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Abstract. Results presented in this paper represent part of an ongoing
research programme dedicated to the resolution enhancement of Fourier
domain magnetic resonance (MR) data. Here we explore the use of self-
similarity methods that may aid in frequency extrapolation of such data.
To this end, we present analytical and empirical results demonstrating
the self similarity of complex, Fourier domain MR data.

1 Introduction

In a previous ICIAR paper [15], we showed how resolution enhancement could be
accomplished by means of a fractal-based method over complex-valued Fourier
data with compact support X ⊂ R. Our method of “iterated Fourier transform
systems” (IFTS) is the Fourier domain counterpart of the fractal-based method
of “iterated function systems with greyscale maps” (IFSM) in the spatial domain
[7]. The action of an IFTS operator M̂ on Fourier data U(ω) produces frequency-
expanded and phase-ramped, range-distorted copies of U . We then showed how
this method could perform frequency extrapolation as follows. Suppose that the
raw MR data is given by the complex-valued Fourier data U0(ω) with support
ω ∈ Ω0 = [−ω0, ω0]. Furthermore assume that U0 is the bandlimited version of
the “true” Fourier transform U(ω), ω ∈ R. We first solve an inverse problem by
determining a contractive IFTS operator M̂ to minimizes the collage distance

‖U0 − M̂U0‖. Because of the frequency-expansive nature of the operator M̂ , the
function U1 = M̂U0 is supported over a larger interval Ω1 = [−ω1, ω1], where
ω1 = Aω0 and A > 1. As such, higher frequency components of U outside the
interval Ω0 are estimated, thereby achieving higher spatial domain resolution.

This paper explores the use of self-similarity methods on frequency domain
data. A major motivation for our work is provided by recent work [2] showing
that images are, in general, affinely self-similar locally: Given a “range block”
u(Ri) of an image, there are generally a number of “domain blocks” u(Dj)
that can approximate it well under the action of affine greyscale transforms.
This spatial domain self-similarity is dramatically demonstrated when errors of
approximation are plotted for all domain-range pairings.
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Here we demonstrate that such self-similarity is also exhibited by subblocks of
Fourier data. The underlying explanation for this block-based self-similarity is
that a connection can be made between the well-known result of autoregressive
(AR) correlation coefficients and block-based fractal coding. This justifies block-
based fractal coding in the complex Fourier domain, which we then employ for
the purpose of frequency extrapolation.

To this end, we show that discrete functions of the form,

s(m) =
N

∑

n=1

c(n)eσnm, m ∈ Z, cn, σn ∈ C (1)

are locally self-similar. Variables N (the number of terms in the summation), and
σn (an arbitrary complex number), have specific physical interpretations when
Eq (1) is placed in the context of a given application. Functions of the form Eq
(1) are found in many applications, but here we consider their use in magnetic
resonance (MR). Eq (1) has been used to model the measured MR data in order
to improve the image reconstruction process and to reduce artifacts [9].

Block-based fractal coding in the wavelet domain is a rather standard proce-
dure [19]. To the best of our knowledge, however, there has been little analysis
to date on the use of fractal-based methods to analyze or process Fourier data.
This paper and our previous manuscript [15] represent work in this direction.

2 MRI and Some One-Dimensional MRI Data Models

Here, we outline general spatial and frequency domain models for MRI data,
where the raw data is a Fourier spectrum of the desired image. For simplicity of
notation and presentation, we first consider one-dimensional MRI procedures.

The MR scanner responds to the proton density of the object, to be denoted
as ρ(x), and produces a complex-valued signal s(k) of the real-valued frequency
parameter k. The relation between s(k) and the proton density function ρ(x)
may be expressed as [11,13,10]:

s(k) =

∫ +∞

−∞

ρ(x)exp(−i2πkx)dx, k ∈ R. (2)

In other words, s(k) is related to ρ(x) via the Fourier transform [10]. If s(k) is
known ∀ k ∈ R, then ρ(x) may be found by using the inverse Fourier transform
of s(k). In practice however, the true proton density, ρ(x), cannot be obtained
exactly, and must be estimated. Ultimately, reconstruction yields only approxi-
mations to ρ(x) with finite spatial resolution.

