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Abstract
We prove that in three space dimensions a nonlinear wave equation utt −�u =
up, with p � 7 being an odd integer, has a countable family of regular
spherically symmetric self-similar solutions.
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1. Introduction

An important feature of many nonlinear wave equations is that their solutions, corresponding
to smooth initial data, may form singularities after a finite time. Such a phenomenon, usually
referred to as blowup, has been a subject of intensive studies beginning with the pioneering
works by Keller [1], John [2] and Glassey [3] (we refer the interested reader to the excellent
online review of this subject with the complete bibliography [4]).

In this paper we consider the semilinear wave equation with a power nonlinearity

�tt − �� − �p = 0, � = �(t, x), x ∈ R3, (1)

where p � 7 is an odd integer. The sign of the nonlinear term corresponds to focusing which
means that it tends to magnify the amplitude of the wave. If � is small this term is negligible and
the evolution is essentially linear, leading to dispersion. However, if � is large the dispersive
effect of the Laplacian may be overcome by the focusing effect of the nonlinearity and a
singularity can form. Actually, neglecting the Laplacian altogether and solving the ordinary
differential equation �tt = �p one gets the exact, homogeneous in space, solution

�0 = b0

(T − t)α
, b0 =

[
2(p + 1)

(p − 1)2

] 1
p−1

, α = 2

p − 1
, T > 0, (2)

which blows up as t → T . By the finite speed of propagation one can truncate this solution
in space to get a solution with compactly supported initial data which blows up in finite time.
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There is theoretical [5] and numerical [6] evidence that the solution �0 determines the leading
order asymptotics of blowup for generic large initial data. However, for specially prepared
initial data, in particular for data fine-tuned to the threshold for blowup, singularities may have
a different form which is given by self-similar solutions of equation (1). Such solutions were
found numerically in [6]. The aim of this paper is to give a rigorous proof of their existence
and discuss their properties.

By definition, self-similar solutions are invariant under rescaling

�(t, x) → �λ(t, x) = λ−α�(t/λ, x/λ), (3)

hence in the spherically symmetric case they have the form

�(t, r) = (T − t)−αu(ρ), ρ = r

T − t
, (4)

where T is a positive constant. Note that each self-similar solution, if it is regular for t < T ,
provides an explicit example of regular initial data developing a singularity in a finite time.
Substituting the ansatz (4) into equation (1) we obtain the ordinary differential equation for
the similarity profile u(ρ)

(1 − ρ2)u′′ +

(
2

ρ
− (2 + 2α)ρ

)
u′ − α(α + 1)u + up = 0. (5)

It is easy to see that this equation has the constant solution u0(ρ) = b0 which, of course,
corresponds to the homogeneous solution �0 of equation (1). As mentioned above, numerical
results indicate that, besides u0, there also exist nontrivial regular solutions of equation (5).
We remark that equation (5) has been studied by Kavian and Weissler [7] who made many
interesting observations about the behaviour of solutions but unfortunately they imposed very
restrictive fall-off conditions at infinity which excluded nontrivial solutions. However, as long
as one wants to have an example of blowup, due to the finite speed of propagation, only
the behaviour of solutions inside the past light cone of the blowup point (t = T , r = 0) is
relevant, which corresponds to the interval 0 � ρ � 1. As we shall see below regular self-
similar solutions are parametrized by their values at the endpoints c = u(0) and b = u(1).
Due to the singular nature of equation (5) at ρ = 0 and ρ = 1, the generic solution obeying the
regularity condition at ρ = 0 becomes singular at ρ = 1 and vice versa; hence globally regular
solutions can exist only for discrete values of the parameters b and c. The goal of this paper
is to show that there exists an infinite sequence of pairs (bn, cn) which give rise to globally
regular solutions. To this end, in section 2 we first prove the existence of local solutions near
the endpoints. Then, in section 3, we show, using a shooting argument, that for a discrete set
of values of the parameters these local solutions match smoothly at a midpoint. In section 4
we show that the solutions constructed in section 3 can be extended beyond the past light cone
to infinity. Finally, in section 5 we derive some scaling properties of the shooting parameters.
In the appendix we present an alternative rigorous proof of existence.

2. Local existence

In the first step we will analyse the behaviour of solutions near the boundary points ρ = 0 and
ρ = 1 and prove the local existence of one-parameter families of regular solutions there.

