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The rescaled range analysis techniques are used to investigate long-range dependence in plasma

edge fluctuations @Mandelbrot and Wallis, Water Resources Res. 4, 909 ~1969!#. This technology

has been applied to data from several confinement devices such as tokamaks, stellarators, and

reversed-field pinch. The results reveal the self-similar character of the electrostatic fluctuations at

the plasma edge with self-similarity parameters ranging from 0.62 to 0.72. These results show that

the tail of the autocorrelation function decays as a power law for time lags longer than the

decorrelation time and as long as times of the order of the confinement time. In cold plasma devices

(Te,1 eV at the core!, there is no evidence of algebraic tails in the autocorrelation function. Some

other characteristic features of the autocorrelation function and power spectrum have been

investigated. All of these features are consistent with plasma transport as characterized by

self-organized criticality. © 1998 American Institute of Physics. @S1070-664X~98!00510-2#

I. INTRODUCTION

Since the seminal papers of Kolmogorov,1 the concept of

a self-similarity regime in the fluctuations has played a key

role in understanding some of the basic features of fluid tur-

bulence. This concept was extended to hydrological data

mainly by Mandelbrot2,3 and later applied to a variety of

natural phenomena. Self-similarity of a time series is gener-

ally linked to the algebraic decay of the autocorrelation func-

tion for long time lags.4 As a consequence, it can also be

linked to long-time dependencies in the dynamics of the fluc-

tuations.

The autocorrelation function of the electrostatic fluctua-

tions at the plasma edge is characterized by a narrow peak

around the time lag zero and a slowly decaying tail ~that may

have oscillations! for large values of the time lag ~Fig. 1!.
The central peak of the autocorrelation function carries in-

formation on the correlation of the local fluctuations; the

width of the peak measures the decorrelation time of the

turbulence. The information on intermediate time scales, be-

tween fluctuations and transport phenomena, is brought up

by an algebraic falloff from the long-time correlated events.

It is in this time scale range that the characteristic time of

avalanches and fluctuation modulations should appear. Un-

fortunately, to accurately determine the tail of the autocorre-

lation function, high statistics are required. This is a problem

for plasma turbulence studies in magnetically confined de-

vices because of the short duration, relative to the confine-

ment time, of the plasma discharges. However, there are

techniques that seem to be remarkably effective for the de-

termination of long-range dependencies in a finite time se-

ries. One such technique is the rescaled adjusted range sta-

tistics (R/S statistics! proposed by Mandelbrot and Wallis,2

based on the previous hydrological analysis of Hurst.5 This

method leads to the estimation of the Hurst exponent, H,

which is related to the fractal dimension of the time series.6,7

The existence of long-range time correlations in electro-

static fluctuations at the plasma edge is another argument

supporting the idea that self-organized criticality8 ~SOC! is

an important mechanism in plasma transport. The concept of
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SOC brings together ideas of self-organization of nonlinear

dynamical systems with the often observed near-critical be-

havior of many natural phenomena. These phenomena ex-

hibit self-similarities over extended ranges of spatial and

temporal scales. In those systems, scale lengths may be de-

scribed by fractal geometry and time scales that lead to

1/f -like power spectra. The SOC gives an intimate connec-

tion between the scale invariance in space and time.

It has been suggested that the SOC approach could be

used to understand some of the observed dynamics in plasma

transport.9,10 Reviews of the initial application of the SOC

ideas to plasma confinement and related topics can be found

in Refs. 11 and 12. Numerical plasma turbulence

calculations13 that include profile evolution have shown

some of the characteristic properties of the SOC systems: the

existence of a critical profile gradient and transport by ava-

lanches. There is some indirect experimental evidence for

SOC behavior of magnetically confined plasmas in the ‘‘low

confinement regime.’’ Phenomena such as the resilience of

plasma profiles to changes in the location of the heating

source, Bohm scaling of the diffusivities, and the apparent

nonlocal behavior of some perturbative experiments could be

a consequences of SOC dynamics.

We have shown the existence of long-range time corre-

lations in the plasma edge ion saturation current

measurements.14 In this paper, we have done a more com-

plete analysis of the data, extended the analysis to other mag-

netic configurations and to the floating potential fluctuations.

Here, we also describe the statistical techniques used in the

determination of the long-range correlations and how to dis-

tinguish the long-range turbulence correlations from other

plasma physics phenomena, such as coherent modes. We in-

vestigate the self-similarity of the edge plasma fluctuations,

and we try to identify the self-similarity parameter as a step

toward finding the potential role of SOC phenomena in

plasma transport. In calculating the self-similarity parameter,

we consider Langmuir probe measurements for low-power

Ohmically heated or electron-cyclotron-heated ~ECH!
plasma discharges in several types of confinement devices.