Standard MRI Data Models

Several approaches to modeling MR data based on a priori knowledge of the
acquisition process have been proposed to improve image reconstruction. In the
boxcar model [9], ρ(x) is represented as a sum of NC indicator functions:
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ρNC
(x) =

NC
∑

m=1

cmWm(x), Wm(x) =

{

1, |x−pm

qm
| ≤ 1

2

0, |x−pm

qm
| > 1

2

. (3)

Variables pm and qm are the respective centers and widths of each indicator
function. Substitution into Eq (2) yields:

sNC
(k) =

1

πk

NC
∑

m=1

cm sin(πqmk)e−2πikpm . (4)

Multiplication by −2πik and sampling converts sNC
(k) into the form of Eq (1):

ŝNC
(n) = −2πiksNC

(n) =

2NC
∑

m=1

dme−2πinrm , n = 0, 1, 2, . . . , NS − 1. (5)

where the number of samples is NS , and

rm =

{

qm/2 − pm, m = 1, 2, . . . , NC

qm/2 + pm, m = NC + 1, NC + 2, . . . , 2NC

dm =

{

cm, m = 1, 2, . . . , NC

cm−NC
, m = NC + 1, NC + 2, . . . , 2NC

It has been shown that discrete signals in the form of Eq (5) obey [17,20]:

ŝNC
(n) = −

2NC
∑

m=1

amŝ(n − m), n = 2NC , 2NC + 1, . . . , Ns − 1. (6)

This result is a consequence of Prony’s method [17], and the coefficients am ∈ C

are known as the autoregressive (AR) coefficients [14]. This model of the MR
data provides us with relations for fractal parameters that are later introduced.

2.1 Self-similarity of the One-Dimensional MR Signal

Many of the fractal-based methods developed thus far utilize local self-similarities
between different regions of real spatial domain images. For fractal-based methods
to be effective on complex Fourier domain data we require that this data be self-
similar, and the extent to which it is locally self-similar has not, to the best of our
knowledge, been explored to date.

In order to initiate a discussion of the self-similarity of Fourier data, we first
consider the complex, discrete signal, s(n) ∈ l2(C), n = 0, 1, 2, . . .NS − 1.
Then define a partitioning of s(n) into domain and range vectors (or blocks) and
affine transforms that operate on these blocks. The last NP values of s(n) will
constitute the range block, r:

r = [s(NS − NP ), s(NS − NP + 1), . . . , s(NS − 1)]. (7)
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The domain vectors are constructed by partitioning s(n) into NDB = NS − NP

overlapping domain blocks:

dm = [s(p), s(p + 1), s(p + 2), . . . , s(p + NP − 1)],

p = NS − NP − m,

m = 1, 2, . . . , NDB.

The set of all domain blocks, D = {dm ∈ CNP | m = 1, 2, . . . , NDB}, com-
prises the domain pool. Fractal-based algorithms typically use affine transforms
to search for similarities between the intensities of range and domain blocks. If
for a given range block, we can find an affine transform T , and domain block dm,
such that r ≈ Tdm, then the given data possesses some degree of self-similarity.

Transforming the intensities of a single domain block by αm, βm ∈ C defines
a simple transform to approximate r:

r ≈ T1(dm) = αmdm + βm. (8)

The subscript of the operator T denotes that a single domain block is being
used to approximate r. The complex parameters αm and βm may be chosen by
minimizing the l2 (vector) norm, ∆m of the difference between r ∈ CNP and
each affinely-transformed domain vector1:

∆m =

√

√

√

√

1

NP

NP
∑

n=1

∣

∣r(n) − [αmdm(n) + βm]
∣

∣

2
. (9)

Another fractal operator uses a set of NPB domain (or parent) blocks instead of
a single dm to approximate r [1]:

r ≈ TNPB
(DΛ) = βm +

∑

m∈Λ

αmdm. (10)

The vector set DΛ ⊂ D denotes a set of NPB parents2 chosen from the domain
pool, D. With a multi-parent approach, the parameters αm may be chosen to
combine the domain blocks in a number of ways [1,3,5].

Relation between Fractal and Autoregressive Based Methods

In this section, we make a connection between fractal and AR equations to
demonstrate certain self-similar properties of one-dimensional MR data. Com-
bining Eq (7) for the range block r with Eq (6), we obtain (Appendix):

r = −

2NC
∑

m=1

amdm (11)

1 The parameter ∆ is simply the root mean squared error between r(n) and its ap-
proximation, and is referred to in the fractal literature as the collage error.

