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Abstract

Road network information simplifies autonomous
driving by providing strong priors about environ-
ments. It informs a robotic vehicle with where it
can drive, models of what can be expected, and
contextual cues that influence driving behaviors.
Currently, however, road network information is
manually generated using a combination of GPS
survey and aerial imagery. These manual tech-
niques are labor intensive and error prone. To
fully exploit the benefits of digital imagery, these
processes should be automated. As a step toward
this goal, we present an algorithm that extracts the
structure of a parking lot visible from a given aerial
image. To minimize human intervention in the use
of aerial imagery, we devise a self-supervised learn-
ing algorithm that automatically generates a set of
parking spot templates to learn the appearance of a
parking lot and estimates the structure of the park-
ing lot from the learned model. The data set ex-
tracted from a single image alone is too small to
sufficiently learn an accurate parking spot model.
However, strong priors trained using large data sets
collected across multiple images dramatically im-
prove performance. Our self-supervised approach
outperforms the prior alone by adapting the distri-
bution of examples toward that found in the current
image. A thorough empirical analysis compares
leading state-of-the-art learning techniques on this
problem.

1 Introduction

The 2007 DARPA Urban Challenge demonstrated the poten-
tial for driverless automobiles to operate in urban daily life
in the near future [Urmson et al., 2008]. Important to the
success of the Urban Challenge was the availability of de-
tailed digital road network information. Road network in-
formation simplifies autonomous driving by providing strong
priors about driving environments. That is, it tells a robotic
vehicle where it can drive, models of what can be expected
and provides contextual cues that influence the driving behav-
ior. For example, road network information allows a robotic

vehicle to anticipate upcoming intersections (e.g., that the in-
tersection is a four-way stop or that the robot must conform
to precedence rules) and other fixed rules of the road (e.g.,
speed limits). However, existing road network information is
manually generated using a combination of GPS survey and
aerial imagery. These techniques for converting digital im-
agery into road network information are labor intensive, re-
ducing the benefit provided by digital maps. To fully exploit
the benefits of digital imagery, these processes should be au-
tomated. In this paper, as a step toward automatic genera-
tion of the road network information from aerial images, we
present a self-supervised learning algorithm that learns ap-
pearances of parking lots from self-generated examples and
uses these examples to extract their structures.

Automatically extracting parking lot structures is challeng-
ing because their shapes are only approximately regular and
aerial images are noisy. Specifically, the shapes of parking
lots in images look similar, but they are slightly different.
Thus, the structure of each individual parking lot needs to be
analyzed separately. Noise in the images makes parking spots
inconsistent in appearance due to vehicle occupancy, occlu-
sions by other structures such as trees and adjacent buildings,
or differing illuminations (e.g., under the shade of buildings.)

In order to handle these problems effectively, we propose
a hierarchical approach to generating and filtering candidate
hypotheses. Variations in illumination, occlusions, and park-
ing spot geometry dictate the use of machine learning ap-
proaches trained on examples extracted from the image of
interest. Our approach is implemented as two layers, a low-
level layer, which extracts and compiles geometrical meta-
information for easy-to-find parking spots, is highly accurate
and serves as a prime source of examples for self-supervised
training. The high-level layer uses outputs from the low-level
layer to predict plausible candidate hypotheses for more dif-
ficult parking spot locations and then filters these hypotheses
using self-trained learners. Our method is described in detail
in Section 3.

2 Related work

The framework of self-supervised learning has recently been
attracting attention from the robot learning community, since
it requires no (or substantially less) human involvement for
carrying out learning tasks. This framework is highly desir-
able for robot learning because it is usually hard to collect
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large quantities of high-quality human-labeled data from any
real world robotic application domain. Self-supervised learn-
ing frameworks typically utilize the most precise data source
to label other data sources that are complementary, but unla-
beled.

For example, conventional range finders provide accurate
distance estimates between a robot and surrounding objects,
but the range is limited. Sofman and his colleagues use those
local range estimates as self-labeled examples to learn rela-
tions between the characteristics of local terrain and the cor-
responding regions in the aerial images [Sofman et al., 2006].
These learned relations were used to map aerial images to
long range estimates of traversability over regions that the
robot is going to explore. Similarily, Stavens and Thrun uti-
lize laser range measurements to predict terrain roughness
[Stavens and Thrun, 2006]. They first analyze the associa-
tions between inertial data and laser readings on the same ter-
rain and use the learned rules to predict possible high shock
areas of upcoming terrains. Lieb and colleagues devised a
self-supervised approach to road following that analyzes im-
age characteristics of previously traversed roads and extracts
templates for detecting boundaries of upcoming roads [Lieb
et al., 2005].