We have analyzed data from three stellarators: TJ-IU,15

Wendelstein 7 Advanced Stellarator ~W7-AS!,16 and the Ad-

vanced Toroidal Facility ~ATF!,17 in the electron cyclotron-

heating ~ECH! regime. We have also analyzed fluctuation

data records from two tokamaks, TJ-I18 and the Joint Euro-

pean Torus ~JET!,19 in the Ohmic-heated regime, as well as

one reversed-field pinch configuration, the Reversed-Field

Experiment ~RFX!.20 Finally, we have compared these re-

sults to the ones obtained from the Thorello device,21 a tor-

oidal device without rotational transform and with relatively

cold plasmas (Te ,T i,1 eV).

All the comparisons between different magnetic configu-

rations give clear evidence of the existence of long-range

correlations in the plasma edge turbulence in confinement

devices. This result shows the self-similar nature of the fluc-

tuations. The narrow range of variation of the self-similarity

parameter points to a universal character of the dynamics.

These results, together with other evidence such as the struc-

ture of the fluctuation spectra, support the idea of the SOC

character of magnetically confined plasmas.

The rest of the paper is organized as follows. The rela-

tion between algebraic tails of the autocorrelation function

and the self-similarity of the fluctuations is discussed in Sec.

II. The method employed to determine the self-similarity pa-

rameter is presented in Sec. III, where the possible source of

error in its estimation is also discussed. In Sec. IV, the results

of the analysis of experimental data are given and discussed.

In Sec. V, some other signatures of SOC found in edge

plasma fluctuations are presented. The effect of E3B

sheared flow on the self-similarity parameter is shown in

Sec. VI. These results are based on a sandpile model, and the

possible implications for the experimental data are discussed.

Finally, the conclusions of this work are presented in Sec.

VII.

II. ALGEBRAIC TAILS IN THE AUTOCORRELATION
FUNCTION

In this section, we summarize some of the statistical con-

cepts related to self-similarity and long-range dependence

that are the basis for the present studies. Here, we understand

by long-range dependence the existence of an algebraic tail

in the autocorrelation function. More detailed reviews of

these concepts can be found in Refs. 4, 6, 22.

Let us consider a time series of length n, X[$X t :t

51,2,...,n%, corresponding to a stationary process. Because

this is a finite time series, its mean X̄(n) and variance S2(n)

are well defined. All second-order properties of this time

series are given by the autocovariance function gD

5cov(X t ,X t1D), where D is the time lag. In terms of the

autocovariance, the variance is V[S2(n)5g0 , and the au-

tocorrelation function rD5gD /g0 . An alternative represen-

tation of the second-order properties of this series can be

constructed through the time series by averaging the original

time series over nonoverlapping blocks. That is, for each m

51,2,...,n , the new time series is X (m)[$Xu
(m) :u

51,2,...,n/m%, where

Xu
~m !

5

Xum2m111¯1Xum

m
. ~1!

For each value of m, we can define the autocovariance func-

FIG. 1. Autocorrelation function determined from a 50 ms time record of

saturation current measurement from shot number 35539 in W7-AS.32
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tion for the X (m) series, gD
(m)

5cov(X t
(m) ,X t1D

(m) ), and the cor-

responding variance V (m)
5g0

(m) . From these definitions fol-

lows Taylor’s formula:23

V ~m !
5

g0

m
1

2

m2 (
s51

m

(
D51

s21

gD . ~2!

This relation separates the short and long lag contributions.

For a random variable X, the first term dominates. In the

limit of large m, we obtain the Gaussian statistics result, that

is, the standard deviation decreases as the square root of the

number of samples considered. However, for processes with

a long-range time dependence, the second term may diverge

in the large m limit. In this situation, X does not verify the

conditions of the Central Limit Theorem. Equation ~2! can

also be used to calculate the autocovariance function of the

original series in terms of the variance of the successive av-

eraged subseries:

gD5
1
2 d2~D2V ~D !!. ~3!

Here, the operator d2 is the second-order central derivative

operator in finite differences,

d2~ f i!5 f i111 f i2122 f i . ~4!

Equation ~3! shows that the information on the variance for

all of the time series resulting from averaging the original

sequence is equivalent to the information contained in the

autocovariance function for the original series. Therefore, for

an infinite series, V (m) provides an alternative equivalent de-

scription of the second-order properties of the original series.

However, by formulating the second-order properties in

terms of averages over the original time series, we give a

higher weight to the low frequencies, and it is possible to do

a more accurate estimation of the long-range time depen-

dence.

As previously indicated, in going to the asymptotic limit

of m→` for the series considered, there are two possibili-

ties: ~1! the second term on the right side of Eq. ~2! con-

verges; or ~2! the second term on the right side of Eq. ~2!
diverges. The first case corresponds to the usual Gaussian

processes with short-range time dependence. For these pro-

cesses, as we average over blocks of size m, and the variance

decreases as 1/m . In the second case, the variance decreases

slower than 1/m . Let us consider the case V (m)
5V̄m2b,

where 0,b,1. In this case, the autocovariance function is

gD'
V̄

2
~22b !~12b !D2b, ~5!

which decays as a power law. It is also straightforward to

show that the autocorrelation function for all of the averaged

processes is the same, given by

rD
~m !

5
1
2 d2~D22b!. ~6!