2 For example, the NPB parents that have the lowest collage errors, according to Eq
(9) may be chosen.
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Comparing Eqs (10) and (11), several key observations can be made. First, by
allowing β = 0 and using an appropriate set for Λ, we obtain

αm = −am, m = 1, 2, 3, . . . , 2NC ,

so that the approximation in Eq (10) becomes an equality. That is, multi-parent
fractal operators acting on signals of the form Eq (1) can produce r exactly

without the need for a β term3. Thus, using the boxcar model [9] one dimensional

MR signals are self similar upon multiplication of the signal by −2πik.
Having established a connection between fractal coding and AR modeling,

new results could be explored with AR modeling that describe mathematical and
physical properties of the fractal parameters α and β. This connection enables a
relationship between, for example, α and physical parameters (in this case, pm

and qm of Eq (3)) through Prony or AR modeling [12]. Deriving such connections
is, however, beyond the scope of this paper.

Eq (11) represents a theoretical derivation for one-dimensional complex sig-
nals. Although mathematical extensions of Prony and AR methods to two di-
mensions has been made (see for example [4,18]), our research into the extension
of the mathematical connection between fractal and AR theory to two dimen-
sions is in progress. Rather, the next section explores the empirical evidence that
two dimensional complex MRI Fourier data can demonstrate self-similarity.

3 Two Dimensional Fractal Coding of MRI Data

In this section, we present a preliminary analysis of the self-similar properties
of two dimensional MRI data. We explore the self-similarity of MR data, using
two-dimensional blocks, in the Fourier domain, employing single and multiple
parent transforms, with MRI data taken from two different MR imaging systems.

Photographs of MR “phantoms”, constructed with plexiglass sheets mounted
on 2 cm diameter cylindrical Teflon bases are shown in Figs 1(a) and 1(b). Figs
1(c) and 1(d) show MR images4 of these phantoms immersed in water. Fig 1(c)
has dimensions 256×256, Fig 1(d) has dimensions 512×512. Figs 1(e), (f) display
the respective k-space real components between [-2.5e-4,+2.5e+4]. Figs 1(g) and
(h) display the respective k-space magnitudes and the relative amplitudes at the
origin and at high frequencies.

Fig 2 shows data5 from a 30 slice data set of a human volunteer. Each slice is
a complex k-space data set with dimensions 128 × 128. The (a) spatial domain
magnitude, (b) k-space real component, and (c) k-space magnitude are displayed.
Each image was individually normalized by their respective l2 norms.

3 Admittedly, we have considered the noiseless case, and would not expect that the
collage error would remain zero under the presence of noise.

4 11.7 T MRI system (Bruker), using a gradient echo sequence, TR/TE 800/5 ms,
FOV 3 cm.

5 3.0 T MRI system (General Electric Medical Systems; Waukesha, WI), using a mul-
tislice spoiled gradient-recalled echo sequence, FOV 24 cm, slick thickness 4 mm,
TR/TE 200/3.1 ms, flip angle 18◦.
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Collage error probability histograms (CEPH) were constructed from the phan-
tom data. The histograms were made by partitioning the k-space data sets into
NDB non-overlapping NP ×NP domain and range blocks. The domain and range
block sets were exactly the same. For each range block, all possible domain blocks
were compared (with the exception of those domain blocks that were equal to
the corresponding range block), using the 2D analog of Eq (9), or collage error :

∆p,q =

√

√

√

√

1

N2
P

NP
∑

m,n=1

|rp(m, n) − αqdq(m, n) − βq|2, p, q = 1, 2, . . . , NDB, p �= q

(12)

A total of NDB × (NDB − 1) comparisons are made to construct a CEPH. The
parameters αq and βq are determined using a least-squares fit to rp. CEPHs
calculated using Eq (12) from the phantom and human volunteer data are shown
in Figs 3 and 4, using NP = 4.

Fig. 1. Photographs of the (a) “bar” and (b) “grid” phantoms. (c) and (d) display
spatial domain magnitudes. (e) and (f) show the corresponding k-space real component
between [-2.5e-4, 2.5e-4], and (g) and (h) show the k-space magnitude data. Data sets
were normalized in l2.

Complex noise taken from a normal distribution with zero mean and SD
0.005 was added to the normalized human volunteer data and the normalized
phantom data. The corresponding CEPHs and SD histograms from the phantom
and human volunteer data are displayed in Figs 3 and 4.

In all of the CEPHs (Figs 3, 4, 5), the additive noise moved the distributions
away from zero to a new distribution centered near 0.005. This effect is not
surprising, as the CEPHs of pure noise is centered on its SD [8]. We also see that
the pure k-space data is more self-similar than the data obtained after adding
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Fig. 2. One slice from the 30 slice human volunteer data. (a) displays the magnitude
of the spatial domain data, (b) the corresponding k-space real component intensities
between -0.01 and +0.01, and (c) shows the k-space data magnitude.

