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Self-Splitting Competitive Learning:
A New On-Line Clustering Paradigm
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Abstract—Clustering in the neural-network literature is gener-
ally based on the competitive learning paradigm. This paper ad-
dresses two major issues associated with conventional competitive
learning, namely, sensitivity to initialization and difficulty in deter-
mining the number of prototypes. In general, selecting the appro-
priate number of prototypes is a difficult task, as we do not usually
know the number of clusters in the input dataa priori. It is there-
fore desirable to develop an algorithm that has no dependency on
the initial prototype locations and is able to adaptively generate
prototypes to fit the input data patterns. In this paper, we present
a new, more powerful competitive learning algorithm, self-split-
ting competitive learning (SSCL), that is able to find the natural
number of clusters based on the one-prototype-take-one-cluster
(OPTOC) paradigm and a self-splitting validity measure. It starts
with a single prototype randomly initialized in the feature space
and splits adaptively during the learning process until all clusters
are found; each cluster is associated with a prototype at its center.
We have conducted extensive experiments to demonstrate the ef-
fectiveness of the SSCL algorithm. The results show that SSCL has
the desired ability for a variety of applications, including unsuper-
vised classification, curve detection, and image segmentation.

Index Terms—Clustering, competitive learning, one-proto-
type-take-one-cluster (OPTOC), self-splitting, unsupervised
learning, validity measure, winner-take-all (WTA).

I. INTRODUCTION

DATA CLUSTERING aims at discovering and empha-
sizing structure which is hidden in a data set. Thus the

structural relationships between individual data points can be
detected. In general, clustering is an unsupervised learning
process [1], [2]. Traditional clustering algorithms can be
classified into two main categories: One is based on model
identification by parametric statistics and probability, e.g.,
[3]–[7]; the other that has become more attractive recently is a
group of vector quantization-based techniques, e.g., self-orga-
nizing feature maps (SOFMs) [8]–[12], the adaptive resonance
theory (ART) series [13]–[17], and fuzzy logic [18]–[26].
In the neural-networks literature, clustering is commonly
implemented by distortion-based competitive learning (CL)
techniques [2], [27]–[31] where the prototypes correspond to
the weights ofneurons,e.g., the center of their receptive field
in the input feature space. A common trait of these algorithms
is a competitive stage which precedes each learning steps and
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decides to what extent a neuron may adapt its weights to a
new input pattern [32]. The goal of competitive learning is
the minimization of thedistortion in clustering analysis or the
quantization errorin vector quantization.

A variety of competitive learning schemes have been de-
veloped, distinguishing in their approaches to competition
and learning rules. The simplest and most prototypical CL
algorithms are mainly based on thewinner-take-all (WTA)
[33] (or hard competitive learning) paradigm, where adaption
is restricted to thewinner that is the single neuron prototype
best matching the input pattern. Different algorithms in this
paradigm such as LBG (or generalized Lloyd) [34]–[36] and

-Means [37] have been well recognized. A major problem
with the simple WTA learning is the possible existence ofdead
nodesor the so-calledunder-utilizationproblem [38]–[40]. In
such cases, some prototypes, due to inappropriate initialization
can never become a winner, therefore, have no contribution to
learning. Significant efforts have been made in the literature
to deal with this problem. By relaxing the WTA criterion,
soft competition scheme (SCS) [31], neural-gas network [41]
and fuzzy competitive learning (FCL) [20] treat more than
a single neuron as winners to a certain degree and update
their prototypes accordingly, resulting in thewinner-take-most
(WTM) paradigm (soft competitive learning). WTM decreases
the dependency on the initialization of prototype locations;
however, it has an undesirable side effect in clustering analysis
[28]: since all prototypes are attracted to each input pattern,
some of them are detracted from their corresponding clusters.
As a consequence, these prototypes may become biased toward
the global mean of the clusters. Kohonen’s SOFM [8] is a
learning process which takes WTM strategy at the early stages
and becomes a WTA approach while its neighborhood size re-
duces to unity as a function of time in a predetermined manner.
However, its main purpose is to form a topographic feature
map which is a more complex task than just clustering analysis
[29]. Several other algorithms, such as additive conscience
competitive learning [38] andconvex bridge[40], modulate the
sensitivityof prototypes, so that less frequent winners increase
their chances to win next time. Reference [42] introduced a
conscienceparameter to reduce the rate of frequent winners
by making them “guilty.” Frequency sensitive competitive
learning (FSCL) [43] uses such a strategy which in some cases
significantly improves the classical CL algorithms. Moreover,
fuzzy frequency sensitive competitive learning (FFSCL) [20]
combines the frequency sensitivity with fuzzy competitive
learning. Since both FSCL and FFSCL use non-Euclidean dis-
tance to determine the winner, they may lead to the problem of
shared clustersin the sense that a number of prototypes may be
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updated into the same cluster during the learning process. This
problem was considered by Xuet al. in their rival penalized
competitive learning (RPCL) algorithm [29]. The basic idea
in RPCL is that for each input pattern, not only the weight of
the frequency-sensitive winner is learned to shift toward the
input pattern, but also the weight of its rival (the2ndwinner) is
delearned by a smaller learning rate. The rival is always pushed
away reducing its interference in the competition. However,
recently Liuet al. have pointed out that RPCL also has some
new problems: it is sensitive to the penalizing rate. If the
penalizing rate is not appropriately selected, a prototype can
be unfairly penalized resulting in overpenalization, or, on the
contrary, underpenalization [28].