Near ρ = 0 we introduce a new variable v = u′ and rewrite equation (5) as the first order
system:

ρu′ = ρv, (6a)

ρv′ = −2v +
ρ

1 − ρ2

(
4

p − 1
ρv +

2(p + 1)

(p − 1)2
u − up

)
. (6b)
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This system has the form required by proposition 1 of [8] guaranteeing the existence of a
one-parameter family of regular solutions near ρ = 0 such that

u(ρ) = c +
1

3

(
p + 1

(p − 1)2
c − 1

2
cp

)
ρ2 + O(ρ4). (7)

Similarly, near ρ = 1 we put s = 1 − ρ, ū(s) = u(ρ), v̄(s) = ū′(s) to get

sū′ = sv̄, (8a)

sv̄′ = 1

(2 − s)

((
2

1 − s
− 2(p + 1)(1 − s)

p − 1

)
v̄ +

2(p + 1)

(p − 1)2
ū − ūp

)
. (8b)

In order to bring this into the form required by proposition 1 of [8] we introduce ṽ =
v̄ − p+1

2(p−1)
ū + p−1

4 ūp and rewrite the system (8a) and (8b) as

sū′ = s

(
ṽ +

p + 1

2(p − 1)
ū − p − 1

4
ūp

)
, (9a)

sṽ′ = − 2

p − 1
ṽ + sf (ū, ṽ, s), (9b)

where the function f (ū, ṽ, s) is analytic in ū, ṽ and s near s = 0. We conclude that there is a
one-parameter family of regular solutions near ρ = 1 such that

u(ρ) = b +
1

2

(
1

2
(p − 1)bp − p + 1

p − 1
b

)
(ρ − 1) + O((ρ − 1)2). (10)

The singular solutions behave like u ∼ (1 − ρ)
p−3
p−1 near ρ = 1 leading to a singularity of u′.

For later use it is convenient to introduce the variables σ = (1 − ρ)2/(p−1), ψ(σ ) = u(ρ) and
θ(σ ) = σu′. System (8a) and (8b) may then be written in the form

ψ ′ = −p − 1

2
σ

p−5
2 θ, (11a)

θ ′ = g(ψ, θ, σ ), (11b)

where the function g(ψ, θ, σ ) is analytic in ψ, θ and σ near σ = 0. This implies that there
is a two-parameter family of regular solutions parametrized by the values b = ψ(0) = u(1)

and d = θ(0). These solutions are analytic as functions of b, d and σ in a neighbourhood of
σ = 0. Thus, the general solution is in fact regular at ρ = 1 as a function of σ = (1−ρ)2/(p−1)

with a convergent Taylor series at σ = 0.

3. Global behaviour and proof of existence

The main result of this paper is as follows.

Theorem 1. For any odd p � 7 and any nonnegative integer n, equation (5) on the interval
0 � ρ � 1 has an analytic solution un(ρ) which satisfies the boundary conditions (7) and (10)
and for which the function wn = un/u∞ − 1, with u∞ defined by (18), has exactly n + 1 zeros.

Remark. In this section we give a ‘physicist’ proof based on scaling arguments. We believe
that by sacrificing slightly the mathematical rigour we gain better understandability of the basic
mechanism which is responsible for the existence and structure of solutions. An alternative
rigorous proof is presented in the appendix.
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Proof. First, we need to show that solutions which are regular at ρ = 0 or ρ = 1 remain
bounded on the whole interval 0 < ρ < 1. This is conveniently proven using a suitable
Lyapunov function [9] defined as

H = (1 − ρ2)
u′2

2
+

up+1

p + 1
− (p + 1)u2

(p − 1)2
, (12)

obeying

H(ρ) � − 1

p − 1

(
2(p + 1)

(p − 1)2

) 2
p−1

and H ′ =
(

p + 3

p − 1
ρ − 2

ρ

)
u′2 � 0. (13)

Hence, for solutions regular at ρ = 0 we get

H(ρ) � H(0) = cp+1

p + 1
− (p + 1)c2

(p − 1)2
, (14)

which implies √
1 − ρ2 |u′(ρ)| � c

p+1
2 (15)

and

|u(ρ)| � c for c � (2(p + 1)/(p − 1)2)1/(p−1). (16)

Furthermore, H(ρ) and thus u(ρ) have a finite limit at ρ = 1.
On the other hand, for solutions regular at ρ = 1 we may integrate the function H to the

left. It is easy to see that

− (H + 1)−1H ′ � 2/ρ, (17)

hence H stays finite on 0 < ρ � 1 and with it u and u′. We emphasize that this argument
does not exclude solutions which are regular at ρ = 1 and singular at ρ = 0. Actually, such
an explicit singular solution

u∞(ρ) = b∞ρ
− 2

p−1 , b∞ =
(

2(p − 3)

(p − 1)2

) 1
p−1

, (18)

will play an important role in our analysis. Note that u∞ corresponds to the singular static

solution � = b∞r
− 2

p−1 of equation (1).
Next, we consider the behaviour of solutions regular at ρ = 0, i.e. solutions satisfying

the initial condition (7), with large values of c = u(0). To this order we rescale the variables

ρ = x

c(p−1)/2
, u(ρ) = cU(x). (19)