Our algorithm fits this self-supervised framework well. A
low-level analysis phase extracts lines forming parking lot
lane markings, resulting in a collection of canonical parking
spot image patches which can be used as training examples.
We additionally use these initial parking spots to guide a ran-
dom selection of negative examples.

Most prior work in parking lot analysis [Wu et al., 2007;
Fabian, 2008; Huang et al., 2008] focused primarily on de-
tecting empty parking spots in surveillance footage when the
overall geometrical structure of the parking lot is known. Our
work addresses the more general problem of extracting the
parking lot structure from a single overhead image.

To the best of our knowledge, automatic generation of road
network information from aerial imagery has not been ex-
tensively investigated yet. The most similar work to ours is
Wang and Hanson’s that uses multiple aerial images to extract
the structure of a parking lot for simulation and visualization
of parking lot activities [Wang and Hanson, 1998]. Multiple
images at different angles are used to build 2.5 dimensional
elevation map of the parking lot. This usage of multiple im-
ages makes it difficult to generalize their method because it is
not easy to obtain such images on the same geographic loca-
tion from publicly available imagery.

3 Method

The structure of a parking lot in an aerial image is character-
ized by the layout of a set of parking blocks and their park-
ing spots. We define the extraction of parking lot structure
as the detection of all visible parking spots.1 Figure 1 il-
lustrates how a parking lot is represented in this paper. Our
algorithm parameterizes each individual parking spot by its
height, width, orientation, and centroid location in image co-
ordinates. We define a parking block as a row of parking

1In particular, we ignore entirely occluded parking spots such as
spots blocked by trees.

Figure 1: This illustration depicts the parking spot and park-
ing block representations used throughout this work.

spots all oriented in the same direction. Each parking block
is characterized by the distance between neighboring parking
spots in the block (i.e., “D1” in figure 1). Parking blocks are
related to each other by two distance measures: the distance
between conjugate parking spots (i.e., “D2”) and the distance
between blocks (i.e., “D3” in the figure 1).

If the image locations of all visible parking spots are
known, it would be trivial to estimate alignment and block
parameters. However, in practice we must estimate these
parameters from a given image to determine the parking lot
structure. In what follows, we describe in detail our hierarchi-
cal approach to detecting parking spots. Section 3.1 presents
the image processing steps involved in the low-level image
analysis layer. This layer accurately extracts a set of easily
found parking spots from the image. Section 3.2 details the
high-level processing layer which then extrapolates and inter-
polates the spots found by the low-level analysis to hypothe-
size the locations of the remaining parking spots. We then dis-
cuss our self-supervised hypothesis filtering approach, which
removes erroneous hypotheses from the collection.

3.1 Low-Level Analysis: Detecting Canonical
Parking Spots

Geometrical and image characteristics differ between park-
ing lots. Most overhead satellite parking lot images contain
a number of well-illuminated empty parking spots. Our low-
level analysis extracts these easy-to-find spots to be used by
the high-level analysis as “seeds” for additional hypothesis
generation and by the final filtering stage as canonical self-
supervised training examples to adapt the filter to this partic-
ular image. The low-level layer carries out multiple image
processing steps: line extraction, line clustering, and (park-
ing) block prediction.

Straight lines are important to understanding the shape of
a parking lot. We extract lines using the approach proposed
by [Kahn et al., 1990]. The approach computes image deriva-
tives to obtain intensity gradients at each pixel and quantizes
the gradient directions using predefined ranges. A connected
component algorithm is then used to group pixels assigned
the same direction to form line supporting regions. The first
principal eigenvector of a line supporting region determines
the direction of the line.

Although a majority of extracted lines may align with lane
markings of the parking lot, some of them come from other
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Figure 2: An illustrative example image is shown. The low-
level analysis produces the estimated parameters and a set
of canonical parking spots templates that are depicted by
(green) rectangular patches around their centroids. There are
55 canonical parking spots obtained in this example. Viewed
best in color.

image regions such as road lanes or contours of adjacent
buildings. Since we only want the lines aligned with the lane-
markings of the parking lot, it is necessary to remove lines
that do not belong to the parking lot structure. To this end,
we group the extracted lines into clusters based on their ori-
entations and remove lines that are either too short or too long
from the cluster with the largest member.

