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Self-Splitting Competitive Learning:
A New On-Line Clustering Paradigm
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Abstract—Clustering in the neural-network literature is gener- ~ decides to what extent a neuron may adapt its weights to a
ally based on the competitive learning paradigm. This paper ad- new input pattern [32]. The goal of competitive learning is

dresses two major issues associated with conventional competitiveino minimization of thedistortionin clustering analysis or the
learning, namely, sensitivity to initialization and difficulty in deter- tizati . ¢ tizati

mi_ning the number of prototypes. In general, selecting the appro- quan |z§ 10N erfonn V69 Qr quan |;a Sl

priate number of prototypes is a difficult task, as we do notusually ~ A variety of competitive learning schemes have been de-
know the number of clusters in the input dataa priori. Itis there-  veloped, distinguishing in their approaches to competition
fore desirable to develop an algorithm that has no dependency on and learning rules. The simplest and most prototypical CL
the initial prototype locations and is able to adaptively generate algorithms are mainly based on thenner-take-all (WTA)

prototypes to fit the input data patterns. In this paper, we present 2 . . .
a new, more powerful competitive learning algorithm, self-split- [33] (or hard competitive learning) paradigm, where adaption

ting competitive learning (SSCL), that is able to find the natural IS restricted to thevinner that is the single neuron prototype

number of clusters based on the one-prototype-take-one-cluster best matching the input pattern. Different algorithms in this
(OPTOC) paradigm and a self-splitting validity measure. It starts  paradigm such as LBG (or generalized Lloyd) [34]-[36] and
with a single prototype randomly initialized in the feature space k-Means [37] have been well recognized. A major problem

and splits adaptively during the learning process until all clusters . . L . .
are found; each cluster is associated with a prototype at its center. with the simple WTA learning is the possible existencelead

We have conducted extensive experiments to demonstrate the ef-nodesor the so-calledinder-utilizationproblem [38]-[40]. In
fectiveness of the SSCL algorithm. The results show that SSCL has such cases, some prototypes, due to inappropriate initialization
the desired ability for a variety of applications, including unsuper-  can never become a winner, therefore, have no contribution to
vised classification, curve detection, and image segmentation. |earing. Significant efforts have been made in the literature
Index Terms—Clustering, competitive learning, one-proto- to deal with this problem. By relaxing the WTA criterion,
type-take-one-cluster (OPTOC), self-splitting, ~unsupervised soft competition scheme (SCS) [31], neural-gas network [41]

learning, validity measure, winner-take-all (WTA). and fuzzy competitive learning (FCL) [20] treat more than
a single neuron as winners to a certain degree and update
|. INTRODUCTION their prototypes accordingly, resulting in thenner-take-most

(WTM) paradigm §oft competitive learning WTM decreases
the dependency on the initialization of prototype locations;
wever, it has an undesirable side effect in clustering analysis
]: since all prototypes are attracted to each input pattern,
e of them are detracted from their corresponding clusters.
a consequence, these prototypes may become biased toward

ATA CLUSTERING aims at discovering and empha

sizing structure which is hidden in a data set. Thus t
structural relationships between individual data points can
detected. In general, clustering is an unsupervised learn
process [1], [2]. Traditional clustering algorithms can b
classified into two main categories: One is based on mo%ﬁ global mean of the clusters. Kohonen’s SOFM [8] is a

identification by parametric statistics and probability, e'grearning process which takes WTM strategy at the early stages

[3]-{7]; the other that _has_become more a_ttractive recently is’aﬁd becomes a WTA approach while its neighborhood size re-
group of vector guantization-based techniques, €.9., Sehc'Or%'ces to unity as a function of time in a predetermined manner.
nizing feature maps (SOFMs) [8]-{12], the adapuve resonantlywever, its main purpose is to form a topographic feature
The(t)rrly (ART) | sertl\is I£13]I'—t[17]t, and If uztzy_ Iog|_c [18]_[26]'Imap which is a more complex task than just clustering analysis
;n the neural-networks flerature, Clustering |1s common 9]. Several other algorithms, such as additive conscience
|mplemented by distortion-based competitive learning (C ompetitive learning [38] andonvex bridgg40], modulate the

techmq_ues [2], [271-[31] where the prototypes corrgspo.nd g%nsitivityof prototypes, so that less frequent winners increase
the weights ofneurons.e.g., the center of their receptive fiel heir chances to win next time. Reference [42] introduced a