From equation (5) we get

d2U

dx2
+

2

x

dU

dx
+ Up = 1

cp−1

(
x2 d2U

dx2
+

2(p + 1)

p − 1
x

dU

dx
+

2(p + 1)

(p − 1)2
U

)
. (20)

In the limit c → ∞ we obtain the simple equation

d2U

dx2
+

2

x

dU

dx
+ Up = 0 (21)

on the interval 0 � x < ∞ together with the boundary condition at x = 0

U(x) = 1 − x2/6 + O(x4). (22)
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Note that the special solution u∞ is invariant under the performed rescaling and thus
U∞(x) = b∞x−2/(p−1) solves equation (21). From our numerical analysis we know that U

oscillates around U∞ suggesting the change in variables

Ū (τ ) = x2/(p−1)U(x), τ = ln(x). (23)

Substituting (23) into equation (21) we get the autonomous equation

d2Ū

dτ 2
+

p − 5

p − 1

dŪ

dτ
+ Ūp − 2(p − 3)

(p − 1)2
Ū = 0. (24)

Using the Lyapunov function

h = 1

2

dŪ

dτ

2

+
Ūp+1

p + 1
− (p − 3)Ū 2

(p − 1)2
with

dh

dτ
= −p − 5

p − 1

(
dŪ

dτ

)2

, (25)

we conclude that for τ → ∞ the solution Ū (τ ) tends to the fixed point Ū∞ = b∞ of
equation (24) and dŪ

dτ
→ 0 for τ → ∞. Putting Ū = b∞ + y and dŪ

dτ
= z we find

dy

dτ
= z, (26a)

dz

dτ
= −p − 5

p − 1
z − 2(p − 3)

p − 1
y + N(y), (26b)

where N(y) denotes the nonlinear terms in y. Neglecting these nonlinear terms we get a linear
system with the eigenvalues λ = (−p + 5 ± i

√
7p2 − 22p − 1)/2(p − 1). This implies that

the solution of equation (21) which is regular at x = 0 has for x → ∞ the asymptotic form

U(x) = b∞x
− 2

p−1 (1 + A0x
− p−5

2(p−1) sin(ω ln x + δ0)) (27)

with some constants A0 and δ0 and ω =
√

7p2 − 22p − 1/2(p − 1).
In order to prove the existence of regular solutions for sufficiently large c we choose some

x0, such that for x > x0 we can safely use the asymptotic expression (27) for the solution
of equation (21) with the boundary condition (22). Furthermore, we choose c0 so large that
we can neglect the rhs of equation (20) on the interval 0 � x < x0 for c > c0. Integrating
solutions regular at ρ = 0 to ρ0 = x0/c

(p−1)/2
0 and varying the parameter c = u(0) we get a

smooth curve C0 in the (u(ρ0), u
′(ρ0)) plane. Using the asymptotic expression (27) for the

part of C0 corresponding to c > c0 we get

u(ρ) ≈ b∞ρ
− 2

p−1 (1 + A0c
5−p

4 ρ
− p−5

2(p−1) sin(ω ln(c
p−1

2 ρ) + δ0)). (28)

Keeping ρ = ρ0 � 1 fixed and letting c → ∞ (and with it x) we find that C0 spirals down
(in the negative direction) to the limit point

P(ρ0) =
(

b∞ρ
−2/(p−1)

0 , − 2

p − 1
b∞ρ

−(p+1)/(p−1)

0

)
. (29)

We are now ready to show the existence of regular solutions for large c. Integrating the
solutions regular at ρ = 1 back to ρ0 we obtain a smooth curve C1 parametrized by b. For
0 � b � b0 this curve goes from the point (0, 0) to (b0, 0) passing through P(ρ0) for b = b∞.
Thus, curve C0 intersects curve C1 again and again as c goes to infinity (note that curve C1 has
positive rotation around P(ρ0)). This is illustrated in figure 1 in the case p = 7. Obviously
each such intersection yields a solution which is regular on the whole interval 0 � ρ � 1.
As c and thus the domain for x increase the corresponding solutions U(x) perform more and
more oscillations around U∞(x). In fact, each further oscillation of Ū (x) about zero leads
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Figure 1. The intersection of curves C0 and C1 for ρ0 = 0.1 (p = 7).

to another cycle in the (u, u′) plane at ρ0. Thus, we arrive at the conclusion that for any
sufficiently large n there exist regular solutions of equation (5) on the interval 0 � ρ � 1 with
n of such oscillations.