Because all of the averaged processes have the same auto-

correlation function, the original series is called self-similar.

This definition is equivalent to the more intuitive one; that is,

the process X is called second-order self-similar with self-

similarity parameter H512b/2, if, for all m51,2,3,...,n

(X tm2m111¯1X tm)/mH, t50,1,2,..., has the same vari-

ance and autocorrelation as X. The parameter H is the self-

similarity parameter, and it is also called the Hurst param-

eter. In general, Eq. ~6! is only verified for large time lags,

and self-similarity is taken as an asymptotic property of the

time series.

To accurately determine the tail of the autocorrelation

function and the parameter H, very high statistics are re-

quired. This creates a problem for plasma turbulence studies

in magnetically confined devices because of the short dura-

tion of the plasma discharges. However, there are techniques

that seem to be effective for the determination of H in a finite

time series. One such technique is the R/S statistics proposed

by Mandelbrot and Wallis2 and is based on the previous

hydrological analysis of Hurst.5

The R/S ratio is the ratio of the maximal range of the

integrated signal normalized to the standard deviation. It is

defined as

R~n !

S~n !
5

max~0,W1 ,W2 , . . . ,Wn!2min~0,W1 ,W2 , . . . ,Wn!

AS2~n !
,

~7!

where

Wk5X11X21¯1Xk2kX̄~n !. ~8!

For a sequence with short-range dependencies, of which a

random signal is an extreme case, the expected value of this

ratio scales as

EFR~n !

S~n !
G ——→

n→`

ln0.5. ~9!

Here, E@x# is the expected value of the variable x. For phe-

nomena characterized by a long-range time dependence, the

expected value of R/S scales as

EFR~n !

S~n !
G ——→

n→`

lnH, ~10!

with HÞ0.5. For 1.H.0.5, there are long-range time cor-

relations for 0.5.H.0, the series has long-range anticorre-

lations, and if H51.0, the process is deterministic. The H

used here is the same Hurst parameter introduced previously.

A constant H parameter over a long range of time lag values

is consistent4 with the self-similarity of the signal and an

autocorrelation function given by Eq. ~6!. In comparison to

the direct determination of the autocorrelation function or

other alternative techniques of calculating the value of H, the

R/S analysis is remarkably robust.24

III. DETERMINATION OF THE SELF-SIMILARITY
PARAMETER

There have been many detailed studies of the reliability

of the R/S method to calculate long-range correlations. In

general, it is difficult to do so because it is difficult to sepa-

rate the robustness of the analysis method from the accuracy

of the method to generate a self-similar time series with a

given self-similarity parameter. In many instances, the prob-

lems found with this method are related to the length of the

samples used. In particular, in medical and economic studies
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with intrinsically limited series lengths, this is a major source

of concern.25–27 In those instances, we are referring to a se-

ries of less than 1000 points. Fortunately, this is not the case

in the fluctuation samples that we have considered. Our con-

cern in using this method is not only with its accuracy but

also with plasma phenomena that could distort or mask the

proper determination of H. In this section, to verify the ro-

bust character of the R/S analysis for the plasma fluctuation

data and eliminate the contamination by other effects, we

consider some typical examples of fluctuation data and data

produced by simple dynamical models. We also investigate

the contamination of the measurement by noise.

To calculate R/S , we use the method outlined in the

previous section. For a given data set, we subdivide the data

in nonoverlapping blocks, calculate R/S for each block, take

proper averages, and plot the results as a function of the lag

in a log–log plot. Error bars are estimated from the disper-

sion of the R/S values given by each block. The last few

points on the high-lag end of the plot are not taken into

consideration because they lack statistical significance. This

is because the size of the blocks is of the order of the size of

the time sample. In plasma physics applications, the lower

end is linked to the correlation time of the fluctuations, and

we also do not take this into consideration.

First, we would like to illustrate the issue of the accuracy

of the method. To do so, we consider the case of random

noise. In this case, the signal is uncorrelated, and the decay

indices should be b51 and H50.5. Using the random num-

ber generator from the NAG library, we have generated 100

time series of 106 points each. We have analyzed sequences

of 103 – 106 in length. The results of the R/S analysis are

shown in Table I. In the table, the averaged value of H over

the different realization is shown together with the standard

deviation. The averaged value of H converges to a 0.52 value

for time series with more than a ten thousand points. The

value of H is not the expected 0.5 value. The discrepancy

may be caused by both an accuracy problem of the R/S

analysis and/or the random number generator. These calcu-

lations can give us guidance in the determination of the ex-

istence of a long-range correlation when compared with the

analysis of fluctuation data.

It is interesting to consider the case of a time series,

created by an oscillatory motion, that is, a pure sine function.

This series results from deterministic dynamics. If the time

discretization is much smaller than the period, the time trace

is a continuous curve. Therefore, the expected Hurst expo-

nent is 1. In Fig. 2, we have plotted the R/S values for a

sinusoidal signal of 100 000 data points with a period of

1000 points. For lags up to the value of the period, the Hurst

exponent is H51.0, as expected; for longer lag values, H

'0.0 in an averaged sense. This result can be extended to

any periodic signal. Therefore, the presence of coherent os-

cillation, a coherent mode, and/or a pure wave appears as a

clear pattern in the R/S plot.

