=R)�2: ð31Þ

With equations (10) and (27) this gives

2�2=�2 ¼ g ¼ �4(mþ 1)(�x)�2=R

�1� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p
� ��m

; ð32Þ

� ¼ 2
(�R)�m

�2

� ��1=2(1þm)

;
4(mþ 1)

�1� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p
� ��m=2(1þm)

(�x)�m=2(1þm): ð33Þ

This is consistent with our qualitative discussion; the coefficient
in the qualitative relation is a numerical factor times the constant
(�R)�m/�2. For the p and n profiles, we apply a similar analysis
to the expressions for f and h in the limit t ! 0.

p ¼ P 2
(�R)

�2

� � mþkð Þ= 1þmð Þ

;
4(mþ 1)

�1� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p
� �� mþkð Þ= 1þmð Þ

(�x)� mþkð Þ= 1þmð Þ;

ð34Þ

n ¼ N 2
(�R)

�2

� � m=2þkð Þ= 1þmð Þ
4(mþ 1)½ �� m=2þkð Þ= 1þmð Þ

; �1� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

ph i m=2þkð Þ= 1þmð Þþk= �1þk
ffiffi
3

p
�

ffiffi
3

pð Þ

; (�x)� m=2þkð Þ= 1þmð Þ: ð35Þ

These results are likewise consistent with our qualitative
discussion.

4. EVOLUTION AFTER BREAKOUT

4.1. Self-Similar Solution

Since the breakout itself does not introduce new spatial scales
into the flow, we expect the motion after breakout to remain self-
similar. However, as the shockLorentz factor diverges at t ¼ 0, we
cannot continue to associate the characteristic position, Lorentz
factor, pressure, and number density with the values at the shock
front after breakout. Sowe begin by providing physicalmotivation
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for a different characteristic Lorentz factor and exploring the im-
plications of this choice.

We note that after breakout each fluid element expands and
accelerates over time until the element’s internal energy has been
converted entirely into bulk motion. Given a relativistic strong
shock, the internal energy of a shocked fluid element in the frame
moving with the fluid is comparable to the bulk kinetic energy of
the fluid element. This implies that the fluid element’s final bulk
Lorentz factor should be much greater than the value of the
shock Lorentz factor just after the fluid element was shocked.
The timescale tx for the resulting expansion and acceleration is
the time over which the fluid element’s size and Lorentz factor
change by a factor of order unity. For a fluid element located at
�x and with Lorentz factor �x at t ¼ 0, the time of breakout, this
timescale is tx ¼ x�2

x due to relativistic beaming. That every time
t > 0 is thus associated in a scale-independent way with a par-
ticular tx and � suggests that we pick �(t ¼ tx) ¼ �x to be the
characteristic Lorentz factor.

To see how � evolves with time, we use � / (�x)�m/2(1þm)

from equation (33) with the tx relation above to get � / t�m/2. For
the characteristic pressureP and number densityN, equations (34)
and (35) likewise give P / t�m�k and N / t�m/2�k . In other
words, equation (8) holds after breakout with exactly the same
k, m that apply inside the star. The characteristic position R is
again the position that evolves according to the Lorentz factor
�: Ṙ ’ 1� 1/2�2. Since the hydrodynamic equations still hold
as well, equations (9), (14), (15), and (16) must remain valid
when t > 0.

To find the complete solution after breakout we need to
specify the boundary conditions. We proceed by looking at the
behavior of the similarity variables �, g, f, and h. The relevant
range in � depends on R, and while the relation between R and �

is the same before and after breakout, R after breakout is not the
position of the front. Instead, the front has infinite Lorentz factor
and R lags further and further behind the front with increasing
time. A nice physical interpretation exists for R after breakout. R
tracks the position corresponding to a fluid element that has
expanded by a factor of order unity, so R marks the transition in
position between fluid elements that have expanded and accel-
erated significantly since being shocked and fluid elements
whose size and speed have remained roughly constant. Since it
takes longer for fluid elements with smaller Lorentz factors to
expand and accelerate significantly, R moves backward relative
to the leading edge of the flow at x ¼ t. R is positive after
breakout, and the range of possible x in the solution outside the
star is x � t. So � ¼ 0 at the ‘‘front’’ x ¼ t, and the relevant
range in� in the postbreakout solution is 0 < � < 1 rather than
�1 < � < 1.

