
Self-Stabilizing Protocols for Maximal Matching and Maximal Independent Sets
for Ad Hoc Networks�

Wayne Goddard, Stephen T. Hedetniemi David P. Jacobs and Pradip K Srimani
Department of Computer Science

Clemson University
Clemson, SC 29634-0974

Abstract

We propose two distributed algorithms to maintain, re-
spectively, a maximal matching and a maximal independent
set in a given ad hoc network; our algorithms are fault tol-
erant (reliable) in the sense that the algorithms can detect
occasional link failures and/or new link creations in the net-
work (due to mobility of the hosts) and can readjust the
global predicates. We provide time complexity analysis of
the algorithms in terms of the number of rounds needed for
the algorithm to stabilize after a topology change, where a
round is defined as a period of time in which each node in
the system receives beacon messages from all its neighbors.
In any ad hoc network, the participating nodes periodically
transmit beacon messages for message transmission as well
as to maintain the knowledge of the local topology at the
node; as a result, the nodes get the information about their
neighbor nodes synchronously (at specific time intervals).
Thus, the paradigm to analyze the complexity of the self-
stabilizing algorithms in the context of ad hoc networks is
very different from the traditional concept of an adversary
deamon used in proving the convergence and correctness of
self-stabilizing distributed algorithms in general.

Keywords: Self-stabilizing protocol, distributed system,
multi-cast protocol, fault tolerance, convergence, system
graph.

1 Introduction

Most essential services for networked distributed sys-
tems (mobile or wired) involve maintaining a global pred-
icate over the entire network (defined by some invariance
relation on the global state of the network) by using local
knowledge at each participating node. For example, a min-
imal spanning tree must be maintained to minimize latency

�This work has been supported by NSF grant # ANI-0073409 and NSF
grant # ANI-0218495

and bandwidth requirements of multicast/broadcast mes-
sages or to implement echo-based distributed algorithms
[1, 2, 3, 4]; a minimal dominating set must be maintained
to optimize the number and the locations of the resource
centers in a network [5]; an ��� �� configuration must be
maintained in a network where various resources must be
allocated but all nodes have a fixed capacity � [6]; a mini-
mal coloring of the nodes must be maintained [7].

In this paper we propose two distributed algorithms to
maintain respectively a maximal matching and a maximal
independent set in a given ad hoc network. Our algorithms
are fault tolerant (reliable) in the sense that the algorithms
can detect occasional link failures and/or new link creations
in the network (due to mobility of the hosts) and can read-
just the multi-cast tree. Our approach uses self-stabilization
[8, 9, 10] to design the fault-tolerant distributed algorithms.

The computation is performed in a distributed manner by
using the mechanism of beacon messages. Mobile ad hoc
networks use periodic beacon messages (also called “keep
alive” messages) to inform their neighbors of their contin-
ued presence. A node presumes that a neighboring node has
moved away unless it receives its beacon message at stipu-
lated interval. This beacon message provides an inexpen-
sive way of periodically exchanging additional information
between neighboring nodes. In our algorithm, a node takes
action after receiving beacon messages (along with algo-
rithm related information) from all the neighboring nodes.
The most important contribution of the paper involves the
analysis of the time complexity of the algorithms in terms of
the number of rounds needed for the algorithm to stabilize
after a topology change, where a round is defined as a period
of time in which each node in the system receives beacon
messages from all its neighbors. The beacon messages pro-
vide information about its neighbor nodes synchronously
(at specific time intervals). Thus, the paradigm to analyze
the complexity of the self-stabilizing algorithms in ad hoc
networks is very different from the traditional concept of
adversarial oracle used in proving the convergence and cor-
rectness of self-stabilizing distributed algorithms in general.

psriman
To appear in the Proceedings of the Fifth IPDPS Workshop on Advances in Parallel and Distributed Computational Models, Nice, France, April 22-26, 2003; http://www.ipdps.org/ipdps2003/

Similar paradigms have been used in [11, 12, 13, 14].

2 System Model

We make the following assumptions about the system.
A link-layer protocol at each node � maintains the identities
of its neighbors in some list ������	�
���. This data link
protocol also resolves any contention for the shared medium
by supporting logical links between neighbors and ensures
that a message sent over a correct (or functioning) logical
link is correctly received by the node at the other end. The
logical links between two neighboring nodes are assumed to
be bounded and FIFO. The link layer protocol informs the
upper layer of any creation/deletion of logical links using
the neighbor discovery protocol described below.