n the input fgature space. A common trait of thesg algomhn&%gscienceparameter to reduce the rate of frequent winners
is a competitive stage which precedes each learning steps 89 making them “guilty.” Frequency sensitive competitive
learning (FSCL) [43] uses such a strategy which in some cases
Manuscript received March 21, 2000; revised November 15, 2000 astijgniﬂcantly improves the classical CL algorithms. Moreover,
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updated into the same cluster during the learning process. TBBCL starts from only a single prototype which is randomly
problem was considered by Xet al. in their rival penalized initialized in the feature space. During the learning period, one
competitive learning (RPCL) algorithm [29]. The basic ideaf the prototypes (initially, the only single prototype) will be
in RPCL is that for each input pattern, not only the weight afhosen to split into two prototypes based on a split validity
the frequency-sensitive winner is learned to shift toward theeasure. This self-splitting behavior terminates if no more
input pattern, but also the weight of its rival (tBedwinner) is prototype is suitable for further splitting. After learning by
delearned by a smaller learning rate. The rival is always pushtbeé SSCL algorithm, each cluster is labeled by a prototype
away reducing its interference in the competition. Howevdncated at its center. We have performed extensive experiments
recently Liuet al. have pointed out that RPCL also has som&® demonstrate the performance of SSCL algorithm including
new problems: it is sensitive to the penalizing rate. If thensupervised clustering analysis, curve detection, and image
penalizing rate is not appropriately selected, a prototype ceegmentation. Since SSCL does not neguatiori knowledge
be unfairly penalized resulting in overpenalization, or, on trebout how many clusters or how many curves, or in general,
contrary, underpenalization [28]. how many types ofthings in the input data set, which is
Another well-known critical problem with competitive normally the case when humans are doing the sorting, consider
learning is the difficulty in determining the number of clusterfor instance, the cashier at the supermarket. SSCL is a valuable
[21]. It must be appropriately presumed, otherwise the algakernative to unsupervised learning and offers a great potential
rithm will perform badly. Determining the optimum numbeiin many real-world applications.
of clusters is a largely unsolved problem. The algorithms dis- The remainder of this paper is organized as follows. In
cussed above do not adequately tackle the problems cause@&bgtion I, we describe in detail the SSCL Algorithm and
the inappropriate number of initial prototypes. Although RPChanalyze its properties. Sections Il and IV presents the ex-
is applicable to some cases that the number of prototypes pegimental results on clustering analysis and curve detection,
larger than that of clusters, it is unable to deal with the situati@nd Section V demonstrates the capabilities of SSCL in range
that the number of prototypes is less than the actual numbeiimbge segmentation. Finally, Section VI gives the summary
clusters. To avoid this problem, Xet al. suggested to use aand conclusion.
large number of prototypes initially [29]. However, it is difficult
in most cases to choose a reasonably large number because gf Sg|F-SpLITTING COMPETITIVE LEARNING ALGORITHM
the lack of prior knowledge in the data set. In addition, this
solution will result in unnecessary training and computatioﬁ‘.' One Prototype Takes One Cluster
There are similar problems in thizzy C spherical shells Clustering in the neural-network literature can be viewed as
algorithm proposed by [24] and threbust competitive clus- distortion-based competitive learning. Tinearest neighbor
tering algorithm(RCA) very recently proposed by [21] whichand thecentroid conditions are the two necessary conditions
start with an over-specified number of clusters and merges tioeachieve optimal learning. To start the learning process, a set
compatible clusters during the learning process. The growinfj prototypes should be initialized for the purpose of charac-
cell structure (GCS) [45] and growing neural gas (GNQgrizing the clusters. In conventional CL algorithms, either the
[46] algorithms are different from the previously describegrototype locations or their numbers may have a significant
models since the number of prototypes is increased during #féect on the result. In particular, how to predetermine the
self-organization process. Both of them, however, have neittegpropriate number of prototypes remains largely unsolved
insertion validity measure nor stop validity measure. Ther just ignored due to the difficulty. Let us assume that the
insertion is judged at each prespecified number of iterationsmber of prototypes is less than that of the natural clusters
and the stop criterion is simply the network size or s@dd&oc in a data set, e.g., three clusteérs= {S;, S, S3} and only a
subjective criteria on the learning performance. In addition, tlsingle prototypeﬁl for characterizing the clusters. For a pattern
new prototype is inserted near the neuron that has accumulat@adomly taken fron$, according to the nearest neighbor con-
most distortion. This, however, is not applicable to classifyingjtion, P is the only winner since there is no other prototype
the clusters with different sizes because a well-partitioned largempeting with it. Consequentl;’f?}L tries to move toward each
cluster may still have the most distortion, which may trick GCgattern fromsS;, S2, or S3, which results in the oscillation
or GNG to generate a new, redundant prototype to share thlsenomenon shown in Fig. 1(a). In general, if the number of
cluster. Moreover, the distortion for each neuron will not bprototypes is less than that of the natural clusters, there must
reset after a new one has been inserted. It is also required thaat least one prototype that wins patterns from more than two
the initial number of prototypes be at least two, which is naiusters. We call this behavior one-prototype-take-multiclusters
always the right choice since sometimes a single cluster m@PTMC). The behavior of OPTMC is not desirable in data
exist in the data set. clustering since we expect each prototype characterizes only
In this paper, we present a new competitive learning algone natural cluster. One way to tackle this problem is that, as
rithm, self-splitting competitive learning (SSCL) that is capabla first step,P; is biased to one of the three clusters, eitder
of tackling the two critical, difficult problems in competitive S2, or S3, and ignores the other two clusters. Then, further
learning. In SSCL, we introduce a new learning paradigriudgment and action may be carried out to explore the other
One-prototype-take-one-cluster (OPTOC). To our best knovdlusters. We call this new learning paradigm OPTOC.
edge, OPTOC is different from all the existing algorithms The ideas in OPTOC are in great contrast to that in OPTMC.
in the CL literature. With the OPTOC learning paradigmThe key technique used in OPTOC is that, for each prototype,



ZHANG AND LIU: SELF-SPLITTING COMPETITIVE LEARNING 371

criterion. Assumeﬁi is the winner, the learning Qﬁi can be
given by

e
Ai =

™ S (X _ Ai) e (ﬁi, i, X) 1)

where® is a general function given by

s ’ 1 if g7 > |id
s, s, @(ﬁ,ﬁ,m:{ il 2 |iic )
0 otherwise
(@) (b) and0 < é; < 1;it can be either a constant or a varied fraction.

Fig. 1. Two learning behaviors: OPTMC versus OPTOC. (a) One prototyp8 this papery; is defined as follows:
is trying to take three clusters, resulting in oscillation phenomenon (OPTMC);
(b) one prototype takes one cluster and ignores the other two clusters (OPTOC).