For a coherent mode, we expect a signature in the R/S

plot similar to the periodic signal just considered. The effect

of coherent modes is clearly seen in some experimental

Langmuir probe data from the KIWI Linear device,28 where

drift waves are destabilized.29,30 When an m52 drift mode is

established, the probe data has a spectrum with very strong

peaks at 13 kHz and its harmonics at 26, 39, and 52 kHz. It

also has weak peaks at 6.5, 19.5, 32.5, and 45.5 kHz ~sub-

harmonics due to the presence of a weak mode-locked m

51 mode!. The R/S plot for these data is shown in Fig. 3. In

going from small to large lags, we have an initial ramp with

H51.0. Then there is an abrupt flattening to H50.0 at lag of

about 20, definitely corresponding to the main harmonic of

13 kHz; an exact correspondence would give a turnover at

lag 19. Then there is an intermediate zone with H50.77,

followed by a gradual rise to H51.0 at a time lag of about

700. Finally, a turnover to H'0.5 occurs at a lag of around

5000. This last turnover is identified as a 50 Hz ~55000

points! component, which is also noticed in the fluctuation

power spectrum. The R/S analysis clearly points to the exis-

TABLE I. An R/S analysis of sequences of random data.

Points in the time series Averaged H Standard deviation

103 0.543 0.054

104 0.556 0.012

105 0.529 0.008

106 0.524 0.003

FIG. 2. We see R/S as a function of time lag for a sinusoidal signal of

100 000 data points with a period of 1000 points.

FIG. 3. We see R/S as a function of time lag for probe measurements from

the KIWI Linear device.28 The figure shows the presence of at least two

coherent modes for this discharge.
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tence of coherent modes. Under these circumstances, it is not

possible to make a quantitative evaluation of the long-range

correlations in the background turbulence.

A sharp rise of R/S as a function of lag can also be

caused by a coherent flow such as a plasma drift or by the

motion of the probe. When reciprocating Langmuir probes

are used, the motion of the probe can be detected at large

time lags. In Fig. 4~a!, we show an R/S plot for fluctuations

measurement with a reciprocating Langmuir probe in JET.

The velocity of the probe is 1 m/s. After an initial slope of

H51.0, it settles down to H50.7. At a lag of about 1500,

the slope rises to a value well above 1.0. Such a fast rise is

not seen by a fixed divertor probe for the shot with similar

parameters @Fig. 4~b!#.
Values of H greater than 1 can only be attained tran-

siently for values of the time lag less than Ln /Vp and when

the effect of the drift is close to the amplitude of the fluctua-

tions. Here, Ln is the profile scale length, and Vp is the

velocity of the probe. We have created sequences of data

combining random noise with a drift represented by a sinu-

soidal function of time. The R/S plot obtained in each case is

similar to Fig. 4~a!. If we calculated the H value in the fast

raising phase, we see that it is a strong function of the ratio

of the amplitude of the sinusoidal signal to the random one

~Fig. 5!. For a narrow window of values for this ratio, H is

greater than unity. In the two asymptotic limits, noise domi-

nating and sinusoidal dominating, one obtains the values dis-

cussed previously.

Let us now consider a more complicated deterministic

dynamical model that can give further insight on the infor-

mation carried out by the R/S analysis. The Lorenz model is

a simple dynamical model with complex behavior.31 This

system is defined by the equations

dx~ t !

dt
5s@y~ t !2x~ t !# , ~11!

dy~ t !

dt
52x~ t !z~ t !1rx~ t !2y~ t !, ~12!

dz~ t !

dt
5x~ t !y~ t !2bz~ t !. ~13!

We have analyzed solutions of this model using the R/S

statistics. In Fig. 6, we have plotted a case with the param-

eters s516.0, r545.92, and b54.0. The Lorenz equations

have been solved from the initial point ~17.83, 12.34, 10.32!
by integrating with time steps Dt50.02 using a Runge–

Kutta integration method. This generates an attractor with

dimension d52.06. We have analyzed the series y(t). The

results shown in Fig. 6 give an initial slope at H51.0 that

turns gradually over to H50.5 for long time lags, indicating

that the ‘‘memory’’ of this signal is about 200 points. We

can see the same type of effect by considering two-

FIG. 4. We see R/S as a function of time lag for ~a! a reciprocating probe

measurement ~shot 39650-23! and ~b! a fixed probe measurement ~shot

3474-11! in the JET device and outside the last close flux surface.35

FIG. 5. The Hurst exponent calculated on the fast rising phase of R/S for a

sequence of a time series combining a sinusoidal signal of period 105 with

random noise. Here H is plotted versus the ratio of the amplitude of the

former to the latter. The sequences have 105 points and the fast rising phase

is for time lags between 4000 and 300 000.