In the second step of our existence proof we shall show that we can decrease n and thus
prove the existence of regular solutions for any positive integer n. The constant solution u0

with c = c0 = b0 has exactly one such intersection. Thus we must be able to decrease the
number of intersections to the one decreasing c from some large value c � 1 corresponding to
a regular solution with n � 1 intersections. Obviously the number of intersections can only
change at ρ = 1, because, by the uniqueness theorem for solutions of differential equations,
a double zero of u(ρ, c) − u∞(ρ) is not possible at a regular point 0 < ρ < 1. On the other
hand, no solution regular on the whole interval 0 � ρ � 1 can have b = u(1) = b∞. Thus, a
change of n can only happen for a value of c corresponding to a solution which is singular at
ρ = 1. We showed in section 2 that such solutions are parametrized by the numbers b = u(1)

and d = V (1), where the latter is the finite coefficient of the singular mode. For solutions
regular at ρ = 0 the coefficient d depends smoothly on c. Suppose b(c) = b∞ for some
c = cs . Then, we get a decrease of n exactly by one if either b − b∞ moves from positive to
negative values as c decreases through cs and d(cs) < 0 or b − b∞ moves from negative to
positive values as c decreases through cs and d(cs) > 0. This shows that as we decrease c from
the value corresponding to a regular solution with k � 1 intersections to c0 we necessarily
encounter regular solutions with any value of n between one and k. This concludes the proof
of theorem 1.

Clearly, there could be more than one regular solution with the same number of
intersections, because b − b∞ can have zeros of even order. However, our numerical analysis
shows that there is exactly one regular solution for any n. The first few solutions generated
numerically are shown in figure 2.

4. Extension beyond the past light cone

In this section we show that the solutions constructed above can be smoothly extended beyond
ρ = 1 to infinity.

Consider the function

Q(ρ) = 1

2
(1 − ρ2)ρ3u′2 +

1

2
ρ2(1 − ρ2)uu′ − 3p2 − 18p + 23

4(p − 1)2
ρ3u2 +

1

p + 1
ρ3up+1. (30)
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Figure 2. The first five self-similar solutions for p = 7. To show oscillations around u∞ we plot
wn = un/u∞ − 1.

This function was introduced by Kavian and Weissler [7] in their study of equation (5). By
straightforward (but tedious) computation one gets

Q′(ρ) = 5 − p

2(p − 1)
ρ2

[
2(3u/2 + ρu′)2 +

3p − 7

2(p − 1)
u2 +

p − 1

p + 1
up+1

]
, (31)

hence Q(ρ) is monotone decreasing for p > 5. Since Q(0) = 0 for analytic solutions, it
follows that Q(ρ) � 0 for ρ > 0 and thus u(ρ) is positive for 0 < ρ � 1.

Remark. We note in passing that for p = 5 it follows from (31) that the function Q(ρ) is the
first integral which implies that u0 is the only regular self-similar solution.

It is convenient to rewrite equation (5) in a self-adjoint form

(ρ2(1 − ρ2)αu′)′ = ρ2(1 − ρ2)α−1u(b
p−1
0 − up−1). (32)

Proposition 1. If u(ρ) is a regular solution of equation (32) defined for 0 � ρ � 1 and
u(0) > b0, then u(1) < b0.

Proof. First, note that if u is analytic at ρ = 1 and u(1) = b0, then u(ρ) ≡ b0, which
contradicts the assumption that u(0) > b0. Thus, the case u(1) = b0 is impossible. Next,
suppose that u(1) > b0. If u(ρ) � b0 on the whole interval 0 � ρ � 1 then the rhs of
equation (32) is negative and hence by integrating it we get that u′(1) = ∞. Thus, u(ρ) < b0

for some 0 < ρ < 1 and therefore u must have a minimum value at some ρ0, i.e. u′(ρ0) = 0
and 0 < u(ρ0) < b0. If so, between ρ0 and 1 there is a ρ1 where u(ρ1) = b0 and u(ρ) < b0

for ρ0 � ρ < ρ1. We now show that this is not possible. To this order we integrate equation
(32) over the interval ρ0 � s < ρ < ρ1. Since u′(ρ0) = 0 we get

ρ2(1 − ρ2)αu′(ρ) =
∫ ρ

ρ0

s2(1 − s2)α−1u(b
p−1
0 − up−1) ds. (33)

We have u(s) < u(ρ) < b0; hence u(b
p−1
0 −up−1) = u(b

p−2
0 + b

p−3
0 u + · · · + up−2)(b0 −u) <

(p − 1)b
p−1
0 (b0 − u). Thus,∫ ρ

ρ0

s2(1 − s2)α−1u(b
p−1
0 − up−1) ds < (p − 1)b

p−1
0 (b0 − u(ρ))

∫ ρ

ρ0

s2(1 − s2)α−1 ds

= f (ρ)(b0 − u(ρ)) (34)
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for some bounded continuous function f (ρ). It follows from (33) and (34) that

u′(ρ)

b0 − u(ρ)
<

f (ρ)

ρ2(1 − ρ2)α
= g(ρ), (35)

where g(ρ) is a bounded continuous function on ρ0 < ρ � ρ1 < 1. Integrating (35) from ρ0

to ρ, we get ln(b0 − u(ρ0)) − ln(b0 − u(ρ)) <
∫ ρ

ρ0
g(s) ds; hence ln(b0 − u(ρ)) is bounded

for ρ � ρ1. This contradicts the assumption that u(ρ1) = b0 and concludes the proof.