8; = 3

BiA;

f’i)?‘Jr

an online learning vector, asymptotic property vector (APV) is
assigned to guide the learning of this prototype. With the “help” S . i
of the APV, each prototype will locate only one natural clustdfo" €ach update ad;, its winning counter. 5 is computed as
and ignore other clusters in the case that the number of protglows:
types is less than that of clusters. Fig. 1(b) shows an example N+ —n- +6 -0 (ﬁ A ff) (4)
of learning based on the OPTOC paradigm. In this figute, A A ey
actually wins all the three clusters, but it finally settles at the \jth this learning scheme, we can see that the key point of
centroid of5; and ignores the other two clustefs andSs. updatingA; is to make sure thai; always shifts toward the pat-

The learning of a prototype is affected by its APV. For simterns located in the neighborhood of its associated protafype
plicity, A; represents the APV for prototygé andn 3 denotes and gives up those data points out of this area. In other words,
the learning counter (or sayjnning countein accordance with A, tries to move closer t&; by recognizing those “inside” pat-
the CL literature) of4;. As a necessary condition of OPTOGerns that may helpl; to achieve its goal while ignoring those
mechanism4; is required to initialize at a random location thatoutside” patterns that are of little benefit. Suppose tRats
is far from its associated prototyé. The winning counten;  at a fixed location andi;, A*(0), ..., A7(n) are the sequen-
is initially zero. Let|ji/| denote the Euclidean distance froj‘n tial locations of4; during the Iearnlng period. According to the
to 7, i.e., [|ii — 7|, where|| - || is the Euclidean norm. Let us|earning rule described above, we have
construct a dynamic circle area that is defined as the neighbor-

A (n) < A5(0)] <

hood of prototypeP with the radlqu A; | If the current input

patternX satisfies the cond|t|0|hPZ | < |P AZ_J, we may say

that this pattern is inside the neighborhoodif Patterns in- Itthus may be observed that in the finite input space, the asymp-

side the neighborhood @t will contribute to the learning oP;,  totic property vectord; always tries to move towarf,, i.e., 4;

much more than those outsidé; affects the learning of, by ~has theasymptotigroperty with respect to its associated proto-

dynamically updating its neighborhood size which plays a kéypeP

role in d|scr|m|nat|ng the input patterns SinceP, is the winner, the input patterXi makes contribution
Since A, is initialized far from 2., at the very beginning of to its update, meanwhilel; guides its learning as well. Thus,

the learning process, the nelghborhOO(ﬂ)fs large enough to both X and 4; play a significant role on the adaptatlonB,f

contain patterns from all the clusters. In other words, there is i\l UPdate schedule faf is given as below. Later we will show

discrimination among the patterns. All of them have the sarlfe 1€aming process with a dynamic analysis

significance to the learning d?; Thus, in the worst case,jﬁfi

were kept static at a distant location frafh during the entire

learning process, OPTOC would reduce to the OPTMC IeamiWﬁere

paradigm resulting in an oscillation phenomenon. In SSCL, to

implement the OPTOC paradign@; is updated online to con-

struct adynamimeighborhood of.. Initially, the neighborhood o, = [ ———+-— (

is large; as time progresses, however, its size reduces to zero. ‘PiX‘ + ‘PiAi‘

The reduction of the neighborhood size guarantees the conver- (0 < a; <1). 6)

gence of the prototype, since no more pattern will be eligible for T

its learning. To achieve this, we devise a process such that thg the current input patterh’ if |P X| > |PA | (that is, X

patterns “outside” of the dynamic neighborhood will contributg; far out of the neighborhood d?) a; — 0 according to (6)

less to the learning oF; as compared to those “inside” patternsas a result,X will have little influence on the learning of;
The update ofl; depends on the relative locations of the inpuvhereas i P.X| < | P,A;], according to (1)A, will be shifted

patternX prototypeF;, andA; itself. Each time whelX is pre- toward X to some degree, as seen in (B) will have a large

sented, the winning prototype is judged by the nearest neighlbesrning rateqy; — 1.

&*zﬂ,mi(X—é,) )
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Fig. 2. (a) Initial locations of the single prototyp@, and its asymptotic |P'A'|
property vectord,; (b) the locations of”, and A, after one pattern frons,
was presented; (c) the locations Bf and A, after another pattern frorfi, 0.10 ¢+
was presented; (d) the trajectoriesfaf and A, during learning.
. S 0.05
Given the update schedules above, we analyze Apwnd
F; can implement the OPTOC paradigm. Suppose there are 0.00 Wiy,
_ % % . TT T T T TV T T T 1T T 11
two clusterss = {5, S}, X; and X, denote the randomly o st 150 0¥
grabbed patterns frorﬁlﬂand Ss, respectively. Assume the The number of inpat patterns
worst-case scenario that; has moved into the center point
betweenS; andS,, and P, is currently located on the vertical ©

line of S and far fromA; (because in this cas&; and X, Fig. 3. The example of One-prototype-take-one-cluster: (a) the learning
will have the same effect Oﬁl) as shown in Fig. 2(a). Our trajectories of P, (solid curve) andA, (dotted curve); (b) the asymptotic

. . S - . property of A, with respect to its associated prototype at a larger scale;
analysis below will show that botf; and A; will move into  (c) close-up view around the convergence zone in (b).

one of the two clusters step by step, and ignore the other cluster

eventually. S ; P 1 BT *
o ) - 1 [see Fig. 2(b)]| Py (0)A;| < |PLA;1]; as aresulty] < oy,
We selectX, randomly froms, and Sz. Since|P1.X1| > ¢ B () moves towardX, with a smaller learning rate, as

|PLAL, according to (,1)A1 remains static, and®i moves t0- g0 in Fig. 2(c). Since®, has been biased toward cluster
ward.X, with the learning rate:, computed from (6), the bigger ¢ i, the following learning steps, the same analysis applies.