Another well-known critical problem with competitive
learning is the difficulty in determining the number of clusters
[21]. It must be appropriately presumed, otherwise the algo-
rithm will perform badly. Determining the optimum number
of clusters is a largely unsolved problem. The algorithms dis-
cussed above do not adequately tackle the problems caused by
the inappropriate number of initial prototypes. Although RPCL
is applicable to some cases that the number of prototypes are
larger than that of clusters, it is unable to deal with the situation
that the number of prototypes is less than the actual number of
clusters. To avoid this problem, Xuet al. suggested to use a
large number of prototypes initially [29]. However, it is difficult
in most cases to choose a reasonably large number because of
the lack of prior knowledge in the data set. In addition, this
solution will result in unnecessary training and computation.
There are similar problems in thefuzzy C spherical shells
algorithm proposed by [24] and therobust competitive clus-
tering algorithm(RCA) very recently proposed by [21] which
start with an over-specified number of clusters and merges the
compatible clusters during the learning process. The growing
cell structure (GCS) [45] and growing neural gas (GNG)
[46] algorithms are different from the previously described
models since the number of prototypes is increased during the
self-organization process. Both of them, however, have neither
insertion validity measure nor stop validity measure. The
insertion is judged at each prespecified number of iterations
and the stop criterion is simply the network size or somead hoc
subjective criteria on the learning performance. In addition, the
new prototype is inserted near the neuron that has accumulated
most distortion. This, however, is not applicable to classifying
the clusters with different sizes because a well-partitioned large
cluster may still have the most distortion, which may trick GCS
or GNG to generate a new, redundant prototype to share this
cluster. Moreover, the distortion for each neuron will not be
reset after a new one has been inserted. It is also required that
the initial number of prototypes be at least two, which is not
always the right choice since sometimes a single cluster may
exist in the data set.

In this paper, we present a new competitive learning algo-
rithm, self-splitting competitive learning (SSCL) that is capable
of tackling the two critical, difficult problems in competitive
learning. In SSCL, we introduce a new learning paradigm:
One-prototype-take-one-cluster (OPTOC). To our best knowl-
edge, OPTOC is different from all the existing algorithms
in the CL literature. With the OPTOC learning paradigm,

SSCL starts from only a single prototype which is randomly
initialized in the feature space. During the learning period, one
of the prototypes (initially, the only single prototype) will be
chosen to split into two prototypes based on a split validity
measure. This self-splitting behavior terminates if no more
prototype is suitable for further splitting. After learning by
the SSCL algorithm, each cluster is labeled by a prototype
located at its center. We have performed extensive experiments
to demonstrate the performance of SSCL algorithm including
unsupervised clustering analysis, curve detection, and image
segmentation. Since SSCL does not needa priori knowledge
about how many clusters or how many curves, or in general,
how many types ofthings in the input data set, which is
normally the case when humans are doing the sorting, consider
for instance, the cashier at the supermarket. SSCL is a valuable
alternative to unsupervised learning and offers a great potential
in many real-world applications.

The remainder of this paper is organized as follows. In
Section II, we describe in detail the SSCL Algorithm and
analyze its properties. Sections III and IV presents the ex-
perimental results on clustering analysis and curve detection,
and Section V demonstrates the capabilities of SSCL in range
image segmentation. Finally, Section VI gives the summary
and conclusion.