Each node periodically (at intervals of ��) broadcasts a
beacon message. This forms the basis of the neighbor dis-
covery protocol. When node � receives the beacon signal
from node � which is not in its neighbors list ������	�
���,
it adds � to its neighbors list, thus establishing link ��� ��.
For each link ��� ��, node � maintains a timer ��� for each of
its neighbors �. If node � does not receive a beacon signal
from neighbor � in time ��, it assumes that link ��� �� is no
longer available and removes � from its neighbor set. Upon
receiving a beacon signal from neighbor �, node � resets its
appropriate timer.

When a node � sends a beacon message to any of its
neighbors, say node �, it includes some additional informa-
tion in the message that is used by node � to compute the
cost of the link ��� �� as well as regarding the state of the
node �, as used in the algorithm.

The topology of the ad-hoc network is modeled by a
(undirected) graph
 � �����, where � is the set of nodes
and � is the set of links between neighboring nodes. We
assume that the links between two adjacent nodes are al-
ways bidirectional. Since the nodes are mobile, the net-
work topology changes with time. We assume that no node
leaves the system and no new node joins the system; we also
assume that transient link failures are handled by the link-
layer protocol by using time-outs, retransmissions, and per-
hop acknowledgments. Thus, the network graph has always
the same node set but different edge sets. Further, we as-
sume that the network topology remains connected. These
assumptions hold in mobile ad hoc networks in which the
movement of nodes is co-ordinated to ensure that the topol-
ogy does not get disconnected. We also assume each node
is assigned a unique ID.

3 Maximal Matching

Given an undirected graph
 � �����, a matching is
defined to be a subset � � � of pairwise disjoint edges.

That is, no two edges in � are incident with the same node.
A matching � is maximal if there does not exist another
matching � � such that � � �� .

We present a synchronous model self-stabilizing proto-
col for finding a maximal matching in an arbitrary network.
While the central daemon algorithm of [15] may be con-
veretd into a synchronous model protocol using the tech-
niques of [11, 16], the resulting protocol is not as fast. The
pseudocode of our proposed algorithm is shown in Figure 1.
Each node � maintains a single pointer variable which is ei-
ther null, denoted � � �, or points to one of its neighbors
�, denoted �� �.

We say a node � is matched if there exists another node
� � ���� such that � � � � � � � (denoted by � � �).
In rule R1, a node �, whose pointer is null, may select a
node � � ����, among those that are pointing to it, and
become matched with �. Informally, we say that � accepts
a proposal made by �. Rule R2 allows a node �, (whose
pointer is null and has no neighbors currently pointing to
it), to point to a neighbor � having a null pointer. Note that �
may not select an arbitrary neighbor, but rather the neighbor
with null pointer and with minimum ID. Informally, we say
that � proposes to �. Rule R3 is executed by � when � is
pointing to a neighbor � which in turn is pointing to another
node � �� �. In this case, � sets its pointer to null, and we
say that it backs-off.

The global system state �� at time � is defined to be the
union of the local states (values of the pointer variables) of
each node � at time �. Thus for any time instant �,

�� ����������� ����

where �� denotes the arbitrary initial (starting) state. We
define the following type classification of nodes of a net-
work in any global system state � �:[“M” is for “matched”,
“P” is for “pointing” and “A” is for “aloof”]

� � ���
� 	� � � � �� � for some �

�� ���
� 	� � �� �

��
�

���
� 	� � � � ��� � �� � ���� � � � �

��
�

���
� 	� � � � �� � �� � ���� � � � �

� � ���
� 	� � �� � � � �� � � � �� �

���
�

���
� 	� � � � � �� � � � � ��

�

�� � ���
� 	� � � � � �� � � � �� �

�� � ���
� 	� � � � � �� � � � � � �

Note that each time �, 	� �� ��� � �
 defines a (weak)
partition of � , 	��

�� �
�
�
 defines a (weak) partition of ��,

R1: if ��� �� � ��� � ���� � � � ��
then �� � [accept proposal]

R2: if ��� �� � ��� � ���� � � �� �� � ��� � ���� � � � ��
then �� ���	� � ���� � � � �
 [make proposal]

R3: if ��� � � � � � �� � � � �� ��
then �� � [back-off]

Figure 1. Algorithm SMM: Synchronous Maximal Matching

and 	���
�� ��

�� �� �
 defines a (weak) partition of � �.
Figure 2 illustrates these sets. The situation is simpler than
it appears, for as we will see in Lemma 7, sets ��

� and ���
�

are empty, except possibly at initialization (� � �).

Lemma 1 For any time �, � � �� ���.

Proof : If a node � �� �, then �� � for some �. Clearly,
neither � nor � is privileged at time �, so at time � 	
 they
remain matched. �

Lemma 2 For any time �, �� � � ����
� .