the distancer, A, | between, andAs, the bigger the leaming B 5 yqravates this tendency: first it moves closer to cluster
rate ;. Let Py’(0) denote the new location df, after being \hen it is closer tos; than toA;, patterns inS; take effect on
trained byX, as shown in Fig. 2(b). Itis reasonable to assumge learning ofd,, as a result, it moves toward clustéf as
that the training sample is taken fra andS» with equal prob- a1 This is illustrated in Fig. 2(d).

ability. After P, has been updated, now assukhgis taken from
S,. Since|Pr(0)X,| > |Pr(0)A;|, A; will remain static, the
learning rate forP; becomes

After both 151 and El have moved into clustef;, data
from S, will have little effect on the learning 0i51 since
|P,X,|/|PLA1| — oc; that is, the learning rate caused by pat-

S S S oy =2 terns fromS, is very close to zero. Therefore, we may assume
o = (1 + ‘Pf(O)X2‘ / ‘Pf(O)Al‘) : (7)  thatonly clusters; affectsP; after a number of iterations. As a
L. . . result, P, moves to the center of;. Alternatively, we can say
In this case we may reasonably assUBeX ;| ~ |P;(0)X,|, thatP, takes only one cluster and gives up the other cluster.
because we have initialized| far from A; sothat P, X, |isbig  Fig. 3(a) shows a real example using the OPTOC paradigm.
enough. As at the first steﬁl won a big learning step toward In Fig. 3(a), prototypeﬁl and its APV A; are randomly ini-
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tialized. As requiredﬁ;L is initially far away fromP,. During for prototypef’i which indicates the centroid of all the patterns

the learning process, the trajectory@{ is plotted as a dotted for which P, has been the winner. Then in Fig. 1(b) we have

curve, whereas the trajectory of prototyﬁpls plotted as a solid 1

curve. Fig. 3(b) shows that; has the asymptotic property with ¢ = — > X, Ni= DR N )

respect taP; at a larger scale. Wheli?, A, | is less than 0.08 M X €.5,US,USs Xe5,US,USs

in this example, we sa;etl has been converged . Fig. 3(c)

shows a close-up view around the convergence zone in Fig. 3(b)s obvious that there is an apparent lgpﬁ’§01| betweenOl
Thus, upon each input pattern, the update schedule (5) (¢neart” in our sense) and the prototygg in (8) (“body” s

prototypes and the update schedule (1) for their correspondigspeak). This bias indicates that there exist extra clusters in

APVs guarantee that a prototype takes only one cluster andfige input space that try to pull the cluster center fiBto C.

nores other clusters. If there were only one clustel’; C; | should theoretically be 0
according to (8) and (9).
B. Split Validity Criterion In SSCL, the CPVs are updated by theMeans learning

cheme [37], which is used to calculate the exact arithmetic
ean of the input data points for which a prototype has been
YGe winner so far. Lets denote the winning counter ;. C,;
fupdated as foIIows

So far we have presented the learning schemes for imp
menting the OPTOC paradigm. OPTOC has proved to be s
cessful in that it enables each prototype to find only one n
ural cluster when the number of clusters is greater than that o
the prototypes. This in itself is a major improvement over most
other clustering algorithms in the literature [47]. However, at
this stage we are still unable to classify all the data into proper
natural groups not just to find some groups of the data. What weEvery time whenP; converges into a cluster (it is judged by
need to do next is how to find those clusters that have failed ||H A; ), we check the distortion betwedhanddC;. Ifitis larger
competing for a prototype and have been ignored by the OPT@@&n a predefined threshold, there are other clusters that fail in
learning process. competing for this prototype and need to be labeled in subse-

In this section, we introduce a split validity criterion to judgejuent learning iterations; this prototype is then suitable for split-
if all the clusters have been classified. If not yet, one prototypiag to expand the prototype set. For each split validity measure,
will be chosen to split into two prototypes to expand the protdhe suitable prototype with the most distortipf,C; | will be
type set. Then in the next OPTOC learning iteration, one motbosen for splitting.
cluster WI|| be partitioned by thepawneqarototype This spllt

Gr =G

(X - éi) . (10)

néi

—

lidity criterion. Starting from one prototype, the prototype set (11)
expands to 2, 3, 4 ... prototypes and finally terminates when

each cluster has been labeled by a prototype. Considering Wieeree; is a small positive value. In practice, wheﬁ&| is
learning process in Fig. 1(b), because after a certain numisenall enough, we may say th&} has converged into a cluster.
of learning iterations, clusters, and S will have little influ-  To make it simplers; andes can be the same valeeThis gives
ence on the learning df,, we can reasonably assume that onlgn alternative splitting criterion

clusters; influencesP;. ConsequentlyP; will satisfy the cen-
troid condition

(12)
. 1 =
b= N, Z X Ny = Z L (8) The bigger is, the worse the accuracy of clustering, because
Xe€5 Xe€s some adjacent clusters will be merged as one cluster. Since, usu-

ally, no information about the bounding distance is available,
In most traditional clustering algorithms, for example in

Fig. 1(a), asP, wins all the clusterss, , S», andSs, B, should it must be determined adaptively from the analysis of the fea-
move to the centroid af+, S2, andSs. In contrast, the OPTOC ture SPpace, €.gs may be defined as the average variance for
learning scheme forcdﬁ to move into clustes,, and ignores Gaussian dlstr|buted cIu‘sters. Assume therewaach clusters,
the other two clustersy; and Ss [see Fig. 1(b)].’ To make the denotes_the_venancecth clusterand\ti denotes the number
analysis simpler, let us consider that each prototype Heslg of data points irith cluster, we may define as

and aheart. We may say that in Fig. 1(bj2 holds thebodyof 1

P,, but not itsheart. Theheartof P, stays at the centroid f; , e=5 Z v N3 N= Z N;. (13)

S, andSs3 since it wins all the patterns from the three clusters. i= i

Only when thebodyand theheart of a prototype coincide in  For those non-Gaussian distributed clusters, e.g., in curve de-
position, can we say that this prototype represents a clus{gtion,e can be set as two percent of the maximum scale of the
“sincerely,” otherwise, “reluctantly.” Reluctance hints thagoordinates in the input feature space. For instance, if the fea-

there must be other clusters attracting this prototype; howeVgfie space igi/-dimensionalg can be defined as,
due to the OPTOC pressure, they fail in contending for this

prototype. Let us define the center property vector (CBY) e = = (Maz{ScaleCy, ScaleCy, ..., ScaleCr})  (14)
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where ScaleC; denotes the scale of théh coordinate in the
M-dimensional space.