II. SELF-SPLITTING COMPETITIVE LEARNING ALGORITHM

A. One Prototype Takes One Cluster

Clustering in the neural-network literature can be viewed as
distortion-based competitive learning. Thenearest neighbor
and thecentroid conditions are the two necessary conditions
to achieve optimal learning. To start the learning process, a set
of prototypes should be initialized for the purpose of charac-
terizing the clusters. In conventional CL algorithms, either the
prototype locations or their numbers may have a significant
effect on the result. In particular, how to predetermine the
appropriate number of prototypes remains largely unsolved
or just ignored due to the difficulty. Let us assume that the
number of prototypes is less than that of the natural clusters
in a data set, e.g., three clusters and only a
single prototype for characterizing the clusters. For a pattern
randomly taken from , according to the nearest neighbor con-
dition, is the only winner since there is no other prototype
competing with it. Consequently, tries to move toward each
pattern from , , or , which results in the oscillation
phenomenon shown in Fig. 1(a). In general, if the number of
prototypes is less than that of the natural clusters, there must
be at least one prototype that wins patterns from more than two
clusters. We call this behavior one-prototype-take-multiclusters
(OPTMC). The behavior of OPTMC is not desirable in data
clustering since we expect each prototype characterizes only
one natural cluster. One way to tackle this problem is that, as
a first step, is biased to one of the three clusters, either,

, or , and ignores the other two clusters. Then, further
judgment and action may be carried out to explore the other
clusters. We call this new learning paradigm OPTOC.

The ideas in OPTOC are in great contrast to that in OPTMC.
The key technique used in OPTOC is that, for each prototype,
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(a) (b)

Fig. 1. Two learning behaviors: OPTMC versus OPTOC. (a) One prototype
is trying to take three clusters, resulting in oscillation phenomenon (OPTMC);
(b) one prototype takes one cluster and ignores the other two clusters (OPTOC).

an online learning vector, asymptotic property vector (APV) is
assigned to guide the learning of this prototype. With the “help”
of the APV, each prototype will locate only one natural cluster
and ignore other clusters in the case that the number of proto-
types is less than that of clusters. Fig. 1(b) shows an example
of learning based on the OPTOC paradigm. In this figure,
actually wins all the three clusters, but it finally settles at the
centroid of and ignores the other two clusters and .

The learning of a prototype is affected by its APV. For sim-
plicity, represents the APV for prototype and denotes
the learning counter (or say,winning counterin accordance with
the CL literature) of . As a necessary condition of OPTOC
mechanism, is required to initialize at a random location that
is far from its associated prototype. The winning counter
is initially zero. Let denote the Euclidean distance from
to , i.e., , where is the Euclidean norm. Let us
construct a dynamic circle area that is defined as the neighbor-
hood of prototype with the radius . If the current input
pattern satisfies the condition , we may say
that this pattern is inside the neighborhood of. Patterns in-
side the neighborhood of will contribute to the learning of
much more than those outside. affects the learning of by
dynamically updating its neighborhood size which plays a key
role in discriminating the input patterns.

Since is initialized far from , at the very beginning of
the learning process, the neighborhood ofis large enough to
contain patterns from all the clusters. In other words, there is no
discrimination among the patterns. All of them have the same
significance to the learning of . Thus, in the worst case, if
were kept static at a distant location from during the entire
learning process, OPTOC would reduce to the OPTMC learning
paradigm resulting in an oscillation phenomenon. In SSCL, to
implement the OPTOC paradigm, is updated online to con-
struct adynamicneighborhood of . Initially, the neighborhood
is large; as time progresses, however, its size reduces to zero.
The reduction of the neighborhood size guarantees the conver-
gence of the prototype, since no more pattern will be eligible for
its learning. To achieve this, we devise a process such that the
patterns “outside” of the dynamic neighborhood will contribute
less to the learning of as compared to those “inside” patterns.

The update of depends on the relative locations of the input
pattern , prototype , and itself. Each time when is pre-
sented, the winning prototype is judged by the nearest neighbor

criterion. Assume is the winner, the learning of can be
given by

(1)

where is a general function given by

if

otherwise
(2)

and ; it can be either a constant or a varied fraction.
In this paper, is defined as follows:

(3)

For each update of , its winning counter is computed as
follows:

(4)

With this learning scheme, we can see that the key point of
updating is to make sure that always shifts toward the pat-
terns located in the neighborhood of its associated prototype
and gives up those data points out of this area. In other words,

tries to move closer to by recognizing those “inside” pat-
terns that may help to achieve its goal while ignoring those
“outside” patterns that are of little benefit. Suppose thatis
at a fixed location and are the sequen-
tial locations of during the learning period. According to the
learning rule described above, we have

It thus may be observed that in the finite input space, the asymp-
totic property vector always tries to move toward , i.e.,
has theasymptoticproperty with respect to its associated proto-
type .