For the parameter estimation, we first estimate the nominal
height of a parking spot by computing the mode of each line
in the selected cluster. We next build a Euclidean distance
matrix across all possible line pairs, quantize the distances
and compute the mode to obtain the width and height of park-
ing spots within a lot. Finally, we quantize the orientations of
lines and compute the mode again to estimate the orientation
of parking spots’ open-end.

The completion of these image processing steps results in
generating few, highly accurate, initial estimates of true park-
ing spots. Figure 2 shows rectangular patches around the im-
age coordinates of parking spots obtained using this low-level
analysis.

This low-level analysis is then extended to additionally
identify entire parking blocks. To this end, we project the cen-
troids of all the inital parking spots onto a virtual line whose
orientation is the mean of the initial parking spots’ orienta-
tion. This projection returns distances of centroids from the
origin, ρi = ci,x cos(θi) + ci,y sin(θi), where ci,x and ci,y

are image coordinates of parking spot centroid and θi is the
open-end orientation of the ith parking spot. After projec-
tion, boundaries between parking blocks are clearly visible
and the distance between peer parking spots (i.e., D1 in the
Figure 1) is used to determine boundaries between parking
blocks. From the discovered parking blocks, we finish the
parameter estimation by computing three distances between
parking blocks (i.e., D1, D2, and D3 in the Figure 1).

3.2 High-Level Analysis: Interpolation,
Extrapolation, Block Prediction, and Filtering

The high-level layer is intended to detect all the visible park-
ing spots in an image. To this end, it first hypothesizes park-
ing spot locations based on the parameters estimated by the
low-level layer. It then filters these hypotheses by classifying
the rectangular image patches around these hypotheses using
self-supervised classifiers.

Parking Spot Interpolation and Extrapolation

A parking spot hypothesis represents an image location of
the centroid of a potential parking spot. A rectangular image
patch around the hypothesis is evaluated to determine if lo-
cal characteristics of the image are similar to that of a true
parking spot. To cover the set of image regions that possi-
bly contain true parking spots but are initially uncovered, we
use the image coordinates of centroids of the initial parking
spots as the starting points in each of the discovered parking
blocks. The image coordinates used for this hypothesis gen-
eration are located at the both end of an estimated parking
block. We then generate parking spot hypotheses by select-
ing image locations through three processes: interpolation,
extrapolation, and block prediction. The interpolation pro-
cedure chooses image coordinates between two end parking
spots in a parking block, whereas the extrapolation procedure
extends hypotheses beyond two boundary parking spots. The
estimated width of a parking spot is used as the spatial in-
terval between parking spot hypotheses. Finally, block pre-
diction aims at discovering the missing parking blocks. We
use the estimated parking block distances and select image
regions to test existence of parking blocks.

Figure 3: A set of the generated parking spot hypotheses is
depicted by rectangular patches. Different colors indicate re-
sults of different hypothesis generation processes (red patches
by the interpolation, cyan ones by extrapolation, and green
ones by the low-level analysis). In this example image, there
are 186 true parking spots and 205 parking spot hypotheses.
Viewed best in color.

Self-supervised Hypothesis Filtering

The hypothesis generation process produces n parking spot
hypotheses represented by the corresponding number of im-
age patches, g1, ..., gn. Figure 3 shows a complete set of the
generated parking spot hypotheses. Each of the parking spot
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hypotheses is evaluated to determine if it is a parking spot.
We formulate this decision problem as binary classification
for assigning a label, yi ∈ {−1, +1}, to a given patch vec-
tor, gi, which is an m = height × width-dimensional col-
umn vector. The individual components in this vector are in-
tensity values of a grayscale image patch. Our experiments
compare three state-of-the-art learning techniques for this bi-
nary classification task: Support Vector Machines (SVMs),
Eigenspots, and Markov Random Fields (MRFs).

Support Vector Machine. SVMs are a de facto supervised
learning algorithm for binary classification. They seek to find
the hyperplane that maximizes a notion of margin between
each class [Bishop, 2006]. Linear SVMs are fast, have pub-
licly available implementations, and handle high-dimensional
feature spaces well.