Sincef’i andfi} are always able to converge to a cluster, for
simplicity, we may judgeP,C;| at everyN learning iterations.
N is appropriately large enough so that the APVs have enoug
time to converge to their associated prototypes.

The definition ofz is not absolute. We will address its signif-
icant influence on the split quality in the experimental sections,

We suggest that be determined adaptively from an analysis of g4
the feature space.
P (@) (b)
C. Distant Property Vector for Splitting Fig. 4. (a)P; can be trapped at the global centroid; (b) the bias factor enables

R . . . . P, to move away from the global centroiff, tries to move far away fron®,
When one prototypé’; is judged to satisfy the split validity during the leaming process; when a split happens, the new prototype will be

criterion after a number of iterations, it splits into two protospawned at the location indicated By.
types: one stays at its current location, the other is initialized at

a distant location. It is not mandatory to arrange the new one {gf,en no prototype is suitable for splitting, a further test is used
from its “mother;” however, putting it at a distant location cafy, check whether there are other separate clusters. This idea is
help it avoid the unnecessary competition againstits mother pgas; practical since we have no prior knowledge of the cluster
totype in the new learning period and make the learning procegisyribution and additional test will make the split criterion more
converge more quickly and efficiently. For each prototype, Wempjex. Another method is to introduce a bias factor into the
assign a distant property vector (DPV) at whiehsplits if it |63ring rate of the prototype that causes the prototypes to give
satisfies the split validity criterion. Each distant property VeCt(Hriority to those clusters that are far from the global center so

is designed to update with respect to its associated prototypg; may prevent the case shown in Fig. 4(a) from happening.

during the learning process. S When a pattern is presented, a bias influence for the winning
We useR; to represent the DPV faF;. It is initialized at the prototype is defined as follows:

same location aEZ Letny denote the learning counterféﬂ;,

which is initialized to zero. During the learning proceés,will 2

n N RN 2~exp(—n}37_~(|ﬁg5(|2/vz))
be updated to a distantlocation frarh Itis better to determine = XER; PR
the update schedule @; adaptively from the analysis of the ™ ‘f’z)? +|BE, (Xﬁi

feature space to imprgve the efficiency of splitting. Contrary to
the APV A;, the DPVR; always tries to move away frorﬁi_; (18)
In classifying Gaussian distributed clusters, when a patiérn

is presented, one update schedule&pcan be given by where0 < 3; <1, np is the winning counter of;. V' denotes

the radius of the finite input space and remains constant during
R =R, + 1 pi - (X’ - R’i) e (ﬁ“ X, ﬁi) (15) the whole learning process. _
ng. As time progresses, s gradually increases and the exponen-
) ) L ) tial item decreases to zero, thus, the first term in (18) will play
wherep; is the learning rate fof;, it can be given by a major role. Let us suppose that at a moment an ifpatose
- 2 to R; is presented, sinck; always moves away frorf; during
‘PiX‘ the learning process, we haj X| > | X R;|. As a result;
ﬁ)?‘ L |BR (16) s very small so thalX has little influence on the learning rate
‘ H of 7. In other words, clusters closer & will attract 7; more
Alternatively, p; can be set as a constant value p; < 1.nj _thaq those closer t#;, which re_su_lts in a bias effect. As shown
*in Fig. 4(b), P, moves toSs while its DPV R; moves far from

will incr ;if R i : . : >
| creasep; if £, s updated . : t. The new prototype will be spawned at the location indicated
n some cases, e.g., line detection, a simple update scheci)lilleé

1-

for R; would be efficient enoughiz; always follows the farthest y\/henf’i moves into a clustet3. £|2/V? in (18) decreases

attern for which its associated prototype has been the winn .
20 far which| ! P yp w s%arply for those patterns from the occupied cluster due to the

small value of P, X |2, which means that the second term in (18)
R* =R, (1 _e (ﬁ“ X, ﬁz)) +X.0 (ﬁ“ X, ﬁi) . (17) recoversitsinfluence of;. The bias effect is reduced by the de-
nominator of the second term. This indicates that the bias factor
In some (albeit rare) cases, e.g., Fig. 4(a), the protofype has important influence on the global learning but has little in-
could move into a cluster whose centroid is coincided with tHience on the local learning. In most cases, we can simplify
global centroid; consequently the prototype will not satisfy thHel8) by
split validity criterion. Since no prototype is suitable for split-

Pi =

- = 2
ting, the algorithm then announces that only one cluster is found F;R;
finally. This is undesirable as it fails to find the other four clus- B = — — (29)
ters. There are two ways to tackle this problem. One is that, PX|+ |BR;
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Initialization :
Set the number of clusters K = 1;
Initialize P;(A;, C1, R;) as below,

Set ]31 = ﬁl at a random location in the input feature space;
Set ‘—TI = 61 at a random location far from ]31;

Set all their winning counters as 0;

Set ¢ as a small positive value using (13} or (14);
Initialize [teration to 0;
Make all input patterns active(unpresented);

Learning Loop :