Since is the winner, the input pattern makes contribution
to its update, meanwhile, guides its learning as well. Thus,
both and play a significant role on the adaptation of.
An update schedule for is given as below. Later we will show
the learning process with a dynamic analysis

(5)

where

(6)

For the current input pattern , if (that is,
is far out of the neighborhood of ), according to (6).
As a result, will have little influence on the learning of ;
whereas if , according to (1), will be shifted
toward to some degree, as seen in (6),will have a large
learning rate, .
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(a) (b)

(c) (d)

Fig. 2. (a) Initial locations of the single prototype~P and its asymptotic
property vector~A ; (b) the locations of~P and ~A after one pattern fromS
was presented; (c) the locations of~P and ~A after another pattern fromS
was presented; (d) the trajectories of~P and ~A during learning.

Given the update schedules above, we analyze howand
can implement the OPTOC paradigm. Suppose there are

two clusters , and denote the randomly
grabbed patterns from and , respectively. Assume the
worst-case scenario that has moved into the center point
between and , and is currently located on the vertical
line of and far from (because in this case and
will have the same effect on ), as shown in Fig. 2(a). Our
analysis below will show that both and will move into
one of the two clusters step by step, and ignore the other cluster
eventually.

We select randomly from and . Since
, according to (1), remains static, and moves to-

ward with the learning rate computed from (6), the bigger
the distance between and , the bigger the learning
rate . Let denote the new location of after being
trained by , as shown in Fig. 2(b). It is reasonable to assume
that the training sample is taken fromand with equal prob-
ability. After has been updated, now assumeis taken from

. Since , will remain static, the
learning rate for becomes

(7)

In this case we may reasonably assume ,
because we have initialized far from so that is big
enough. As at the first step won a big learning step toward

(a)

(b)

(c)

Fig. 3. The example of One-prototype-take-one-cluster: (a) the learning
trajectories of ~P (solid curve) and~A (dotted curve); (b) the asymptotic
property of ~A with respect to its associated prototype~P at a larger scale;
(c) close-up view around the convergence zone in (b).

[see Fig. 2(b)], ; as a result, ,
thus moves toward with a smaller learning rate, as
shown in Fig. 2(c). Since has been biased toward cluster

, in the following learning steps, the same analysis applies.
aggravates this tendency: first it moves closer to cluster;

when it is closer to than to , patterns in take effect on
the learning of , as a result, it moves toward cluster as
well. This is illustrated in Fig. 2(d).

After both and have moved into cluster , data
from will have little effect on the learning of since

; that is, the learning rate caused by pat-
terns from is very close to zero. Therefore, we may assume
that only cluster affects after a number of iterations. As a
result, moves to the center of . Alternatively, we can say
that takes only one cluster and gives up the other cluster.

Fig. 3(a) shows a real example using the OPTOC paradigm.
In Fig. 3(a), prototype and its APV are randomly ini-
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tialized. As required, is initially far away from . During
the learning process, the trajectory of is plotted as a dotted
curve, whereas the trajectory of prototypeis plotted as a solid
curve. Fig. 3(b) shows that has the asymptotic property with
respect to at a larger scale. When is less than 0.08
in this example, we say has been converged to . Fig. 3(c)
shows a close-up view around the convergence zone in Fig. 3(b).

Thus, upon each input pattern, the update schedule (5) for
prototypes and the update schedule (1) for their corresponding
APVs guarantee that a prototype takes only one cluster and ig-
nores other clusters.

B. Split Validity Criterion

So far we have presented the learning schemes for imple-
menting the OPTOC paradigm. OPTOC has proved to be suc-
cessful in that it enables each prototype to find only one nat-
ural cluster when the number of clusters is greater than that of
the prototypes. This in itself is a major improvement over most
other clustering algorithms in the literature [47]. However, at
this stage we are still unable to classify all the data into proper
natural groups not just to find some groups of the data. What we
need to do next is how to find those clusters that have failed in
competing for a prototype and have been ignored by the OPTOC
learning process.

In this section, we introduce a split validity criterion to judge
if all the clusters have been classified. If not yet, one prototype
will be chosen to split into two prototypes to expand the proto-
type set. Then in the next OPTOC learning iteration, one more
cluster will be partitioned by thespawnedprototype. This split
process will be repeated until no prototype satisfies the split va-
lidity criterion. Starting from one prototype, the prototype set
expands to 2, 3, 4 … prototypes and finally terminates when
each cluster has been labeled by a prototype. Considering the
learning process in Fig. 1(b), because after a certain number
of learning iterations, clusters and will have little influ-
ence on the learning of , we can reasonably assume that only
cluster influences . Consequently, will satisfy the cen-
troid condition

(8)

In most traditional clustering algorithms, for example in
Fig. 1(a), as wins all the clusters , , and , should
move to the centroid of , , and . In contrast, the OPTOC
learning scheme forces to move into cluster , and ignores
the other two clusters, and [see Fig. 1(b)]. To make the
analysis simpler, let us consider that each prototype has abody
and aheart.We may say that in Fig. 1(b) holds thebodyof

, but not itsheart.Theheartof stays at the centroid of ,
, and since it wins all the patterns from the three clusters.