Eigenspots. Since processing high-dimensional image
patches is computationally expensive, we reduce the dimen-
sion of our feature space by using principal component anal-
ysis (PCA). This is intended to find the principal subspace of
the self-supervised parking spots obtained by the low-level
analysis; we retain the top k ≪ m dimensions of the space.
In homage to Turk and Pentland [Turk and Pentland, 1991],
we call the eigenvectors of the parking spot space extracted
by this method the “Eigenspots” of the space.

We use this new space in two ways. Let p be the num-
ber of positive examples extracted by the low-level analysis,
and denote by Ψ = 1

p

∑
i gi the average canonical parking

spot. Our first technique simply measures the distance from
a candidate patch to the center of the space (i.e., the mean
canonical parking spot) using the following eigen-weighted
distance measure. Given a new image patch g, we compute

T (g) = ‖D−1/2ET (g − Ψ)‖, (1)

where D is a diagonal matrix containing eigenvalues
λ1, ...λm of the covariance matrix used in the PCA compu-
tation, and E is a matrix whose columns are the eigenvectors.
T (g) is known as the Mahalanobis distance [Bishop, 2006]

from the origin of the Eigenspot space. If this distance is less
than a threshold, we classify the new image patch as a parking
spot.

Our second technique simply pushes the examples through
the PCA transformation before training the SVM classi-
fier. Specifically, we transform each example as g̃ =
D−1/2ET (g − Ψ).

Pairwise Markov Random Fields. SVMs and Eigenspots
only consider the local characteristics of an image patch to
perform the binary classification. Since their performance
is limited by the distribution of the training data, it is use-
ful to investigate neighboring image patches around the patch
of interest as well as to look at the local characteristics of
the image patch. To implement this idea, we use a pairwise
Markov Random Fields (MRFs) [Li, 2000]. A pairwise MRF
H is an undirected graphical model that factorizes the under-
lying joint probability distribution P (G) by a set of pairwise
cliques. 2 An undirected graph, H, is comprised of a set
of nodes and their edges, where a node represents a random

2There may be bigger cliques in the graph, but the pairwise MRF
only consider pairwise cliques.

variable and an edge between nodes represents dependence
between them.

In this work, there are two different types of nodes: ob-
served and unobserved nodes. An observed node corre-
sponds to an image patch whereas an unobserved node is
the true label of the observed node. Although we observe
the value of a node (Gk = gk), the true label of the node
(Yk = yk ∈ {−1, +1}) is not observed. The task is then
to compute the most likely values of unobserved nodes, Y ,
given the structure of the undirected graph, H, and character-
isics of image patches, G. The joint probability distribution
is modeled as

P (G) =
1

Z

N∏

i=1

Φ(Gi, Yi)
∏

j∈N(i)

Ψ(Yi, Yj)

where Φ(Gi, Yi) is a node potential, Ψ(Yi, Yj) is an edge po-
tential, Z is the partition function, and N(i) is the set of nodes
in the neighborhood of the ith node. In our work, we only
consider first-order neighbors.

We estimate the node potentials using a Gaussian Mix-
ture model (GMM) [Bishop, 2006]; we assume that candi-
date parking spots are generated from a mixture of multivari-
ate Gaussian distributions. Since we have two labels, each
node has two potentials: a potential being a parking spot,
Φ(Gi, Yj=+1) and the other potential being not a parking
spot, Φ(Gi, Yj=−1). The edge potential is computed by the
Potts model [Li, 2000].

Ψ(Yi, Yj) = ψ(Yi, Yj) = exp
{
−β(Yi − Yj)

2
}

where β is a penalty factor for label disagreement between
nodes. For inferencing the most likely labels of individual
parking spot hypotheses in a given aerial image, we use loopy
belief propagation because it is easy to implement [Yedidia et
al., 2002].

4 Experimental Results

The goal of this work is to extract the structure of a parking lot
that is visible in an aerial image. The knowledge of the image
coordinates of parking spots facilitates estimation of param-
eters that describe the structure of the parking lot. Thus the
purpose of our experiments is to verify how well our meth-
ods perform in detecting all of the visible parking spots in an
aerial image.

fn fp acc

Intial Estimates 0.6373 0.0298 0.6755
Generated Hypotheses 0.1123 0.3812 0.7399

Table 1: Accuracy comparison of parking spot hypotheses
generated by the low-level and high-level analysis layers is
measured by three different performance metrics. These met-
rics include “false negative (fn),” “false positive (fp),” and
“accuracy (acc).” Each of these metrics is defined in terms
of the entries in a contingency table tabulating the four possi-
ble outcomes of a binary classification result.
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We use thirteen aerial images collected from the Google 3

map service. There are on average 147 visible parking spots
in each individual image and a total of 1,912 parking spots
across all aerial images.