Next, we consider the behaviour of solutions for ρ > 1.

Proposition 2. Ifu(ρ) is a solution to equation (32) that is analytic atρ = 1 andu(1) = b < b0,
then u(ρ) is defined for all ρ > 1 and 0 < u(ρ) < b0.

Proof. Integrating equation (32) from 1 to some ρ > 1 we get

ρ2(ρ2 − 1)αu′(ρ) =
∫ ρ

1
s2(1 − s2)αu(b

p−1
0 − up−1) ds, (36)

hence if u is bounded, so is u′ and therefore the solution cannot become singular. Thus,
it suffices to show that 0 < u(ρ) < b. From equation (32) we have that u′(ρ) = 0 and
0 < u(ρ) < b0 for ρ > 1 implies that u′′(ρ) < 0; thus u is monotone decreasing. To show
that u cannot become negative we introduce the function f (ρ) = ρu′(ρ) + (α + 1)u(ρ)/2.
Evaluating f ′ at f = 0 we obtain

f ′|f =0 = 1

2
(1 − α2)u +

2ρ2

ρ2 − 1
up > 0, (37)

which, together with f (1) = bp/2α > 0, implies that f (ρ) > 0 for ρ > 1. Since u′(ρ) < 0
(as noted above), we conclude that u > 0, as claimed.

5. Large n asymptotics

Our numerical analysis shows that the shooting parameters bn and cn exhibit remarkable scaling
properties in the large n limit. In this section we explain this phenomenon.

In order to derive the large n asymptotic behaviour of solutions which are regular at ρ = 1
we introduce a new variable w defined by u = u∞(1 + w). Using equations (5) and (10) we
find that w satisfies the equation

ρ2(1 − ρ2)w′′ +

(
2(p − 3)

p − 1
ρ − 2ρ3

)
w′ − 2(p − 3)

(p − 1)2
(1 + w)((1 + w)p−1 − 1) = 0, (38)

with the boundary condition at ρ = 1

w(ρ) = b − b∞
b∞

+
p − 1

4

b

b∞
(bp−1 − bp−1

∞ )(ρ − 1) + O((ρ − 1)2). (39)

For any 0 < ρ0 � 1 and b sufficiently close to b∞, the solution of equation (38) satisfying the
initial condition (39) will stay arbitrarily close to w = 0 on the interval ρ0 � ρ � 1; hence it
can be approximated by w = b−b∞

b∞
wL, where wL satisfies the linearized equation

ρ2(1 − ρ2)w′′
L +

(
2(p − 3)

p − 1
ρ − 2ρ3

)
w′

L − 2(p − 3)

(p − 1)
wL = 0, (40)

with the boundary condition wL(1) = 1, w′
L(1) = (p − 3)/2. We could express wL in terms

of a hypergeometric function but for our purposes it is sufficient to have its asymptotics for
small values of ρ

wL ≈ ρ
5−p

2(p−1) A1 sin(ω ln ρ + δ1), ω =
√

7p2 − 22p − 1/2(p − 1), (41)
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Table 1. Shooting parameters of solutions un and their quotients �cn = cn+1/cn and �bn =
(bn+1 − b∞)/(b∞ − bn) for p = 7. The last row for n = ∞ corresponds to the analytic results
(45) and (46).

n cn bn �cn �bn

1 2.054 390 385 0.688 698 572 2.8018 0.4713
2 5.756 037 116 0.820 493 408 2.4090 0.7428
3 13.866 556 15 0.746 908 360 2.5899 0.5670
4 35.913 433 30 0.796 055 093 2.4577 0.6752
5 88.266 611 66 0.766 263 419 2.5326 0.6059
6 223.550 738 1 0.785 548 198 2.4823 0.6493
7 554.921 549 5 0.773 546 658 2.5128 0.6217
8 1 394.439 242 0.781 209 584 2.4930 0.6391
9 3 476.402 010 0.776 393 971 2.5053 0.6281

10 8 709.676 250 0.779 451 184 2.4974 0.6351
11 21 752.408 61 0.777 522 645 2.5012 0.6307
12 54 434.147 14 0.778 744 142 2.4993 0.6334
13 136 047.675 9 0.777 972 446 2.5000 0.6317
14 340 293.102 2 0.778 460 765 2.5008 0.6328
15 850 746.135 8 0.778 152 079 2.5003 0.6321
∞ ∞ 0.778 271 716 2.5005 0.6324

where A1 and δ1 are constants. Thus, the solution regular at ρ = 1 with b near b∞ has the
following form for small ρ

u(ρ) ≈ u∞

(
1 +

b − b∞
b∞

ρ
5−p

2(p−1) A1 sin(ω ln ρ + δ1)