FIG. 6. We see R/S as a function of the time lag for the y(t) series of the

Lorenz model, Eqs. ~11!–~13!.
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dimensional plots of y(t) vs y(t1D), where D is a time lag.

For values of D below 200, we obtain a projection of the

Lorenz attractor. However, for larger lags the trajectory is

area filling.

All the potential problems in the determination of H dis-

cussed in this section, such as the existence of coherence

oscillations and/or plasma drifts, produce a clear signal in the

value of R/S . Although they are distinct from long-range

dependencies in the turbulence, they do not allow the extrac-

tion of the value of H. A careful selection of the data is

needed to avoid samples dominated by plasma drifts and

magnetohydrodynamic ~MHD! phenomena. However, these

phenomena do not produce misleading interpretations for H

because they carry clear signatures that allow the exclusion

of data that do not provide information on the plasma turbu-

lence. The consistent determination of H has also been cross-

checked with the determination of the scaling with the time

lag of the variance and probability of return.

We have further tested the robustness of the R/S esti-

mate by adding random noise to a signal. To do so, we have

selected one of the TJ-I sets of data, 10 000 points, and have

added different levels of random noise. In Fig. 7, the plot for

three cases is shown. The levels of added noises are 0%,

15%, and 60%. Even with 60% noise, the Hurst parameter

hardly changes. With a 15% added noise level, the difference

is undetectable, and for 60% noise, the Hurst parameter

changes by 6.6%. This gives a good measure of the robust-

ness of this technique.

Finally, to find a good criterion to distinguish between

weak correlations and no correlation, we have used a com-

mon technique applied to the analysis of dynamical systems.

For each time series, we can create a surrogate time series.

This new series is created by randomizing the time sequence

of the data. This eliminates the time correlations. We calcu-

late the Hurst exponent for the surrogate series and compare

it to the exponent of the original series. In Fig. 8, we show an

example based on the time series from RFX plasma edge

measurements. There is a clear distinction between the expo-

nents of the original series and the surrogates; this difference

indicates that there are long-range correlations in the original

data.

The robust character of the calculation of H is also evi-

dent by the reproducibility of the results. The radial profiles

of H for discharges with the same parameters are very simi-

lar. Although the error bars for individual points in many

cases may be comparable to the radial variation of H, the

radial profiles are reproducible.14

IV. R/S ANALYSIS OF THE EXPERIMENTAL
RESULTS

In the present study, the data analyzed are edge Lang-

muir probe measurements from three stellarators, TJ-IU,32

W7-AS,33 and ATF,34 in the ECH heated regime; two toka-

maks, TJ-I18 and JET,35 in the Ohmic heated regime; and one

reversed-field pinch, RFX.36 We have compared these results

to the ones obtained from the Thorello device,21 a toroidal

device without rotational transform and relatively cold plas-

mas. The available data correspond to radial probe scans

with positions that are close to, and within, the edge sheared

flow layer. A summary of the main parameters of these de-

vices and of the discharges analyzed here are given in Table

II. In the table, R is the major radius of the device, ā is the

averaged plasma minor radius, n̄e is the averaged plasma

density, BT is the toroidal magnetic field, and P is the ECH

power.

For ion saturation current fluctuation measurements at

the plasma edge, a typical plot of R/S versus time lag is

shown in Fig. 9. For time lags smaller than a few decorrela-

tion times, there is a transient with a nearly constant slope,

generally with a value close to 0.9. After this initial phase,

R/S settles on an ‘‘asymptotic’’ power law that is used to

determine the value of H. The range of the time lags over

which H is determined is the ‘‘self-similarity range’’ given

in Table III for each dataset. Typically, the value of the self-

similarity range is several orders of magnitude longer than

the turbulence decorrelation time, and in most cases the up-

per limit given in Table III is set by the availability of data.

In Table III, we also give the turbulence decorrelation time,

tD . The turbulence autocorrelation time is estimated at the

zero velocity point in the shear layer for each dataset.

The main result of our analysis is that, for all datasets,

the Hurst parameter is constant and well above 0.5 over a

FIG. 7. The effect on R/S of adding random noise to a edge probe mea-

surement from the TJ-I device ~Ref. 18!. A sample of 10 000 points have

been used in this calculation.

FIG. 8. A test of the R/S determination by creating a new series random-

izing the time sequence of the data. The calculated Hurst exponent for the

surrogate series is compared to the exponent of the original series. The time

series are from the RFX plasma edge measurements.
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self-similarity range much longer than the turbulent autocor-

relation time. This result is a clear indication of the existence

of long-range dependencies in the fluctuation dynamics. Be-

cause the self-similarity range involves time lags from the

fluctuation time scales to transport time scales, it is also an

indication that there is no clear separation of time scales

between the fluctuation and the transport dynamics. In Table

III, ^H& in is the radial average of H in the plasma edge within

the last flux surface; and ^H&out is the radial averaged of H in

the scrape-off layer ~SOL!. The 6 indicates the radial varia-

tion of H; it is not an error bar. Within the plasma, the av-

eraged Hurst parameter varies between 0.62 and 0.72, a rela-

tively small range given the diversity of plasma confinement

devices considered. Partial results of this analysis were pre-

sented in Ref. 14. In some cases, the numerical values of H

may be slightly different because here we have chosen the

self-similarity range in a more consistent manner. In Fig. 10,

we have plotted the radial profile of H for the different mag-

netic configurations. We use as the ‘‘radial’’ variable, x, the

distance in real space between the position of the probe and

the zero-velocity point in the shear flow layer, and we do not

take into account the geometry of the flux surfaces. Positive

values of x correspond to the edge plasma region. We have

only plotted the H profile from the last closed flux surface up

to 3.5 cm within the plasma. We can see that the distribution

of values is relatively similar for the three types of magnetic

configurations considered.