Far behind x ¼ t, the profiles of �, p, and n before breakout
must coincide with the profiles after breakout. We know this be-
cause at a given time after breakout, sound waves carrying the
information that breakout occurred can only have traveled a finite
distance; material further behind the front continues to flow as if
the breakout had never occurred. Also, the two sets of profiles
must coincide at t ¼ 0, when everything is far behind the front. To
phrase this requirement on the profiles in terms of the similarity
variable, g(� ! �1), f (� ! �1), and h(� ! �1) before
breakout must coincide with g(� ! 1), f (� ! 1), and
h(� ! 1) after breakout. Then as � ! 1 after breakout, g, f,
h ! 0, and g� ! 1. In addition, the constants Cg , Cf, Ch in
equations (14), (15), and (16) must be the same for both the pre-
and postbreakout solutions. In other words, the solutions before
and after breakout, as specified by equations (9), (14), (15), and
(16) and expressions for Cg , Cf, and Ch, are the same; only the

Fig. 1.—Profiles of � as a function of position (heavy lines) at seven different times marked on the figure and trajectories of three fluid elements in position-Lorentz
factor space (thin lines). Fluid elements at the characteristic positions R are marked by open circles. We use x� t as the position coordinate to allow easy comparison of
the profiles. The t ¼ 0 curve (heavy dotted line) is the asymptotic profile corresponding to the pure power law � / (�x)�m/2(1þm) given in eq. (33). The profiles with
t < 0 (heavy solid lines) are given by eqs. (10) and (17), and the profiles with t > 0 (heavy dashed lines) are given by eqs. (10) and (36). When t < 0, the natural choices
for R and � are, respectively, the location of the shock front and the Lorentz factor of the front. When t > 0, a fluid element at position R has accelerated by a factor of
order unity and its Lorentz factor is of order �. So the positions R lie just above the ‘‘knees’’ in the profiles, which separate fluid elements which have already expanded
from those which have not. When jx� tj3R/�2 or, equivalently, j�j ! 1, all profiles approach the t ¼ 0 power law since at t ¼ 0; j�j ! 1 everywhere behind the
front. When jx� tjTR/�2, the t < 0 profiles approach a constant (� ! �/

ffiffiffi
2

p
) and the t > 0 profiles approach � / jx� tj�1

(g / ��1 from eq. [36]). Because every
fluid element is always accelerating, the t < 0 profiles always lie below the t ¼ 0 power law and the t > 0 profiles are always above the t ¼ 0 power law. Trajectories of
individual fluid elements before breakout are given by eq. (25). After breakout, eq. (25) still applies. The power laws relating t to g� stay the same after breakout since
the equations for g before and after breakout are nearly identical; also, matching the pre- and postbreakout trajectories at t ¼ 0 gives the same |t0| in the evolution both
before and after t ¼ 0.
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relevant ranges in � and the physical interpretations of the vari-
ables differ. So the expressions for g, f, h after breakout are

g ¼ g�þ 2k
ffiffiffi
3

p
� 4� 2

ffiffiffi
3

p

�1� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p
� �� 3�2

ffiffi
3

pð Þk
; ð36Þ

f ¼ g�þ 2k
ffiffiffi
3

p
� 4� 2

ffiffiffi
3

p

�1� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p
� ��(4�2

ffiffi
3

p
)k

; ð37Þ

h ¼ �g�� 2k
ffiffiffi
3

p
þ 4þ 2

ffiffiffi
3

p

1þ 2k
ffiffiffi
3

p
� 4� 2

ffiffiffi
3

p
� �� 2

ffiffi
3

p
�3ð Þ(2k�1)k½ �= �1þk

ffiffi
3

p
�

ffiffi
3

pð Þ

; g�� 2ð Þk=�1þk
ffiffi
3

p
�

ffiffi
3

p
: ð38Þ

The boundary conditions after breakout are given explicitly by
g¼ f ¼ 1 and h ¼ 5þ 4

ffiffiffi
3

p
� 4

ffiffiffi
3

p
k

	 

k/ð�1�

ffiffi
3

p
þk

ffiffi
3

p
Þ at� ¼ 7þ

4
ffiffiffi
3

p
� 4

ffiffiffi
3

p
k. A graphical comparison between the pre- and

postbreakout � versus position profiles is given in Figure 1 along
with sample trajectories of fluid elements.