Only when thebodyand theheart of a prototype coincide in
position, can we say that this prototype represents a cluster
“sincerely,” otherwise, “reluctantly.” Reluctance hints that
there must be other clusters attracting this prototype; however,
due to the OPTOC pressure, they fail in contending for this
prototype. Let us define the center property vector (CPV)

for prototype which indicates the centroid of all the patterns
for which has been the winner. Then in Fig. 1(b) we have

(9)

It is obvious that there is an apparent bias between
(“heart” in our sense) and the prototype in (8) (“body” so
to speak). This bias indicates that there exist extra clusters in
the input space that try to pull the cluster center fromto .
If there were only one cluster, should theoretically be 0
according to (8) and (9).

In SSCL, the CPVs are updated by the-Means learning
scheme [37], which is used to calculate the exact arithmetic
mean of the input data points for which a prototype has been
the winner so far. Let denote the winning counter of .
is updated as follows:

(10)

Every time when converges into a cluster (it is judged by
), we check the distortion betweenand . If it is larger

than a predefined threshold, there are other clusters that fail in
competing for this prototype and need to be labeled in subse-
quent learning iterations; this prototype is then suitable for split-
ting to expand the prototype set. For each split validity measure,
the suitable prototype with the most distortion will be
chosen for splitting.

is suitable for splitting.

(11)

where is a small positive value. In practice, when is
small enough, we may say that has converged into a cluster.
To make it simpler, and can be the same value. This gives
an alternative splitting criterion

is suitable for splitting.

(12)

The bigger is, the worse the accuracy of clustering, because
some adjacent clusters will be merged as one cluster. Since, usu-
ally, no information about the bounding distance is available,
it must be determined adaptively from the analysis of the fea-
ture space, e.g., may be defined as the average variance for
Gaussian distributed clusters. Assume there aresuch clusters,

denotes the variance ofth cluster and denotes the number
of data points in th cluster, we may defineas

(13)

For those non-Gaussian distributed clusters, e.g., in curve de-
tection, can be set as two percent of the maximum scale of the
coordinates in the input feature space. For instance, if the fea-
ture space is -dimensional, can be defined as,

(14)



374 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 2, MARCH 2002

where denotes the scale of theth coordinate in the
-dimensional space.
Since and are always able to converge to a cluster, for

simplicity, we may judge at every learning iterations.
is appropriately large enough so that the APVs have enough

time to converge to their associated prototypes.
The definition of is not absolute. We will address its signif-

icant influence on the split quality in the experimental sections.
We suggest that be determined adaptively from an analysis of
the feature space.

C. Distant Property Vector for Splitting

When one prototype is judged to satisfy the split validity
criterion after a number of iterations, it splits into two proto-
types: one stays at its current location, the other is initialized at
a distant location. It is not mandatory to arrange the new one far
from its “mother;” however, putting it at a distant location can
help it avoid the unnecessary competition against its mother pro-
totype in the new learning period and make the learning process
converge more quickly and efficiently. For each prototype, we
assign a distant property vector (DPV) at whichsplits if it
satisfies the split validity criterion. Each distant property vector
is designed to update with respect to its associated prototype
during the learning process.

We use to represent the DPV for . It is initialized at the
same location as . Let denote the learning counter for ,

which is initialized to zero. During the learning process,will
be updated to a distant location from. It is better to determine
the update schedule of adaptively from the analysis of the
feature space to improve the efficiency of splitting. Contrary to
the APV , the DPV always tries to move away from .
In classifying Gaussian distributed clusters, when a pattern
is presented, one update schedule forcan be given by

(15)

where is the learning rate for , it can be given by

(16)

Alternatively, can be set as a constant value .

will increase if is updated.
In some cases, e.g., line detection, a simple update schedule

for would be efficient enough: always follows the farthest
pattern for which its associated prototype has been the winner
so far

(17)