The situation is, however, quite different in the scrape-

off layer ~SOL!. In the SOL, the values of H have a broader

range of variation. This variation could reflect the diversity

of SOL conditions for the devices considered. For instance,

we can see from the JET results in Table III that the value of

H in the SOL changes considerably from a limiter configu-

ration to a divertor configuration. These data are from the

same shot. For this discharge, JET was operated initially in a

limiter configuration and later switched to a divertor configu-

ration. In Ref. 14, we also showed the large scatter of H

values for the different SOL structures in the stellarators. The

fact that H in the SOL varies from device to device is an

indication of the lack of universality in the plasma behavior

in the SOL. This result is not surprising. We should not

expect much SOC behavior to hold within the SOL. Moving

into the SOL, the outward flux changes from perpendicular

to parallel and the radial flux bursts36 will change to parallel

flux burst. An issue is how far from the last flux surface the

system begins to lose the SOC character.

The results of tokamaks, stellarators, and RFP contrast

with the ones obtained in the analysis of fluctuations in the

Thorello device. Thorello21 is a toroidal device without rota-

tional transform; its main parameters are given in Table II. It

is capable of producing hydrogen magnetized plasma in a

steady-state condition. The plasma is obtained by using one

or more tungsten wires, placed in the inner part of the torus

and negatively biased (V52100 V) with respect to the

chamber walls. In this device, there is neither a transformer

to induce a toroidal current nor external auxiliary coils to

produce a poloidal magnetic field. Typical plasma param-

eters are the following: Te51 eV and T i50.3 eV, plasma

density at the edge is 1015 m23, and at the center 1017 m23.

The data for the present analysis were obtained by Langmuir

probes in the center plasma column and by varying the neu-

tral gas pressure ~from 1024 to 631024 mbar) and the tor-

oidal magnetic field ~from 1 to 2 kG!. The values of the H

parameter for ten different time series are plotted in Fig. 11.

They are compared to the values of H for the corresponding

surrogate series. We can see that within the error bars the

Hurst parameter shows very little or no long-range correla-

tions for these measurements.

The analysis up to now has been limited to the saturation

current fluctuations at the edge. A similar treatment has been

applied to the floating potential. In spite of the differences in

the wave forms between the ion saturation current fluctua-
FIG. 9. A plot of the expected value of R/S as a function of the time lag for

the same time record of W7-AS as in Fig. 1 ~Ref. 33!.

TABLE II. Data analyzed.

Device

Number of

time series R ~m! ā ~m! n̄e ~m23! BT ~T!

ECH

P ~kW!

TJ-I 9 0.30 009.5 (1 – 2)31019 0.8–1.0

JET 8 2.85 a050.95 (1 – 2)31019 2.6

b/a051.85

TJ-IU 21 0.60 0.1 (1 – 5)31018 0.67 200

W7-AS 53 2.00 0.2 (1 – 2)31019 1.25–2.5

ATF 20 2.10 0.27 (3 – 6)31018 1.0 200–400

RFX 29 2.00 0.457 (3 – 5)31019 Bp50.15– 0.2 T

Thorello 10 0.40 0.08 1016 0.2–0.1
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tions and floating potential fluctuations, as we have discussed

elsewhere,37 the values of H are very close ~Fig. 12!. Within

the expected error bars of the calculation, we cannot identify

any different trends or levels between both types of measure-

ments. The results plotted in Fig. 12 are from the TJ-IU

torsatron. Negative values of x correspond to the SOL and

positive values to the plasma edge region.

V. EVIDENCE FOR SOC BEHAVIOR OF PLASMA
TRANSPORT IN THE EDGE FLUCTUATION
MEASUREMENTS

The results of the analysis of edge fluctuation data pre-

sented in the previous section clearly shows the existence of

long-range correlations in most of the time records exam-

ined. However, it is important to realize that the fluctuation

measurements used in the present analysis correspond to

plasmas with a differential rotation in the poloidal direction

with respect to the laboratory frame. The long-range depen-

dencies identified here may not necessarily be long range in

time; they could be the reflection of long-range dependencies

in the poloidal variable. Because these edge flows have

shear, it is not possible to resolve this ambiguity by analyz-

ing data taken at the position of zero flow. As we discuss in

the next section, numerical calculations indicate that shear

flows may suppress the long-range correlations. The position

of zero flow is normally close to the position of maximum

shear. Therefore, it is not clear what causes the changes ob-

served in this position. From the perspective of detecting

signatures of SOC behavior in plasma transport, the distinc-

tion between long-range time and poloidal correlations is

less important. In either case, the presence of such dependen-

cies is consistent with plasma transport mechanisms based

on avalanches.