)
. (42)

The key point is that the regions of validity of the approximations (42) and (28) overlap so we
can match them. Matching the amplitudes of solutions (28) and (42) at ρ0 we get the condition

A0c
p−5

4 = ±A1
b − b∞

b∞
. (43)

On the other hand, using (28) and the fact that the phases of two adjacent solutions un(ρ) and
un+1(ρ) differ by π we obtain

p − 1

2
ω ln

(
cn+1

cn

)
= π, (44)

hence
cn+1

cn

≈ e
2π

(p−1)ω , (45)

which, using (43), implies that

bn+1 − b∞
b∞ − bn

≈ e− (p−5)π

2(p−1)ω . (46)

The numerical verification of these scaling properties is shown in table 1 in the case p = 7.

Note added in proof. P Breitenlohner (personal communication) pointed out that a minor
modification of our proof applies also to even values of p; hence the conclusion of theorem 1
holds for all integers p � 6.
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Appendix

We present here an alternative version of the proof of theorem 1. Throughout the appendix the
range of ρ is 0 � ρ � 1.

We know from section 2 and equation (16) that given any c there is a unique solution
u(ρ, c) of equation (5) satisfying u(0, c) = c defined for all 0 � ρ � 1. For ρ > 0 we define
v(ρ, c) = u(ρ, c)/u∞(ρ) and w(ρ, c) = v(ρ, c) − 1. We also define the function

Hv = 1

2
ρ2(1 − ρ2)v′2 − α(1 − α)

(
v2

2
− vp+1

p + 1

)
. (47)

Using equation (5) we get

H ′
v = 5 − p

p − 1
ρv′2, (48)

hence Hv is decreasing along solutions. Furthermore, Hv has a minimum equal to
−(p − 3)/(p2 − 1) for v′ = 0 and v = 1.

Lemma 1. Let d = (p − 1)/p. If c > b0/d, then there is ρ1 = ρ1(c) < (b∞/dc)1/α such that
w(ρ1, c) = 0 and 0 < ρ1w

′(ρ1, c) < α.

Proof. It follows from equation (32) that u(ρ, c) is a decreasing function of ρ for c > b0 as
long as u > b0. Integrating equation (32) and noting that 0 < u(ρ, c) � c we get

ρ2(1 − ρ2)αu′(ρ) = −
∫ ρ

0
s2(1 − s2)α−1[u(s)p − α(1 + α)u(s)] ds >

−
∫ ρ

0
s2(1 − s2)α−1u(s)p ds > −

∫ ρ

0
s2(1 − s2)α−1cp ds. (49)

Thus

ρ2(1 − ρ2)αu′(ρ) > −
∫ ρ

0

s2(1 − s2)α−1

(1 − ρ2)α−1
cp ds > −

∫ ρ

0
s2cp ds = −ρ3

3
cp, (50)

hence

u′(ρ) > − ρ

3(1 − ρ2)
cp. (51)

Integrating (51) from 0 to x where u(x, c) = dc gives

− c(1 − d) >
cp

6
ln(1 − x2), so x2 > 1 − exp

(
− 6

pcp−1

)
>

6

pcp−1
. (52)

Let y be a point where u∞(y) = b∞y−α = dc, that is, y = (b∞/dc)1/α . We have(
b∞
d

)2/α

=
(

b∞
d

)p−1

=
(

p

p − 1

)p−1 2(p − 3)

(p − 1)2
<

6

p
, (53)
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hence x > y, and therefore u(y, c) > u(x, c) = dc = u∞(y) or w(y, c) > 0. Since
w(ρ, c) < 0 for small ρ, we conclude that there is a ρ such that w(ρ, c) = 0 and if ρ1 is the
smallest such ρ, then w′(ρ1, c) > 0. Note that ρ1 < y. This concludes the proof of lemma 1.

Corollary 1. w(ρ) > −2α for ρ > ρ1.

Proof. Using the fact that the function Hv(ρ) is monotone decreasing we obtain

Hv(ρ) � Hv(ρ1) � α2

2
− α(1 − α)

(
1

2
− 1

p + 1

)
, (54)

for ρ � ρ1. On the other hand, for ρ � ρ1

Hv(ρ) = 1

2
ρ2(1 − ρ2)v′2 − α(1 − α)

(
v2

2
− vp+1

p − 1

)
� −α(1 − α)

(
v2

2
− vp+1

p − 1

)
. (55)

Combining equations (54) and (55) we have

f (v) ≡ α2

2
− α(1 − α)

(
1

2
− 1

p + 1

)
+ α(1 − α)

(
v2

2
− vp+1

p − 1

)
� 0, (56)

for ρ � ρ1. Note that f ′(v) > 0 for v < 1. A straightforward calculation yields f (1−2α) < 0
if p � 7; hence v > 1 − 2α (or w > −2α) for ρ � ρ1, as claimed.