In some (albeit rare) cases, e.g., Fig. 4(a), the prototype
could move into a cluster whose centroid is coincided with the
global centroid; consequently the prototype will not satisfy the
split validity criterion. Since no prototype is suitable for split-
ting, the algorithm then announces that only one cluster is found
finally. This is undesirable as it fails to find the other four clus-
ters. There are two ways to tackle this problem. One is that,

(a) (b)

Fig. 4. (a)~P can be trapped at the global centroid; (b) the bias factor enables
~P to move away from the global centroid.~R tries to move far away from~P
during the learning process; when a split happens, the new prototype will be
spawned at the location indicated by~R .

when no prototype is suitable for splitting, a further test is used
to check whether there are other separate clusters. This idea is
not practical since we have no prior knowledge of the cluster
distribution and additional test will make the split criterion more
complex. Another method is to introduce a bias factor into the
learning rate of the prototype that causes the prototypes to give
priority to those clusters that are far from the global center so
that it may prevent the case shown in Fig. 4(a) from happening.
When a pattern is presented, a bias influence for the winning
prototype is defined as follows:

(18)

where , is the winning counter of . denotes
the radius of the finite input space and remains constant during
the whole learning process.

As time progresses, gradually increases and the exponen-
tial item decreases to zero, thus, the first term in (18) will play
a major role. Let us suppose that at a moment an inputclose
to is presented, since always moves away from during
the learning process, we have . As a result,
is very small so that has little influence on the learning rate
of . In other words, clusters closer to will attract more
than those closer to , which results in a bias effect. As shown
in Fig. 4(b), moves to while its DPV moves far from
it. The new prototype will be spawned at the location indicated
by .

When moves into a cluster, in (18) decreases
sharply for those patterns from the occupied cluster due to the
small value of , which means that the second term in (18)
recovers its influence on . The bias effect is reduced by the de-
nominator of the second term. This indicates that the bias factor
has important influence on the global learning but has little in-
fluence on the local learning. In most cases, we can simplify
(18) by

(19)
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Fig. 5. The SSCL algorithm.

D. Self-Splitting Competitive Learning

Finally, we use to denote theth prototype in
terms of its three property vectors. Upon the presentation of,
if is the winner, it is updated in the general form as following:

(20)

where is computed with (6) and with (18) or (19). Fig. 5
shows the pseudocode for the SSCL algorithm.

The SSCL represents a new competitive learning paradigm in
that one prototype takes one cluster. After the first split happens,
the prototypes will start to compete for updating when a pattern
is presented. Each time when a prototype splits into two proto-

types, one stays at the same location as the mother prototype,
the other is spawned at a distant location which is indicated by
the distant property vector of its mother prototype. Then all the
prototypes available will reset their winning counters and start
to compete according to the nearest neighbor condition. It has
no dependency on the initial locations of prototypes. Moreover,
it may find the right number of natural clusters via the adaptive
splitting processes. Thus, it provides one effective alternative al-
gorithm in the CL literature.

III. CLUSTERING ANALYSIS

The goal of clustering analysis (unsupervised classification)
is to label every data point in the same class by the same symbol
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. (a) The original five clusters and the single prototype; (b) the learning trajectory and splitting processes by SSCL; (c) the influence of the split constant�
on the final number of clusters detected by SSCL; (d)–(h) the asymptotic property of each APV with respect to its associated prototype.

or the same color such that the data set is divided into several
clusters each associated with a different symbol or color. The
task is more difficult than supervised classification because we
have little prior knowledge of the number of classes contained
in the data set. Since SSCL does not need to know how many
clusters in the input data seta priori, it was used for unsuper-
vised classification in this section. To show the splitting details,
we draw a line to connect themotherprototype and its newly
spawnedprototype. The initial location of each prototype is in-
dicated by its order. SSCL terminates if no prototype satisfies
the split validity measure.

In Fig. 6(a), there are five clusters, , in the
data set. Among them , , and are overlapped to some
degree. The numbers of sample points for these five clusters
are 150, 200, 300, 250, and 250, respectively; and their cor-
responding Gaussian variances are 0.10, 0.12, 0.15, 0.18, and
0.20. The split criterion constantwas 0.17 according to (13).
Only one prototype, , was randomly initialized, as shown
in Fig. 6(a). Fig. 6(b) demonstrates the splitting processes and
learning trajectories obtained by SSCL. As we can see, the split-
ting occurred four times. Therefore, five clusters were discov-
ered finally; each cluster was associated with a prototype lo-
cated at its center. According to the nearest neighbor condition,
each sample point was labeled by its nearest prototype. Fig. 6(c)
shows that the split constanthas a significant influence on the
learning performance. For , SSCL performed
consistently on the number of clusters finally detected, i.e., five
clusters, as shown in the gray area in Fig. 6(c). SSCL is robust
since it performed well in a large range of .
When it got into a nonsteady decision zone
in which SSCL detected either five or four clusters in different
processes. In general, the largeris, the worse the accuracy of