Step 1: Repeat
substep 1: Randomly take an active pattern X from the data set, set it inactive;
If no active pattern, increment Iteration and set all patterns active;

substep 2: Competition, find the winner prototype P,

|PX| = min, |[PX|forl=1,...,K;

Label X with i;
substep 3: Update the Asymptotic Property Vector A, using (1);
substep 4: Update the Center Property Vector d using (10);
substep 5: Update the Distant Property Vector R; using (15) or (17);
substep 6: Update the prototype P, using (20);
Until |[BA)| <eforalli=1,...,K OR

iteration reaches a predefined munber;
Step 2: Split
|P;C;| = max; |RCy| for l=1,...,K;
it |P,C;| > ¢ then Pj splits:
Increment K;
Set PK = R]
Assign (Ag, Ck, Bg) for Pg;
goto Step 3;
else goto Step 4;
Step 3: Reset
Foralll =1,..., K do follows,
set ﬁl = 131
set, A} = 5, at a location far from 131
set all the winning counters as 0;
Make all patterns active;
Initialize Iteration to 0;
Goto Step 1;

Step 4: Find K clusters, quit Learning Loop.

Fig. 5. The SSCL algorithm.

D. Self-Splitting Competitive Learning types, one stays at the same location as the mother prototype,
the other is spawned at a distant location which is indicated by

terms of its three property vectors. Upon the presentatias,of the distant property vector of its mother prototype. Then all the

if B.is the winner, itis updated in the general form as fonowin%qrototypes available will reset their winning counters and start
0 compete according to the nearest neighbor condition. It has

f’f =Pt G- (X _ -ﬁz) (20) no depgndency_on the initial locations of prototypes. MoreO\_/er,

it may find the right number of natural clusters via the adaptive
splitting processes. Thus, it provides one effective alternative al-
gorithm in the CL literature.

Finally, we useP(4;, C;, E;) to denote theth prototype in

whereq; is computed with (6) and; with (18) or (19). Fig. 5
shows the pseudocode for the SSCL algorithm.

The SSCL represents a new competitive learning paradigm in
that one prototype takes one cluster. After the first split happens,
the prototypes will start to compete for updating when a patternThe goal of clustering analysis (unsupervised classification)
is presented. Each time when a prototype splits into two prote-to label every data point in the same class by the same symbol

[ll. CLUSTERING ANALYSIS
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Fig. 6. (a) The original five clusters and the single prototype; (b) the learning trajectory and splitting processes by SSCL; (c) the influemti cotistesic
on the final number of clusters detected by SSCL; (d)-(h) the asymptotic property of each APV with respect to its associated prototype.

or the same color such that the data set is divided into seveta clustering. F00.36 < ¢ < 0.45, the three overlapped clus-
clusters each associated with a different symbol or color. Thes, S35, S, and S; were merged into one cluster, therefore,
task is more difficult than supervised classification because wegether withS; and.Ss, three clusters were obtained by SSCL.
have little prior knowledge of the number of classes contain®dhene was large enough, e.g.;> 0.54, no prototype was suit-

in the data set. Since SSCL does not need to know how maatyle for splitting: SSCL treated all the clusters as one cluster.
clusters in the input data satpriori, it was used for unsuper- Fig. 6(d)—(h) show the asymptotic property@‘for each stage
vised classification in this section. To show the splitting detailsjith ¢ = 0.17. At the first stage, jusﬁ]L was initialized in the

we draw a line to connect thmotherprototype and its newly feature space, thus, only one curve shows the asymptotic prop-
spawnedrototype. The initial location of each prototype is inerty of A;. While at the last stage, there were five prototypes
dicated by its order. SSCL terminates if no prototype satisfiegter splitting four times. Thus, we show five curves to demon-
the split validity measure. strate the asymptotic properties.

In Fig. 6(a), there are five cluster§y, S, ..., S5, in the Fig. 7 shows a gray-scale image of flowers. It contains grass,
data set. Among therfis, S4, andS; are overlapped to someleaves, and flowers. The task is to identify the locations of the
degree. The numbers of sample points for these five clustéisvers in the image, not concerned whether they are part of a
are 150, 200, 300, 250, and 250, respectively; and their caertain plant or not. We model this task in terms of clustering
responding Gaussian variances are 0.10, 0.12, 0.15, 0.18, andlysis. Since the flowers are brighter than their surroundings,
0.20. The split criterion constaatwas 0.17 according to (13). they may easily be “filtered” out by a thresholding process first.
Only one prototype P, was randomly initialized, as shownThen, the clustering analysis labels each flower as a cluster. As
in Fig. 6(a). Fig. 6(b) demonstrates the splitting processes amd do not know how many flowers in each image input for anal-
learning trajectories obtained by SSCL. As we can see, the spjisis, SSCL is a good choice for this task. Fig. 7(a) shows the
ting occurred four times. Therefore, five clusters were discowriginal digital image containing several (about 11) flowers. In
ered finally; each cluster was associated with a prototype IBig. 7(b) the flowers were obtained after thresholding. Fig. 7(c)
cated at its center. According to the nearest neighbor conditi@@monstrates the learning trajectories and splitting processes
each sample point was labeled by its nearest prototype. Fig. 64 ¢ = 0.30 by SSCL. As can be seen, in this figure, the split-
shows that the split constanhas a significant influence on theting process occurred ten times, and finally eleven flowers were
learning performance. F@.08 < ¢ < 0.27, SSCL performed labeled; each one was associated with a prototype. SSCL was
consistently on the number of clusters finally detected, i.e., fiable to accurately identify the locations of the flowers in the
clusters, as shown in the gray area in Fig. 6(c). SSCL is robustage. Fig. 7(d) gives the statistical data of the distortion be-
since it performed well in a large range ofc [0.08, 0.27]. tween each prototype and its center property vector each time
When0.27 < ¢ < 0.30 it got into a nonsteady decision zonghe split validity was measured. On the first split validity mea-
in which SSCL detected either five or four clusters in differerdure, there was only one prototype with a distortion value of
processes. In general, the largas, the worse the accuracy of0.6. Since this distortion was greater than the split constant
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Fig. 7. (a) The original digital image containing several flowers; (b) the corresponding clusters after the thresholding process; (c) theraatoimestand
splitting processes by SSCL; finally 11 clusters have been discovered; (d) the distortion between each prototype and its CPV at each splihpidguietype
with the highest distortion was chosen for splitting. The values along the horizontal axis indicate the 11 rounds of validity measure. The niontber lplaxk
dots at the top indicate the prototype that have the most distortion during their corresponding validity measure rounds.