Let us define

R(ρ, c) =
√

w(ρ, c)2 + w′(ρ, c)2, 0 < ρ � 1. (57)

By uniqueness of solutions of ODEs, a solution starting at (u, u′) = (c, 0) at ρ = 0 cannot
have (u(ρ, c), u′(ρ, c) = (u∞(ρ), u′

∞(ρ)), which implies that R(ρ, c) > 0. Thus, we may
also define


(ρ, c) = arctan

(
ρw′(ρ, c)

w(ρ, c)

)
up to a multiple of π. (58)

Since the region {(ρ, c)|0 < ρ � 1, c � 0} is simply connected we may unambiguously
define a function 
(ρ, c) once we specify its value at any point in the domain. Since
w(ρ, 0) ≡ −1, w′(ρ, 0) ≡ 0, we set 
(1/2, 0) = π . Note that limρ→0+ w(ρ, c) = −1
and limρ→0+ ρw′(ρ, c) = 0; hence limρ→0+ 
(ρ, c) = π .

Lemma 2. Let ρ2 � 1. We have limc→∞ 
(ρ2, c) = −∞.

Proof. Consider the equation satisfied by the function 
(ρ) = 
(ρ, c):


′(ρ) = − 1

ρ

[
sin2 
 +

(p − 5) − ρ2(p − 1)

(p − 1)(1 − ρ2)
sin 
 cos 


+
2(p − 3)v

(p − 1)2(1 − ρ2)
(1 + v + · · · + vp−2) cos2 
.

]
(59)

We will show that the quantity in brackets is bounded from below by a positive constant η for
ρ � ρ1. It follows that

lim
c→∞ 
(ρ2, c) = lim

c→∞

(

(ρ1(c), c) +

∫ ρ2

ρ1(c)


′(ρ)dρ

)
� π

2

+ lim
c→∞

∫ ρ2

ρ1(c)

(
−η

ρ

)
= π

2
− η lim

c→∞ ln
ρ2

ρ1(c)
= −∞, (60)

and the lemma is proven.
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To get a bound on the quantity in brackets we regard it as a (formal) quadratic form in
sin 
 and cos 
: [ ] = A sin2 
 + B sin 
 cos 
 + C cos2 
, where

A = 1, B = (p − 5) − ρ2(p − 1)

(p − 1)(1 − ρ2)
, C = 2(p − 3)v

(p − 1)2(1 − ρ2)
(1 + v + · · · + vp−2).

(61)

Since ρ < ρ2, we may replace these coefficients by

A = 1, B̃ = (p − 5)

(p − 1)
, C̃ = 2(p − 3)v

(p − 1)2
(1 + v + · · · + vp−2). (62)

We need to show that the discriminant � = B̃2 − 4AC̃ is negative for v > 1 − 2α. We have

� = (p − 5)2

(p − 1)2
− 8(p − 3)

(p − 1)2
(1 + v + · · · + vp−2). (63)

Clearly, (p − 1)2� is a decreasing function of v. When v = 1 − 2α we get

(p − 1)2� = (2p2 − 8p + 6)

(
p − 5

p − 1

)p

− p2 + 6p − 5, (64)

which is negative for p � 7; hence � < 0 which concludes the proof of lemma 2.
Next, we consider solutions U(ρ, b) which start from initial value (10). As we showed in

section 3 these solutions are defined for 0 < ρ � 1; hence we may define

R̃(ρ, b) =
√

W(ρ, b)2 + W ′(ρ, b)2, 0 < ρ � 1, (65)

where W(ρ, b) = U(ρ, b)/u∞(ρ)−1. By uniqueness of solutions of ODEs, a solution starting
at ρ = 1 cannot have (U(ρ, b), U ′(ρ, b) = (u∞(ρ), u′

∞(ρ)), unless b = b∞, which implies
that R̃(ρ, b) > 0 if b 
= b∞. Thus, we may also define


̃(ρ, b) = arctan

(
ρW ′(ρ, b)

W(ρ, b)

)
up to a multiple of π. (66)

Since the region {(ρ, b)|0 < ρ � 1, 0 � b � b∞} is simply connected we may unambiguously
define a function 
̃(ρ, b) once we specify its value at any point in the domain. We set

̃(1, 0) = π .

We define a map

� : R+ = {c|c � 0} → R2
+ = {(x, y) ∈ R2|y > 0}, �(c) = (
(ρ0, c), R(ρ0, c))

(67)

and a map

�n : t ∈ (−∞, b∞) → R2
+, �n(t) =




(
̃(ρ0, b) − 2nπ if 0 � t < b∞,

R̃(ρ0, b)) (segment 1),

(π − 2nπ, 1 − t) if t < 0

(segment 2).