4.2. Type I or Type II?

While the flow before breakout follows a type II self-similar
solution, the solution describing the flow after breakout contains
elements of type I and type II solutions. Unlike the type II so-
lution that applies before breakout, the postbreakout solution
does not contain a sonic point. Differentiating equation (36) with
respect to g� shows that the only local extremum of g� occurs at
g ¼ 1 or� ¼ 0, where g� ¼ 4þ 2

ffiffiffi
3

p
� 2k

ffiffiffi
3

p
; since g� ! 1

as� ! 1; g�must attain its global minimum at� ¼ 0. But then
for k < 0 neither the sonic point, g� ¼ 4� 2

ffiffiffi
3

p
, nor the other

singular points, g� ¼ 2 and g� ¼ 4þ 2
ffiffiffi
3

p
, are included in the

solution after breakout. A more physical argument for the ex-
clusion of the sonic point from the postbreakout solution is that
since each fluid element is accelerating while � decreases with
time, the fluid element moves forward relative toR and its�must
decrease with time. Using equation (23), we see that D�/Dt< 0
requires g� > 2 > 4� 2

ffiffiffi
3

p
for every fluid element. Then infor-

mation can travel from the very back to the front of the solution,
as would be expected if the solution were type I.

Unlike type I solutions, however, the solution after breakout
contains infinite energy. As a result, global conservation laws do
not apply, just as would be expected in a type II solution. So the
postbreakout solution lies between the standard type I and type II
solution categories. While this unusual situation implies that, in
principle, the infinite energy contained in the solution can com-
municate with and affect the region near the front, the regions of
the solution containing this infinite energy lie arbitrarily far behind
x ¼ t and therefore take arbitrarily long to communicate with the
fluid near the front. Similarly, in any application of the post-
breakout solution, the flowwill be truncated at some position well
behind R, potentially introducing a spatial scale into the problem.
However, the solution is valid until information from the trun-
cation region propagates to areas close to the front. The further the
truncation from the front, the longer this will take.

Note that this analysis assumes that the fluid stays thermally
hot at all times. In x 4.3 we discuss the realistic situation where,
at late times, fluid elements become cold as they convert their
internal energy to bulk motion.

4.3. Behavior of Fluid Elements at Late Times

While in the postbreakout solution described above the fluid
elements formally accelerate forever, each fluid element must in

practice stop accelerating when all of its internal energy has been
converted to bulk kinetic energy, or when p/n � � f /h � 1. Then
we can estimate the final Lorentz factor of a given fluid element
from equations (36), (37), and (38). By taking the advective time
derivatives of � and of f /h we can write differential equations
for their time evolution following a single fluid element. These
are

D�

Dt
¼ �

t

ffiffiffi
3

p
� 3

	 

k

g�� 4� 2
ffiffiffi
3

p ’ �

t

ffiffiffi
3

p
� 1

2

� �
; ð39Þ

D( f =h)

Dt
¼ ( f =h)

t

(2� g�)þ g�� 4� 2
ffiffiffi
3

p
þ 2k

ffiffiffi
3

p	 

g�� 4� 2

ffiffiffi
3

p
" #

ð40Þ

;
k

�1þ k
ffiffiffi
3

p
�

ffiffiffi
3

p

’ ( f =h)

t

�1ffiffiffi
3

p
� �

: ð41Þ

In the last steps we have taken the limit of late times when the
accelerating fluid element approaches the front at � ¼ 0. In this
limit equation (36) implies g!1 and g�! (g�)0 ¼ 4þ 2

ffiffiffi
3

p
�

2k
ffiffiffi
3

p
. Let �0, f0, and h0 be the values of the functions in question

just after our fluid element is shocked; then at late times �3�0 so
( f /h)/( f0/h0) � ��1. Integrating the above differential equations
then gives