the clustering. For , the three overlapped clus-
ters, , , and were merged into one cluster, therefore,
together with and , three clusters were obtained by SSCL.
When was large enough, e.g., , no prototype was suit-
able for splitting: SSCL treated all the clusters as one cluster.
Fig. 6(d)–(h) show the asymptotic property of for each stage
with . At the first stage, just was initialized in the
feature space, thus, only one curve shows the asymptotic prop-
erty of . While at the last stage, there were five prototypes
after splitting four times. Thus, we show five curves to demon-
strate the asymptotic properties.

Fig. 7 shows a gray-scale image of flowers. It contains grass,
leaves, and flowers. The task is to identify the locations of the
flowers in the image, not concerned whether they are part of a
certain plant or not. We model this task in terms of clustering
analysis. Since the flowers are brighter than their surroundings,
they may easily be “filtered” out by a thresholding process first.
Then, the clustering analysis labels each flower as a cluster. As
we do not know how many flowers in each image input for anal-
ysis, SSCL is a good choice for this task. Fig. 7(a) shows the
original digital image containing several (about 11) flowers. In
Fig. 7(b) the flowers were obtained after thresholding. Fig. 7(c)
demonstrates the learning trajectories and splitting processes
with by SSCL. As can be seen, in this figure, the split-
ting process occurred ten times, and finally eleven flowers were
labeled; each one was associated with a prototype. SSCL was
able to accurately identify the locations of the flowers in the
image. Fig. 7(d) gives the statistical data of the distortion be-
tween each prototype and its center property vector each time
the split validity was measured. On the first split validity mea-
sure, there was only one prototype with a distortion value of
0.6. Since this distortion was greater than the split constant,
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(a) (b) (c) (d)

Fig. 7. (a) The original digital image containing several flowers; (b) the corresponding clusters after the thresholding process; (c) the Learning trajectories and
splitting processes by SSCL; finally 11 clusters have been discovered; (d) the distortion between each prototype and its CPV at each split judgment; the prototype
with the highest distortion was chosen for splitting. The values along the horizontal axis indicate the 11 rounds of validity measure. The number nextto the black
dots at the top indicate the prototype that have the most distortion during their corresponding validity measure rounds.

(a) (b) (c)

Fig. 8. Line detection: (a) the diamond image consists of four line segments; (b) the learning trajectories, splitting processes and the feature points generated
during SSCL learning process; (c) four lines have been identified by four prototypes; each prototype can be viewed as a parametric vector for a specific line.

this prototype was chosen for the first splitting. On the second
round, two prototypes were available for evaluating the split va-
lidity measure. Although both prototypes were above the de-
cision line, only the one with more distortion, i.e., the second
prototype [the number “2” next to the top black dot in Fig. 7(d)]
in this experiment, was selected for splitting. At the 11th round
for split measure, there was no prototype with a distortion value
greater than. Therefore, no prototype was suitable for splitting
and SSCL terminated.

IV. CURVE DETECTION

Detecting curves (line, circle, ellipse, etc.) in images is an im-
portant task in image processing and machine vision. Assume
there is a binary image, we use as the para-
metric equation of a curve with a vector of parameters

and the coordinates of a pixel in
the image. If the image contains a number of groups of pixels
(e.g., a number of line segments or a number of circles) with
each group lying in its own curve expressible by the parametric
equation , with the parameter vector differing
from curve to curve. We need to classify every pixel into one of
the groups. If we have groups of pixels, there must bedis-
tinct parametric vectors to characterize them. Each
pixel can be mapped into one of theseparametric vectors ac-
cording to the rule

if (21)

All the pixels mapped into the same parametric vector consti-
tute a curve; each parametric vector stands for one curve in the
image. The feature space in this section refers to the parametric
vector space.

Our basic idea is to think each parametric vector as a proto-
type in the feature space and transform each sample pixel into
the feature space. In this feature space, at the beginning, we
set only one prototype as the parametric vector, then we apply
SSCL to perform the clustering task. After it is finished, the
number of prototypes should be the same as that of curves and
each prototype can selectively become the parametric vector for
the pixels drawn from a specific curve with the least distortion.
Let denote the data point in the feature space associated with
input pixel and parametric vector. First, we define the error
function between the parametric vectorand real input pixel
as

(22)

We define the error function in the feature space as

(23)

Then the transformation from to can be carried out from
the following:

(24)
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(a) (b) (c)

Fig. 9. Circle detection: (a) an image of three overlapped discuses; (b)the Learning trajectories, splitting processes and the feature points generated during SSCL
learning process; (c) the estimated prototypes representing the centers of the circles and their corresponding circles for the discs in the image.