(68)

Note that if �n(b) = �(c) for some b ∈ (0, b∞) and some c, then �(c) cannot lie on segment
2 because w(ρ0, c) � −1 and y cos x = −y < −1 on segment 2. Thus, if �n(b) = �(c) for
some b ∈ (0, b∞) and some c, then the functions u(ρ, c) and U(ρ, b) and their derivatives
match at ρ0; hence we have a solution defined on the whole interval 0 � ρ � 1 in the nth
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nodal class. The integer part of (
̃(1, b) − 
(0, c))/π counts the number of zeros of w. In
particular, �0(0) = �(0) since u(ρ, 0) ≡ U(ρ, 0) ≡ 0 is a solution in the 0th nodal class.

Remark. The choices of 
(1/2, 0) = π and 
̃(1, 0) = π were made so that the indexing of
solutions is correct.

Now we are ready to prove the following proposition.

Proposition 3. For any positive integer n there is Bn < b∞ such that the solution U(ρ, Bn) is
in the nth nodal class.

Proof. Since b∞ < b0, there is a ρ0 < 1 such that U(ρ0, b) < b0 for all b ∈ [0, b∞]. Note
that U ′(1, b) < 0 for b � b∞ and thus U ′(ρ, b) < 0 on ρ0 < ρ < 1 because U ′′(ρ, b) > 0
if U ′(ρ, b) = 0 and U(ρ, b) < b0. It follows that U(ρ, b) � 0 and hence W(ρ, b) � −1
for ρ0 < ρ � 1 and 0 � b � b∞. From this conclude that the curve �n(b) is simple,
i.e. �n(b) = �n(b̄) implies that b = b̄. For nonnegative b and b̄ this follows from the
uniqueness of solutions of ODEs, while for b̄ < 0 � b, �n(b̄) = �n(b) is impossible
because W(ρ0, b) > −1 by choice of ρ0 and y cos x = −y < −1 on segment 2 of the
curve. Since limb→b∞ R̃(ρ0, b) = R̃(ρ0, b∞) = 0 and limb→−∞ R̃(ρ0, b) = ∞, it follows
from the Jordan curve theorem that the curve �n separates the half-plane R2

+ into two open
regions: R2

+\image(�n) = A ∪ B. Moreover, points p and q are in the different components
A and B iff there is a curve from p to q crossing image(�n) transversally at exactly one
point.

Note that 
̃(1, b) > π/2 if b < b∞ and 
̃′(ρ, b) > 0 when 
̃(ρ, b) = π/2; hence

̃(ρ, b) � π/2 for b < b∞. The region

Z = {(x, y) ∈ R2
+|x < π/2 − 2nπ} (69)

is connected and does not meet image(�n) because 
̃(ρ, b) � π/2; hence Z must be contained
in A or B; suppose that Z ⊂ A. Curve � meets A because limc→∞ 
(ρ, c) = −∞ by
lemma 2 and hence curve � meets Z ⊂ A. Note that image(�n) ∩ image(�m) = ∅ if n 
= m

by uniqueness of solutions of ODEs; hence �(0) /∈ image(�n) if n > 0.
We will now show that �(0) ∈ B. This will complete the proof because the curve �

is connected; hence it must cross image(�n), which means that there is a solution in the nth
nodal class. To show this we construct a curve in R2

+ from �(0) to Z that crosses image(�n)

transversally at exactly one point. We denote by M an upper bound of R̃(ρ0, b) on 0 � b � b∞
and define a curve (see figure 3)

�(t) =
{

(π, 1 + t) for 0 � t � M (segment 1),

(π + M − t, M + 1) for M � t � (2n + 1)π (segment 2).
(70)

Note that segment 1 of � cannot meet segment 1 of �n because segment 1 of �n has w > −1
and segment 1 of � has y cos x < −1. Also, segment 1 of � cannot meet segment 2 of �n

because they have different first coordinates π − 2π < π . Finally, segment 2 of � cannot
meet segment 1 of �n because R̃(ρ0, b) � M < M = 1. Thus, the only intersection point of
� and �n is at (π − 2nπ, M + 1). This completes the proof of proposition 3.

Proposition 4. For any positive integer n there is B̃n > b∞ such that the solution U(ρ, bn) is
in the nth nodal class.
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Figure 3. Illustration to the proof of proposition 3.

(This figure is in colour only in the electronic version)

Proof. The proof proceeds along the same lines as the proof of proposition 3 except for some
technical modifications which we leave to the reader.

Theorem 1 is the immediate consequence of propositions 3 and 4 if we set b2n−1 = Bn

and b2n = B̃n.
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