Proof : If node � � �� �, then node � must execute rule
R3 since � is pointing to a node � � � �, and � � � �� �.
Thus, at time � 	
, � will have a null pointer. Also, no
neighbor of node � can propose to � at time �, since � does
not have a null pointer. �

Lemma 3 For any time �, �� � � ����
� .

Proof : The proof is identical to that of Lemma 2. �

Lemma 4 For any time �, ���
� �� ���
 �� ���.

Proof : Let � � ���
�. Then at time �, � � � for some

� � ��
�. At time �, node � cannot make a move, and node

� must execute R1. If � accepts the proposal of �, then at
time � 	
, � � � ���. On the other hand, if � accepts the
proposal of another node, then at time � 	
, � � �� ���.
�

Lemma 5 If � � ��
� then � �� ���, and �� ���� � �� ��	

�.

Proof : If node � � ��
�, then at time �, node � will execute

rule R1, setting its pointer to some node � � ���
�; node �

cannot make a move at time � and both node � and � enter
into the subset � ���. �

Lemma 6 For any time �, ��
� � ����

�
�� ���
� ���

�� ���.

Proof : If � � ��
�, then � will move at time � if and only

if there is a neighbor � having a null pointer. If, at time �,
� moves and points to �, � will also point to some node.
Whether � matches with �, or matches with some other
node, or does not match determines whether � � � ���,
or � � �� ���, or � � �� ���. �

We have summarized Lemmas 2–6 in Figure 3. The ar-
rows may be interpreted as state changes that a node must
make in one time unit. Multiple outgoing arrows suggest
alternate possible membership changes. Since there are no
incoming arrows into �� or ��� we can conclude that

Lemma 7 After time � � �, the sets ��
� and ���

� are al-
ways empty.

Lemma 8 If for any time �, the system is stable (i.e. no node
can move), then the subset of nodes � � defines a maximal
matching, and every node not in � � is in ��

�.

Proof : It is clear that � � represents a matching since
each node has only one pointer, and the nodes in � � are
pointing to each other in pairs (thus denoting the edges
in the matching). Since the system is stable, it follows,
by Lemma 2, Lemma 3, Lemma 4, and Lemma 5 that all
unmatched nodes are in ��

�. But � � must be a maximal
matching. For if there are two adjacent nodes in � �

� it fol-
lows that rule R2 is applicable to both nodes, contradicting
the stability of the system. �

Lemma 9 If any node in ��
� makes a move at time �, then

�� ���� � �� ��	 �.

Proof : The only move possible by a node in � �
� is to

execute rule R2. Among all nodes � � ��
� moving at time

�, assume that � has smallest ID. If � makes a proposal to
some node �, then node � must be in ��

� or ��
�. If � � ��

�,
then by Lemma 5, the cardinality of � increases by at least
two. On the other hand, if � proposes to � � � �

�, then �

must also propose to � because of the minimality of the �,
thus increasing the cardinality of � by two. �

Lemma 10 Let � � �. If a move is made at time �	
, then
�� ���� � �� ��	 �.

A A PA PM M0 1 1 PP

Figure 2. Possible Types of Nodes in any Global State ��

A

1

0

1

A

PA

PM

PP

M

Figure 3. Type Transition Diagram of Nodes

Proof : By Lemma 7, at time �, all nodes that move are in
�� , �� , or ��. By our assumption there must be nodes
that move at times � and �	
. If some member of� �

� moves
at time �, then by Lemma 9 the result follows. If no member
of ��

� moves at time �, then at time � 	
 ��
 �� � �.
Hence there must be a node ����

� that moves at time �	
.
Again, by Lemma 9 the result follows. �

Theorem 1 Starting from an arbitrary state, the algorithm
SMM stabilizes and produces a maximal matching in at
most � 	
 rounds, where � is the number of nodes in the
network.

Proof : Lemma 10 shows that after ��	
 rounds, at time
� � ��	
, there are at least �� nodes in � . Since �� � �,
it follows that �� 	
 � �	
. �

It is interesting to note that in rule R2 of Algorithm
SMM, it is necessary that � select a minimum neighbor �,
rather than an arbitrary neighbor. For if we were to omit
this requirement, the algorithm may not stabilize: Consider
a four cycle, with all pointers initially null, which repeat-
edly select their clockwise neighbor using rule R2, and then
execute rule R3.

4 Maximal Independent Set

A set � of nodes is independent if no two members in
� are adjacent. In this section we present a synchronous
model self-stabilizing protocol for finding a maximal inde-
pendent set. We assume that no two neighbors have the
same ID. Algorithm SIS, shown in Figure 4, has only two
simple rules, each of which assumes that every node can
compare its ID with that of its neighbor. Thus, if � � �,
then we say that � is bigger than �. The following lemmas
are straightforward, and we omit the proofs.