�

�0
¼ t

t0

� � ffiffi
3

p
�1ð Þ=2

� � 3�
ffiffi
3

pð Þ=2�!� � �1þ
ffiffi
3

p

0 : ð42Þ

We know the fluid is thermally hot just behind the front:
although p approaches 0 as � approaches 0, n approaches 0 there
faster than p does, and p/n actually increases toward the front. So
the hottest fluid lies at the front of the solution, and we expect the
cold fluid elements to lie behind it. Fluid elements at the back of
the solutionwere shocked before fluid elements near the front, so
elements at the back have smaller �0 values and smaller ratios
�

ffiffi
3

p

0 between the final and initial Lorentz factors than do those
near the front. It turns out that the elements at the back cool faster
than those near the front.We can see this by checking that g�, the
value of g� which satisfies p/n � 1, decreases—that is, moves
toward the front of the solution—with time:

1 � p

n
� �

ffiffiffi
g

p f

h
/ t�m=2

ffiffiffiffiffiffiffiffiffiffiffiffi
g(g�)

p f (g�)

h(g�)
; ð43Þ

d lng�

d ln t
¼� g�� (g�)0

g�
� g�� 2

g�� 2(3þ 4=
ffiffiffi
3

p
)
< 0; ð44Þ

where, again, we have used equations (36), (37), and (38).
Because the fluid is hot near the front, the relativistic hy-

drodynamic equations and equation of state apply there and our
self-similar solutions should hold. However, to confirm the so-
lutions’ validity for fluid near the front, we need to check that
information from the cold fluid at the back cannot reach the hot
fluid before it cools. To do this we look at the forward char-
acteristics, which we denote by g�þ . In the frame of the un-
shocked fluid, the speed of a soundwavewith �s ¼ 1/

ffiffiffi
3

p
traveling
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forward relative to the flowmoving at � ’ 1�1/2�2 ¼ 1�1/�2g
is

dxþ

dt
¼ � þ �s

1þ ��s

’ 1� 1

�2g

ffiffiffi
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� 1ffiffiffi

3
p

þ 1
; ð45Þ

so we have

d�þ
dt

’ 1þ 2(mþ 1)�2
� �

1� dxþ
dt

� �
1

t
� (mþ 1)

�þ
t

ð46Þ

d ln g�þ
d ln t

¼ d lng�þ
d ln�þ

d ln�þ
d ln t

¼�g�þ�(g�)0
g�þ

� g�þ�4þ2
ffiffiffi
3

p

g�þ�4�2
ffiffiffi
3

p :

ð47Þ

For g� > (g�)0; d lng�/d ln t is always more negative than
d ln g�þ/d ln t: by the time sound waves moving forward from
the cold fluid reach a given fluid element farther forward, that
fluid element has become cold. So the self-similar solution is
valid for the hot fluid near the front.

Indeed, no sound wave emitted behind the front of the
solution—even for hot fluid for which the solution holds at the
time of emission—can reach the front before the fluid carry-
ing it becomes cold. So while the information can propagate
a short distance forward from any given fluid element, all fluid
elements—hot and cold—behind the front arc disconnect from
the front when the cooling of the fluid is accounted for.

In the last line of equation (47) we have used equation (36).
While the sound wave propagating along the forward charac-
teristic may in principle move through both hot and cold fluid,
the fluid temperature given by the self-similar solution is an up-
per bound on the actual temperature of the fluid, so equation (47)
gives the path of the fastest possible forward-moving sound wave.

4.4. Relation to Previous Work

The first analytic investigation of an ultrarelativistic planar
shock wave was performed by Johnson & McKee (1971). The
problem they consider is broadly similar to the one we discuss
here, but our work differs in important respects from theirs. First,
Johnson & McKee (1971) used the method of characteristics in
their work: they analyzed the flow associated with the shock by

tracing the paths of sound waves traveling through the fluid. Our
analysis uses the self-similarity of the flow instead. So while
some of their work can be applied to flows moving through
fluids with arbitrary decreasing density profiles, their methods
do not give profiles for the hydrodynamic variables as functions
of x at a given time. By contrast, our self-similar solutions re-
quire a power-law density profile inside the star but give explicit

Fig. 2.—Lorentz factor � as a function of position x shortly before the shock
breaks out of the star. The density profile has power-law index k ¼ �1:5. The
analytic profile taken from the self-similar solution (solid line) agrees well with
the numerical profile (crosses).