L3 L

@ (b) ©

Fig. 8. Line detection: (a) the diamond image consists of four line segments; (b) the learning trajectories, splitting processes and the fe@gjene@oed
during SSCL learning process; (c) four lines have been identified by four prototypes; each prototype can be viewed as a parametric vectordtina.specifi

this prototype was chosen for the first splitting. On the secordl the pixels mapped into the same parametric vector consti-

round, two prototypes were available for evaluating the split veute a curve; each parametric vector stands for one curve in the
lidity measure. Although both prototypes were above the diemage. The feature space in this section refers to the parametric
cision line, only the one with more distortion, i.e., the seconector space.

prototype [the number “2” next to the top black dot in Fig. 7(d)] Our basic idea is to think each parametric vector as a proto-
in this experiment, was selected for splitting. At the 11th rourntgipe in the feature space and transform each sample pixel into
for split measure, there was no prototype with a distortion valtiee feature space. In this feature space, at the beginning, we
greater tham. Therefore, no prototype was suitable for splittinget only one prototype as the parametric vector, then we apply

and SSCL terminated. SSCL to perform the clustering task. After it is finished, the
number of prototypes should be the same as that of curves and
IV. CURVE DETECTION each prototype can selectively become the parametric vector for

. . . . _ . . the pixels drawn from a specific curve with the least distortion.
Detecting curves (line, circle, ellipse, etc.) inimagesisanim- . = A . .

O . : e Let Z denote the data point in the feature space associated with
portant task in image processing and machine vision. Assume

. . . I input pixel X and parametric vectat. First, we define the error
there is a binary image, we udé(d, X) = 0 as the para- . : : oo
i ; : function between the parametric veciand real input pixeX
metric equation of a curve with a vector of paramet@rs-

[a1, - -, Q) andX = [x1, z2] the coordinates of a pixel in as
the image. If the image contains a number of groups of pixels u=F? (c‘i X) ) (22)
(e.g., a number of line segments or a number of circles) with ’

each group lying in its own curve expressible by the parametijge define the error function in the feature space as
equationF'(d, X) = 0, with the parameter vectat differing

from curve to curve. We need to classify every pixel into one of W= |6Z|2. (23)
the groups. If we havé groups of pixels, there must ldedis- . L '
tinct parametric vectorg, , ..., @ to characterize them. Each Then the transformation frotl to Z can be carried out from

pixel can be mapped into one of thésparametric vectors ac- the following:
cording to the rule 12 .
o 0 ‘az‘ OF? (a’, X)

X g ifF(aj,X)zo, jell, ... k. (21) == = sz (24)
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@ (b) (©

Fig. 9. Circle detection: (a) an image of three overlapped discuses; (b)the Learning trajectories, splitting processes and the featuregtemhthugenges SCL
learning process; (c) the estimated prototypes representing the centers of the circles and their corresponding circles for the discs in the image.

s,

(a) (b) (c) (d)

Fig. 10. Segmentation of an ABW training image: (a) the range image; (b) segmented image 1%; 15 clusters in the feature space have been detected;
(c) segmented image ky= 8; 17 clusters in the feature space have been detected; (d) segmented intage43y20 clusters in the feature space have been
detected.

TABLE |
RESULTS OF SEGMENTATIONS WITH DIFFERENT €
e=12 €=8 €e=4
(Bo, B1, B2) Variance (Bo, B1,B2) Variance (Bo, B1, B2) Variance

Clusterl (973.1, 0.00, 0.024) 8.3 (976.5, 0.12, -0.09) 8.12 (976.4, 0.10) 7.20
Cluster2 (908.4, -0.01, -0.01) 20.4 (908.4, -0.01, -0.01) 20.03 (908.2, 0.00, 0.00) 4.12
Cluster3 (750.0, 1.21, -0.76) 43.2 (750.0, 1.21, -0.76) 39.05 (750.0, 1.21, -0.76) 5.15
Cluster4 (1227, 2.16, 0.093) 8.27 (1227, 2.16, 0.093) 8.24 (1227, 2.16, 0.093) 23.01
Clusterb (1096, 1.10, -0.02) 9.01 (1096, 1.10, -0.02) 9.07 (1096, 1.10, -0.02) 4.90
Cluster6 (1056, 0.85, 0.084) 13.67 (1056, 0.85, 0.084) 17.5 (1056, 0.85, 0.084) 11.02
Cluster? (876.5, -0.27, -0.34) 3.81 (876.8, -0.07, -0.43) 3.4 (876.3,-0.31, -0.32) 3.44
Cluster8 (1209, 2.07, 0.111) 6.22 (1209, 2.07, 0.111) 6.22 (1209, 2.07, 0.111) 5.23
Cluster9 (1155, 1.77, 0.163) 6.24 (1155, 1.77, 0.163) 6.24 (1155, 1.77, 0.163) 5.45
Clusterl0 (1020, 0.50, 0.121) 12.20 (1020, 0.50, 0.119) 11.85 (1020, 0.50, 0.119) 4.32
Clusterll (802, 1.19, -0.71) 6.12 (802.5, 1.19, -0.71) 3.24 (802.5, 1.19, -0.71) 2.10
Clusterl2 (832, 0.31, -0.54) 5.38 (832.0, 0.30, -0.54) 5.32 (832.1, 0.31, -0.54) 6.5