Table 1 shows the micro-averaged accuracy of the ini-
tial proposal and the hypothesis generation. This micro-
averaged performance is computed by merging contingency
tables across the thirteen different images and then using
the merged table to compute performance measures. Since
the initial proposal has a false positive rate of nearly zero
(2.98%), its parking spot estimates are used as positive ex-
amples for training all filtering methods. An equal number of
negative examples are randomly generated.

A false positive is a non-parking-spot example that is clas-
sified as a parking spot. A false positive output is quite risky
for autonomous robot driving; in the worst case, a false pos-
itive output might make a robotic vehicle drive somewhere
that the robot should not drive. Despite having nearly zero
false positives, the canonical parking spots detected by the
low-level analysis cover only 37.65% of the true parking
spots (720 out of 1,912 true parking spots.) This high false
negative rate may cause additional problems for autonomous
driving: an autonomous robotic vehicle won’t be able to park
itself even if there are plenty of parking spots available. By
using information provided by the low-level analysis, the
high-level hypothesis generation analysis reduces the false
negative rate from 63.73% to 11.23%. However, it increases
the false positive rate to 38.12% as well. The filtering stage
then corrects this shift in false positive rate by removing er-
roneous hypotheses. Importantly, as we will see in the re-
sults, this technique cannot recover from false negatives4 in
the hypothesis generation. However, the false negative rate
in the hypothesis generation phase of the high-level analysis
is generally low and does not significantly detract from the
accuracy.

Table 2 compares the performance of self-trained filter-
ing methods. The parking spot hypotheses generated by the
high-level layer were labeled by hand for testing. Hyper-
parameters of SVMs were determined by 10-fold cross val-
idation.5 Eigenspots are computed using positive examples.
For the MRF inference, we build a mesh from the estimated
layout of parking spot hypotheses where a node in the grid
corresponds to an image patch. We again use positive and
negative examples to obtain a GMM and use the obtained
GMM to estimate node potentials. We observe the results
by varying β in the range 0 to 10 with steps of size 2 and the
best result was achieved when β is 2.6

In table 2, there are three different experimental scenar-
ios. In the first scenario, we trained the filtering methods
using a self-supervised set of examples from the image un-
der analysis consisting of the self-labeled positive examples

3http://map.google.com
4A false negative is a parking-spot example that is classified as a

non-parking-spot example.
5For SVM implementation, we use libsvm which is publicily

available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
6We fit our Gaussian Mixture model using the publicly available

GMMBayes from http://www.it.lut.fi/project/gmmbayes/

and randomly generated negative examples. In the second
scenario, we trained these methods using self-supervised ex-
amples from all other images not including the target image.
Finally, in the last scenario we trained the methods using self-
supervised examples from all images. The randomly gener-
ated negative examples were sampled while running each of
these scenarios. Due to this randomness in negative exam-
ples, we averaged our results over 5 separate runs for each
scenario. Each cell in the table displays the mean and stan-
dard deviation.

We additional manually generated 1,079 parking spot
patches across all thirteen images (averaging 83 parking
spots per image). We re-ran the above experiments using
these human-extracted parking spot patches. The numbers
in parentheses indicate the performance difference between
self-supervised and supervised parking spot hypothesis fil-
tering tasks. Positive values in the accuracy column indi-
cate improvements of self-supervised learning over super-
vised learning whereas negative values in false positive and
negative columns indicate improvements. Surprisingly, the
algorithm performed slightly worse at times when trained us-
ing the more accurately generated manual examples. This
likely occurs because the distribution of the test parking spots
is created by our hypothesis generation approach.