The absence of long-range correlations in the Thorello

device can be a further indication that these correlations are

caused by the existence of a critical point that may be related

to the level of power in the device, and it is not an intrinsic

characteristic of all plasma fluctuations.

Another interesting signature of a SOC system is the

fluctuation and flux spectrum. It is necessary to calculate the

spectra in the plasma reference frame; otherwise, the spectral

decay indices may be meaningless, or at least difficult to

FIG. 10. The radial profile of the Hurst parameter H within the last flux

surface for several of the devices considered in this paper.

FIG. 11. Hurst parameter H for several plasma discharges in the Thorello

device ~Ref. 21! compared with the values obtained for the corresponding

surrogate sequences. These results show the short-range correlation of the

fluctuations in this device.

TABLE III. A summary of the analysis results.

Device

Number

of time

series ^H& in ^H&out tD ~ms!

Self-similarity

range ~ms!

TJ-I 9 0.6460.03 0.7060.04 3.0 0.02–1.0

JET

limiter

4 ¯ 0.5260.04 29.0 0.1–2.0

JET

divertor

4 ¯ 0.6360.03 19.0 0.1–2.0

TJ-IU 21 0.6460.03 0.6760.01 6.0 0.1–2.0

W7-AS

ia50.243

24 0.6260.01 0.6060.04 20.0 1–20

W7-AS

ia50.355

29 0.7260.07 0.6660.06 19.0 1–20

ATF 20 0.7160.03 0.9260.07 34.0 1–12

RFX 29 0.6960.04 ¯ 3 0.03–3.0

Thorello 10 0.5560.04 ¯ 6 0.05–5.0
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interpret. Here, we have calculated the spectra around the

position of zero flow. In Fig. 13, we have plotted the spec-

trum of the ion saturation current fluctuations from W7-AS

data. The spectrum is calculated using a record of length 20

ms, and it is averaged using data from three reproducible

discharges. This spectrum strongly resembles the ones ob-

tained in simple sandpile calculations,10,38 as well as those

obtained in turbulence model realizations of SOC

systems.13,39 The spectrum shows three regions with approxi-

mate decay indices that are consistent with 0, 21, and 24,

respectively. Very similar results were first obtained in

DIII-D discharges.40

Calculating the autocorrelation function for the W7-AS

data in records of 1 ms, we can study its evolution over a 50

ms interval ~Fig. 14!. The 2-D plot shows intermittent in-

creases of the tail of the autocorrelation function. Different

possible mechanisms can explain this phenomena. One is the

effect of transport avalanches as a similar signature, as is

seen in SOC models. However, because of the plasma rota-

tion, it also could be caused by correlated blobs moving in

the poloidal direction. Because the information that we can

extract with a single probe is very limited, the use of mul-

tiple probes could be a way of discerning between these pos-

sible explanations.

The results of this analysis show that the plasma edge

turbulence is consistent with the SOC paradigm of turbulent

transport. However, it does not prove that this model offers

the only explanation for the experimental observations. At

this point, we are not aware of other dynamical mechanisms

that may provide an alternative answer, but it may exist.

More detailed experimental tests, mainly involving radial

correlation measurements, are needed.

VI. EFFECT OF SHEARED FLOWS ON THE SELF-
SIMILARITY PARAMETER

In this section, we explore the possible consequences of

the presence of a sheared flow on the long-range correlations.

To do so, we first need a dynamical model. Cellular au-

tomata with rules based on the sandpile dynamics have been

a standard model in studying generic properties of SOC.8,38

The model is based on the existence of a critical sandpile

slope. When, by random addition of grains of sand, the criti-

cal slope is reached, grains of sand fall down the pile in a

prescribed manner. The dynamical process shows that in a

steady state the sandpile slope is in the averaged sense well

below the critical slope and yet the transport of sand is still

produced by avalanches. These avalanches have length

scales from a single cell to the full size of the system. Here,

we consider a 2-D sandpile model with the added effect of

sheared wind. The particular algorithm used for the sandpile

evolution in the present calculations was explained in detail

in Ref. 41. Here we present only some of the results of this

model.

FIG. 12. The radial profile of H for the ion saturation current and floating

potential fluctuations. The time series are from a sequence of discharges in

the TJ-IU torsatron.

FIG. 13. The ion saturation current spectrum for a W7-AS discharge at the

radial position where the flow velocity is zero ~Ref. 33!. We use a record of

length 20 ms, and the spectrum is averaged over three reproducible dis-

charges. The structure of the spectrum is similar to the characteristic spec-

trum from sandpile models.