Fig. 3.—Evolution of � (top), P (middle), and N (bottom) with R while the
shock is still inside the star. The density profile has power-law index k ¼ �1:5.
The evolution of �, P, andNwith R is equivalent to time evolution when �3 1.
Crosses represent numerical data; solid lines are the best-fit lines to the data. That
the data are well fit by lines implies that �, P, and N do indeed evolve as power
laws; that the numerical and analytic slopes agree confirms that the evolution is as
expected.

Fig. 4.—Same as Fig. 2, but for a time shortly after the shock emerges from
the star.
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profiles for the hydrodynamic variables. Second, the methods
used by Johnson &McKee (1971) require initial conditions con-
sisting of a uniform stationary hot fluid about to expand into cold
surroundings. In our scenario the hot expanding fluid is never
uniform or stationary and always follows the self-similar profile
specified by our solution. The self-similarity analysis tells us that
the solution is type II, at least before breakout; this implies that
the asymptotic solution is independent of the initial engine.

The behavior of individual fluid elements at very late times
indicates that our asymptotic solution is consistent with the
findings of Johnson &McKee (1971): according to both our and
their solutions, the final Lorentz factor is � � �1þ

ffiffi
3

p

0
for a fluid

element with initial Lorentz factor �0 in a strong ultrarelativistic
shock propagating into a cold medium with decreasing density.
The agreement provides additional support for our claim that the
solution outside the star behaves like the solution describing a
standard planar shock up to the initial conditions and the inter-
pretation of the characteristic values R, �, P, and N. Note that the
differences between the initial conditions used in their work and
in ours are unimportant to the scaling law relating the final and
initial Lorentz factors of a given fluid element. This result agrees

with the findings of Tan et al. (2001) concerning the scaling law:
partly because of uncertainty over the different initial conditions,
they used numerical simulations to check the � � �1þ

ffiffi
3

p

0
result.

Recently, Nakayama & Shigeyama (2005) also investigated
the problem of an ultrarelativistic planar shock. While the self-
similar solution they give for the flow before breakout is iden-
tical to the one in Sari (2006) and outlined here, they do not give
analytic results for or a physical interpretation of the self-similar
solution after breakout. The case of a nonrelativistic planar shock
approaching the edge of a polytropic atmosphere was studied by
Gandel’man & Frank-Kamenetskii (1956) and Sakurai (1960);
both papers investigate the nonrelativistic prebreakout flow and
asymptotic t ! 0 profiles. Sakurai (1960) also plots some non-
relativistic postbreakout profiles obtained via numerical integration.

5. COMPARISON WITH NUMERICAL INTEGRATIONS

To verify our results numerically, we integrated the time-
dependent relativistic hydrodynamic equations using a one-
dimensional code. Figure 2 shows curves for � as a function of
position at a single time before breakout, while Figure 3 shows
the time evolution of �, P, and N before breakout. The numer-
ical and analytic results are in excellent agreement. Figures 4
and 5, respectively, show the � versus x profile and time evolu-
tion of �, P, and N after breakout; the agreement between nu-
merical and analytic results here confirms the choice of scale
R(t) after breakout that we discussed in x 4.1.

6. SUMMARY

We have shown that, given an ultrarelativistic shock propa-
gating into a planar polytropic envelope, the flow on the shock’s
emergence from the envelope into vacuum follows a self-similar
solution strikingly similar to the self-similar solution describing
the flow while the shock remains within the envelope. Both self-
similar solutions obey the same relations with regard to the time-
evolution of the characteristic quantities R, �, P, and N and with
regard to the similarity variables �, g, f, and h. The pre- and
postbreakout solutions differ only in that the applicable ranges in
� and the physical interpretations of the characteristic quantities
differ. As a result of these differences, the behavior of the flowafter
breakout lies somewhere between the traditional type I and type II
classes of self-similar solutions; before breakout a type II solution
applies. To arrive at these results we have looked in detail at the
behavior when the shock reaches the outer edge of the envelope.
We have discussed these results in the context of an applica-

tion—the motion of a shock wave through a polytropic envelope
near the surface of a star, the shock’s emergence from the surface,
and the subsequent flow into vacuum. This situation may be
related to the explosions believed to cause gamma-ray bursts and
supernovae (see, e.g., Tan et al. 2001) and should be especially
relevant in very optically thick media such as neutron stars.

This researchwas partially funded by a NASAATP grant. R. S.
is a Packard Fellow and an Alfred P. Sloan Research Fellow.
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