Ideally, a method would achieve both the lowest false pos-
itive and negative rates, but in practice it is hard to achieve
both simultaneously. For our autonomous driving applica-
tion, we prefer the method with the lowest false positive to
one with lowest false negative because a false positive is more
risky than a false negative. Our results show that our MRFs
approach demonstrates superior performance across most ex-
periments. As discussed in Section 3.2, MRFs utilize higher-
level interactions to improve prediction accuracy. However,
estimating the GMM requires a substantial amount of data;
the performance degradation in the first row of the table in-
dicates that the canonical parking spots extracted by the low-
level analysis alone were too few to accurately fit this model.
Additionally, training an SVM using the subspace generated
by the Eigenspots analysis performs only marginally better
than simply using the Eigenspot distance measure compu-
tation. This performance difference can potentially be de-
creased by statistically fitting the threshold value used during
distance measurement classification. Finally, linear SVMs
with no additional preprocessing performed surprisingly well,
particularly in terms of false positives.

5 Conclusions

This work proposes a two layer hierarchical algorithm for an-
alyzing the structure of parking lots seen in overhead satellite
images. The low-level analysis layer extracts a set of eas-
ily detected canonical parking spots and estimates parking
blocks using line detection and clustering techniques. The
high-level analysis then extends those spots using geometri-
cal characteristics of typical parking lot structures to interpo-
late and extrapolate new hypotheses and uses self-supervised
machine learning techniques to filter out false positives in the
proposed hypotheses. Our experiments show that training the
classifiers using the self-supervised set of canonical parking
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Methods false negative false positive accuracy

SVMs 0.4425 ± 0.0089 (-0.1214) 0.1525 ± 0.0184 (+0.0332) 0.6592 ± 0.0035 (+0.0589)
1 Eigenspots 0.3169 (-0.0811) 0.5420 (+0.1711) 0.5891 (-0.0257)

SVMs w/ Eigenspots 0.4055 ± 0.0142 (-0.0137) 0.2097 ± 0.0106 (+0.0471) 0.6644 ± 0.0123 (+0.0048)
MRFs w/ GMM 0.4356 ± 0.0162 (-0.2233) 0.2020 ± 0.0328 (+0.0523) 0.6482 ± 0.0187 (+0.0933)

SVMs 0.5093 ± 0.0160 (-0.0208) 0.0098 ± 0.0008 (+0.0011) 0.8997 ± 0.0026 (-0.0174)
2 Eigenspots 0.1831 (-0.0134) 0.1127 (+0.0283) 0.8745 (-0.0251)

SVMs w/ Eigenspots 0.5094 ± 0.0184 (-0.0125) 0.0109 ± 0.0011 (-0.0016) 0.8988 ± 0.0029 (-0.0162)
MRFs w/ GMM 0.4048 ± 0.0196 (-0.1752) 0.0167 ± 0.0014 (+0.0041) 0.9130 ± 0.0045 (+0.0064)

SVMs 0.4225 ± 0.0081 (-0.0603) 0.0136 ± 0.0005 (+0.0044) 0.9170 ± 0.0016 (-0.0107)
3 Eigenspots 0.1789 (-0.0158) 0.1066 (+0.0285) 0.8811 (-0.0253)

SVM w/ Eigenspots 0.4135 ± 0.0053 (-0.0344) 0.0159 ± 0.0013 (+0.0022) 0.9167 ± 0.0010 (-0.0119)
MRFs w/ GMM 0.3539 ± 0.0108 (-0.1831) 0.0212 ± 0.0022 (+0.0076) 0.9224 ± 0.0023 (+0.0056)

Table 2: Results comparing different filtering methods.

spots successfully adapts the filter stage to the particular char-
acteristics of the image under analysis.

Our experiments additionally demonstrate that additional
prior parking spot data collected across multiple additional
overhead parking lot images offer the learner useful informa-
tion resulting in increased performance. These examples pro-
vide the learner with important demonstrations of occlusions
and illumination variations not found in the canonical park-
ing spots extracted by the low-level analysis. Unfortunately,
simply adding the examples to the training set is a limited
technique for utilizing prior information since training time
grows with the number of examples. Thus, this way of using
prior information is arguably sub-optimal. Future work will
compare this data augmentation technique to alternative tech-
niques from the machine learning literature for incorporating
prior information, such as regularizing around prior weight
vectors and Bayesian linear regression. Since a high false
negative rate might lead our system to underestimate the ac-
tual area of a parking lot, we will working on increasing the
coverage of our algorithms. We additionally plan to exper-
iment with more sophisticated feature extraction techniques,
including well-studied image feature representations such as
Histograms of Oriented Gradients (HOG).
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