Lemma 11 If at any time �, the set of nodes with ���� �

does not form an independent set then at least one node will
make an R2 move at any time �	
.

Lemma 12 If at any time, the set of nodes with ���� �

forms an independent set which is not maximal, then at least
one node will make an R1 move.

Lemma 13 If Algorithm SMI stabilizes, then 	������ �

forms a maximal independent set.

Theorem 2 Algorithm 4 stabilizes in ���� round.

Proof : (Sketch) At time � �
, all largest nodes � will set
���� �
. At time � � �, all neighboring nodes � will be
permanently set to ���� � �. Similarly, all largest nodes
� � � � � ��
 will be set ���� �
 by time � � �, and
by time � � � every node in �� � � ��
� � ���� will be
permanently set to �. This process will continue until all
nodes are stable, in at most � rounds. �

5 Conclusions

It can be shown that problems that are solvable with
self-stabilizing algorithms using the centralized model, are
generally solvable using the synchronous model. However,
there is no guarantee that the synchronous algorithm will be
fast. We have shown that for both maximal matching and
maximal independent set, a fast synchronous algorithm is
possible.

References

[1] S Dolev, DK Pradhan, and JL Welch. Modified tree
structure for location management in mobile envi-
ronments. Computer Communications, 19:335–345,
1996.

[2] S Dolev and JL Welch. Crash resilient communication
in dynamic networks. IEEE Transactions on Comput-
ers, 46:14–26, 1997.

[3] H Abu-Amara, B Coan, S Dolev, A Kanevsky, and
JL Welch. Self-stabilizing topology maintenance pro-
tocols for high-speed networks. IEEE/ACM Transac-
tions on Networking, 4(6):902–912, 1996.

[4] H. Attiya and J. Welch. Distributed Computing: Fun-
damentals, Simulations and Advanced Topics. Mc-
Graw Hill, 1998.

[5] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater. Fun-
damentals of Domination in Graphs. Marcel Dekker,
1998.

[6] S. Fujita, T. Kameda, and M. Yamashita. A resource
assignment problem on graphs. In Proceedings of the
6th International Symposium on Algorithms and Com-
putation, pages 418–427, Cairns, Australia, December
1995.

[7] S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani.
Fault tolerant distributed coloring algorithms that sta-
bilize in linear time. In Proceedings of the IPDPS-
2002 Workshop on Advances in Parallel and Dis-
tributed Computational Models, pages 1–5, 2002.

[8] E. W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Communications of the ACM,
17(11):643–644, November 1974.

[9] E. W. Dijkstra. A belated proof of self-stabilization.
Distributed Computing, 1(1):5–6, 1986.

[10] S Dolev. Self-Stabilization. MIT Press, 2000.

R1: if ����� � �� � � � �� � ���� � � � � � ���� �
�
then ���� �
 [enter the set]

R2: if ����� �
� � ��� � ���� � � � � � ���� �
�
then ���� � � [leave the set]

Figure 4. Algorithm SMI: Synchronous Maximal Independent set

[11] Y Afek and S Dolev. Local stabilizer. In Proceedings
of the 5th Israeli Symposium on Theory of Computing
and Systems, pages 74–84, 1997.

[12] S. Shukla, D. Rosenkrantz, and S. Ravi. Develop-
ing self-stabilizing coloring algorithms via systematic
randomization. Proc. Internat. Workshop on Parallel
Processing, pages 668–673, 1994.

[13] SKS Gupta and PK Srimani. Using self-stabilization
to design adaptive multicast protocol for mobile ad
hoc networks. In Proceedings of the DIMACS Work-
shop on Mobile Networks and Computing, pages 67–
84, Rutgers University, NJ, 1999.

[14] SKS Gupta, A Bouabdallah, and PK Srimani. Self-
stabilizing protocol for shortest path tree for multi-cast
routing in mobile networks (research note). In Euro-
Par’00 Parallel Processing, Proceedings LNCS:1900,
pages 600–604, 2000.

[15] Su-Chu Hsu and Singh-Tsaan Huang. A self-
stabilizing algorithm for maximal matching. Inform.
Process. Lett., 43:77–81, 1992.

[16] J Beauquier, AK Datta, M Gradinariu, and F Magni-
ette. Self-stabilizing local mutual exclusion and dae-
mon refinement. In DISC00 Distributed Computing
14th International Symposium, Springer LNCS:1914,
pages 223–237, 2000.