(a) (b) (c) (d)

Fig. 10. Segmentation of an ABW training image: (a) the range image; (b) segmented image by� = 12; 15 clusters in the feature space have been detected;
(c) segmented image by� = 8; 17 clusters in the feature space have been detected; (d) segmented image by� = 4; 20 clusters in the feature space have been
detected.

TABLE I
RESULTS OFSEGMENTATIONS WITH DIFFERENT�

Thus, we transform each input sample pixel, ,
into (which can be treated as a “virtual” data
point in the feature space) according to (24). Hence, the learning
process is performed in the feature space withas the input
stimulus.

As shown in Fig. 8(a), our data consists of the “on” pixels
in an image containing four line segments which form a dia-

mond. The mathematical equations of the four lines are,:
, : , : , and

: . Each line segment in the actual digital bi-
nary image consists of 100 pixels. The problem is to detect the
parametric vectors (1, 1), (1,1), ( 1, 1) and ( 1, 1) so that
each line can be labeled according to the mapping rule defined
in (21). For simplicity, we applied (17) as the update scheme for
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DPV’s. Fig. 8(b) shows the SSCL learning trajectories, splitting
processes and the transformed feature points. Fig. 8(c) shows
that the four lines have been detected accurately, each one is
identified by a prototype as its parametric vector.

Fig. 9(a) is another image of 200200 pixels. There are three
overlapping discs. The image has significant noise and the disc
boundaries are not well defined. In the two-dimensional space,
the circle equation can be written in the mathematical form as

. Therefore,
the parametric vector consists of three parameters ,
where represents the circle center andis the radius
of the circle. According to (24), for each input pixel, we may
compute its corresponding feature point which is actually used
for the real input stimulus. In Fig. 9(b), we may observe the
learning trajectories, splitting processes, and feature points in
the two-dimensional space. Fig. 9(c) shows the final parametric
vectors obtained by SSCL and their corresponding circles. We
can see that the estimates are very accurate: each edge circle has
been labeled by the prototype with the least distortion indicated
by (22) and its mathematical formula mentioned above.

V. RANGE IMAGE SEGMENTATION

As a final demonstration, we applied our SSCL algorithm to
range image segmentation, which involves three dimensional
feature sets. Fig. 10(a) shows the popular ABW training image
(512 512 pixels)1 used to study the behavior of SSCL under
different . We used the planar facet model, .
For each point, we computed the planar equation using three
different windows ( , ). The

with the smallest variance is taken as the feature
vector for this point. The experimental results are summarized in
Table I. First, we set the split constantto 12. It detected 15 clus-
ters with an average variance of 13.7. The labeled image, which
is the output of the SSCL algorithm, is shown in Fig. 10(b).
Fig. 10(c) shows the segmented image with the split constant

for which 17 clusters were detected with an average vari-
ance of 9.3. In the third experiment [see Fig. 10(d)], we setto
four and discovered 20 clusters. The average variance reduced
to 4.6.

VI. CONCLUSION

In this paper, we have presented the SSCL algorithm as a
solution to the two long standing critical problems in clustering,
namely, 1) the difficulty in determining the number of clusters,
and 2) the sensitivity to prototype initialization.

Our SSCL algorithm is based on a new concept, OPTOC,
and a split validity criterion. Using SSCL for clustering data,
we need to randomly initialize only one prototype in the
feature space. During the learning process, according to the
split validity criterion, one prototype is chosen to split into two
prototypes. This splitting process terminates only when SSCL
achieves an appropriate number of clusters given the input
data. We have conducted extensive experiments on a variety of
data types and demonstrated that the SSCL algorithm is indeed
a powerful, effective, and flexible technique in classifying

1This image was obtained from Michigan State University via a free, public
ftp site.

clusters. Recently we have successfully applied SSCL to
web data analysis [48], [49]. Since web databases are highly
dynamic, SSCL is able to adaptively split according the actual
datasets present. In addition, features in web information are
usually high dimensional, SSCL has demonstrated its ability in
dealing with such data.

The SSCL algorithm presented in this paper is very general
and can be used in any practical tasks where competitive
learning is applicable. With the growing popularity of com-
petitive learning, we expect that our new approach will find
many applications, particularly in intelligent software agents
and web/data mining.
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