Fig. 3. CEPHs from phantom data using 8 × 8 blocks (green), and the corresponding
histograms with added complex zero mean noise with SD 0.005 (orange)

Fig. 4. (a) to (c) human volunteer CEPHs (green) using 4×4 blociks and corresponding
CEPHs after noise was added (orange). CEPHs in (d) were calculated from all 30 slices.

Fig. 5. (a) and (b) human volunteer CEPHs (green) from all 30 slices using different
block sizes, and the corresponding CEPHs after noise was added (orange). Green and
orange lines correspond to range block SD histograms.
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Fig. 6. Normalized multi-parent CEPHs using NPB = 1, 30, and 60, from various data
sets. Errors are plotted on a log10 scale, and collage errors are normalized by the SD
of rp. Only the NPB blocks for each rp with the lowest collage errors were used to
calculate the least squares projection onto the NPB blocks.

Table 1. Mean normalized multi-parent collage errors using NPB = 1, 30, and 60,
from various data sets. Collage errors are normalized by the SD of rp. Only the NPB

blocks for each rp with the lowest collage errors were used to calculate the least squares
projection onto the NPB blocks. Means are calculated across all range blocks.

NPB Bar, NP = 8 Grid, NP = 16 Human Volunteer, NP = 8

1 0.6179 0.8505 0.8300

30 0.2234 0.6221 0.3955

60 0.0435 0.5299 0.1028

noise, providing us with evidence that two dimensional k-space data may be
self-similar, or at least can be more self-similar with less noise.

The collage errors in Fig 4 were closer to the origin than the SDs. The SDs
are simply the collage errors, using Eq (12), with αq = 0. Including the αq term
reduces ∆, further suggesting that k-space data can be self-similar.

CEPHs were also calculated using a multi-parent transform. The collage error
between the range blocks and the least-squares projection of each range block
onto the space spanned by the NPB transformed domain blocks with the lowest
collage errors for each range block was calculated. The CEPHs for NPB = 1, 10,
and 30 are shown in Fig 6. The collage errors were normalized by the SDs of the
range blocks, and the errors were plotted on a logarithmic scale. Table 1 shows
the means of collage errors plotted in Fig 6. As expected, the collage errors
become smaller as more parents are used.

4 Conclusions

This paper represents an important step in our research programme for fre-
quency extrapolation of Fourier domain data using fractal and self-similar based
methods. To this end, we investigated the local self-similarity of two classes of
data: 1D signals of the form Eq (1), and 2D complex MRI k-space data.

Section 2 provided a mathematical investigation of the local self-similarity of
signals of the form Eq (1). Signals of this form were found to be self-similar,
and partitioned blocks of the signal may be predicted exactly with multi-parent
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transforms ; a consequence of Prony’s method and AR modeling. One dimen-
sional noiseless MRI k-space signals can be can be put into this form by using
the boxcar model, thereby allowing the data to posses local self-similarity.

Section 3 provided an empirical study of the self-similarity of 2D complex
Fourier data. Single and multi-parent transforms with complex fractal param-
eters were used to approximate Fourier domain blocks. Added noise decreased
the self-similarity of the data, suggesting that fractal methods can find and
utilize self-similar structures present in raw Fourier data. Use of an α term and
multi-parent transforms improved the collage error, suggesting that fractal based
techniques is able to uncover k-space self-similarity. The use of domain block
isometries (or geometric maps), overlapping domain blocks, and other standard
fractal techniques [6] should further improve our results.

Establishing connections between fractal and AR modeling theory provides new
avenues for future investigation. Further relationships between fractal, AR, and
physical parameters can be made. Ultimately however, concepts established in
this paper are part of our overall research programme to use self-similarity to per-
form k-space extrapolation. Extension of mathematical results from Section 2 into
two dimensions and use of multi-parent fractal techniques explored Section 3 may
enable new approaches to the extrapolation of Fourier data, thereby providing a
means of spatial domain resolution enhancement.
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Appendix: Relation between Fractal and AR Based Methods

Here we provide a short but key derivation of Eq (11). Using Eqs (6) and (7):

r = [r(0), r(1), r(2), ....., r(NP − 1)]

= [−

2NC
∑

m=1

ams(Nm), −

2Nc
∑

m=1

ams(Nm + 1), . . . ,−

2Nc
∑

m=1

ams(NS − 1 − m)]

= −

2NC
∑

m=1

am[s(Nm), s(Nm + 1), . . . , s(NS − 1 − m)] = −

2NC
∑

m=1

amdm

where Nm = NS − NP − m.
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