FIG. 14. The autocorrelation function for edge fluctuation data from W7-AS

calculated every 1 ms ~Ref. 33!. The plot shows the time evolution over a 50

ms interval. It shows intermittent increases of the tail of the autocorrelation

function and is correlated with increases of the H parameter.
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We have applied the R/S analysis to time sequences of

sandpile data. The particular data sequences are the total

number of cells overturning in each time step. This quantity,

normalized to the total length of the sandpile, can be taken as

the radial averaged particle flux. The calculations have been

carried out in a regime of weak avalanche overlap and they

give a constant value of H over many decades. This value is

around 0.8, with slight variation from case to case depending

on the probability of adding grains to the sandpile. The num-

ber of decades over which the Hurst exponent is constant

scales with the length of the sandpile. This effect is illus-

trated in Fig. 15, where R/S versus the time lag has been

plotted for four different values of the sandpile length, L. To

clearly see the effect of the size of the sandpile on the scaling

of R/S , we have subtracted to the R/S values plotted in Fig.

15 a power fit made to the lower range of time lags. The

deviation from this fit is plotted in Fig. 16. We can see that

the time lag when the deviation begins increases significantly

with L.

As shown by previous calculations, the addition of a

sheared flow to the sandpile induces a decorrelation of

avalanches.41 This decorrelation effect is clearly demon-

strated by the change in the value of H. When a sheared flow

is added to the sandpile, the long-range correlations are

eliminated, and H is close to 0.5 ~Fig. 17!.

The effect of reducing H by shear flow for large values

of the time lag is different from the effect, first determined in

the Texas Experimental Tokamak ~TEXT!42 and later seen in

other devices,43 of the reduction of the decorrelation time of

the turbulence. The reduction of H at large time lags is the

result of the decorrelation of avalanches. The value of shear

flow that causes such decorrelation is possibly too low to

cause any effect on the fluctuations. The avalanche decorre-

lation should result in a change on the confinement scaling

~from Bohm to gyro-Bohm!. This effect is not necessarily

directly measured as an increase in the confinement time.

However, the reduction of the decorrelation time of the tur-

bulence causes a direct increase in confinement time. This is

an effect predicted by theory.44 Experimental observations

show correlation between the effect of E3B shear flows and

the reduction of turbulence.43,45 There are not yet experimen-

tal analysis of the effect of the shear flow on the long-time

correlation of turbulence.

There is some indication in the analyzed data that the

reduction of long-range correlations by E3B sheared flow

effect could also be present at the plasma edge turbulence. In

W7-AS, a small reduction of H is near the shear layer. This

effect is weak, and it is not possible to distinguish it from

other effects such as the transition from poloidal correlation

to time correlations caused by the change in velocity. Other

effects may also be present in crossing to the SOL. Not all

the profile changes are aligned with the zero of the shear

flow, however, we have not measured directly the plasma

flow. The shear flow layer is defined from the measurement

of the phase velocity of the fluctuations and the maximum

shear in the E3B flow may be somewhat displaced. Again, a

single probe measurement is a limitation that does not al-

ways allow separation between the different effects present

at the plasma edge.

FIG. 15. We see R/S versus the time lag for four different values of the

sandpile length, L. They show that the turning over of R/S is a function of

L.

FIG. 16. For the same data of Fig. 15, this plot shows the value of the time

lag at which the slope of R/S changes. It increases linearly with the length

of the sandpile.

FIG. 17. The addition of a sheared flow to the sandpile induces a decorre-

lation of avalanches ~Ref. 41!. This decorrelation effect is shown by the

change in the value of H.
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VII. CONCLUSIONS

The analysis of the edge plasma fluctuations in several

confinement devices indicates that the fluctuations have self-

similarity character over a broad range of time lags. There-

fore, long-range time correlations are present, and the tail of

the turbulence autocorrelation function decays as a power

law for time lags longer than the decorrelation time and up to

times of the order of the confinement time. However, be-

cause of the presence of sheared flows, it is not possible to

separate between time and poloidal long-range correlations.

The self-similarity parameter within the last flux surface

falls into a narrow range of values, from 0.6 to 0.72. Over

this range, the values for the different devices considered

strongly overlap. That is the radial variation of an H for a

type of magnetic configuration is comparable to the variation

found among different magnetic configurations. These re-

sults point to a universal character of the mechanism respon-

sible for the long-range correlations.

Fluctuation spectra measured at the position of zero ve-

locity have decay indices that are consistent with the one

obtained in SOC models. A systematic study of the spectra is

underway, and it will be discussed in a future publication.

Calculations show that long-range time correlations are

reduced or even eliminated by a shear flow effect. In the

experiment, the sheared flows are not strong enough to sup-

press turbulence, but there are indications that the long-range

time correlations are modified by a shear flow. Unfortu-

nately, however, the problem of separating between sheared

flow effects and changes because of the motion of the refer-

ence frame cannot be resolved with these single probe mea-

surements.

These results are consistent with SOC behavior and

plasma transport mechanisms based on avalanches. A more

systematic analysis of data from other confinement devices is

needed to confirm these conclusions. In particular, measure-

ments comparing long-range radial correlations should be

compared with long-range time correlations.
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