Clusterl3 (1183, 1.95, 0.112) 5.75 (1183, 1.95, 0.112) 5.6 (1183, 1.95, 0.112) 2.09
Clusterl4 (1130, 1.49, 0.161) 12.80 (1130, 1.49, 0.161) 9.35 (1130, 1.49, 0.161) 2.97
Clusterl5 (983.6, -0.53, -0.40) 11.08 (979.3, 0.00, 0.00) 4.02 (979.3, 0.00, 0.00) 4.00
Clusterl6 N/A N/A (964.6, 0.01, 0.004) 3.24 (964.7, 0.00, 0.016) 2.82
Clusterl? N/A N/A (1040, 0.132, 0.71) 7.43 (1040, 0.71, 0.132) 4.36
Cluster18 N/A N/A N/A N/A (923.0, 0.44, 2.439) 6.21
Cluster19 N/A N/A N/A N/A (937.2, 1.13, 1.875) 1.77
Cluster20 N/A N/A N/A N/A (947.9, -0.03, 0.057) 1.03

Thus, we transform each input sample pixﬁl,: (x1, xz2), mond. The mathematical equations of the four lines &re,
into 7 = (21, z2) (which can be treated as aiftual”’ data x; 4+ @2 = 1, Ly: ¢, — 22 = 1, Ls: —x; — 22 = 1, and
point in the feature space) according to (24). Hence, the learnihg. —x1 + x2 = 1. Each line segment in the actual digital bi-
process is performed in the feature space \dths the input nary image consists of 100 pixels. The problem is to detect the
stimulus. parametric vectors (1, 1), (1), (-1, —1) and (1, 1) so that

As shown in Fig. 8(a), our data consists of the “on” pixelsach line can be labeled according to the mapping rule defined
in an image containing four line segments which form a dian (21). For simplicity, we applied (17) as the update scheme for
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DPV'’s. Fig. 8(b) shows the SSCL learning trajectories, splittingusters. Recently we have successfully applied SSCL to
processes and the transformed feature points. Fig. 8(c) shaveb data analysis [48], [49]. Since web databases are highly
that the four lines have been detected accurately, each ondyinamic, SSCL is able to adaptively split according the actual
identified by a prototype as its parametric vector. datasets present. In addition, features in web information are
Fig. 9(a) is another image of 260200 pixels. There are threeusually high dimensional, SSCL has demonstrated its ability in
overlapping discs. The image has significant noise and the ddsaling with such data.
boundaries are not well defined. In the two-dimensional space,The SSCL algorithm presented in this paper is very general
the circle equation can be written in the mathematical form asd can be used in any practical tasks where competitive
F(a, X) = (21 — a1)? + (z2 — a2)? — r? = 0. Therefore, learning is applicable. With the growing popularity of com-
the parametric vector consists of three parameiersa,, »), petitive learning, we expect that our new approach will find
where(ay, a2) represents the circle center ands the radius many applications, particularly in intelligent software agents

of the circle. According to (24), for each input pixel, we maynd web/data mining.

compute its corresponding feature point which is actually used
for the real input stimulus. In Fig. 9(b), we may observe the
learning trajectories, splitting processes, and feature points irh]
the two-dimensional space. Fig. 9(c) shows the final parametric
vectors obtained by SSCL and their corresponding circles. We2]
can see that the estimates are very accurate: each edge circle h[g]s
been labeled by the prototype with the least distortion indicated
by (22) and its mathematical formula mentioned above. "
V. RANGE IMAGE SEGMENTATION

As a final demonstration, we applied our SSCL algorithm to 5
range image segmentation, which involves three dimensional
feature sets. Fig. 10(a) shows the popular ABW training imagel®!
(512 x 512 pixels} used to study the behavior of SSCL under
differente. We used the planar facet modek= 5o+ /51 i1+ B2 v. [7
For each point, we computed the planar equation using three
different windows (2L + 1) x (2L. + 1), L = 3, 4, 5). The
(Bo, P1, B=) with the smallest variance is taken as the feature[8]
vector for this point. The experimental results are summarized in[9]
Table |. First, we set the split constarib 12. It detected 15 clus-
ters with an average variance of 13.7. The labeled image, which
is the output of the SSCL algorithm, is shown in Fig. 10(b).[10]
Fig. 10(c) shows the segmented image with the split constant
¢ = 8 for which 17 clusters were detected with an average varif11]
ance of 9.3. In the third experiment [see Fig. 10(d)], we:get
four and discovered 20 clusters. The average variance reducgg,
to 4.6.

[13]
VI. CONCLUSION

In this paper, we have presented the SSCL algorithm as %4]
solution to the two long standing critical problems in clustering,
namely, 1) the difficulty in determining the number of clusters,[15]
and 2) the sensitivity to prototype initialization. [16]

Our SSCL algorithm is based on a new concept, OPTOC,
and a split validity criterion. Using SSCL for clustering data, a7
we need to randomly initialize only one prototype in the
feature space. During the learning process, according to the
split validity criterion, one prototype is chosen to split into two
prototypes. This splitting process terminates only when SSCES]
achieves an appropriate number of clusters given the input9]
data. We have conducted extensive experiments on a variety of
data types and demonstrated that the SSCL algorithm is inde

a powerful, effective, and flexible technique in classifying
[21]
1This image was obtained from Michigan State University via a free, public
ftp site.
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