
ETH Library

Self-supervised calibration for
robotic Systems

Conference Paper

Author(s):
Maye, Jérôme; Furgale, Paul; Siegwart, Roland

Publication date:
2013

Permanent link:
https://doi.org/10.3929/ethz-a-010026371

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/IVS.2013.6629513

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010026371
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/IVS.2013.6629513
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Self-supervised Calibration for Robotic Systems
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Abstract— We present a generic algorithm for self calibration
of robotic systems that utilizes two key innovations. First, it uses
information theoretic measures to automatically identify and
store novel measurement sequences. This keeps the computation
tractable by discarding redundant information and allows the
system to build a sparse but complete calibration dataset from
data collected at different times. Second, as the full observability
of the calibration parameters may not be guaranteed for an ar-
bitrary measurement sequence, the algorithm detects and locks
unobservable directions in parameter space using a truncated
QR decomposition of the Gauss-Newton system. The result is
an algorithm that listens to an incoming sensor stream, builds
a minimal set of data for estimating the calibration parameters,
and updates parameters as they become observable, leaving the
others locked at their initial guess.

Through an extensive set of simulated and real-world
experiments, we demonstrate that our method outperforms
state-of-the-art algorithms in terms of stability, accuracy, and
computational efficiency.

I. Introduction

Every robotic system has some set of parameters—scale

factors, sensor locations, link lengths, etc.—that are needed

for state estimation, planning, and control. Despite best ef-

forts during construction, some parameters will change over

the lifetime of a robot due to normal wear and tear. In the

best case, incorrect parameter values degrade performance.

In the worst case, they cause critical safety issues.

We are interested in developing automated systems that

are capable of robust long-term deployment in the hands of

non-experts, so the automatic identification and update of

these parameter values is highly important.

As an example, consider a camera-based collision avoid-

ance system intended for deployment in a consumer auto-

mobile. For the vehicle to be able to avoid collisions, the

pose of each camera with respect to the vehicle coordinate

system must be known precisely so that obstacle positions

can be transformed from camera coordinates into vehicle

coordinates. However, a consumer vehicle will have no

access to special calibration hardware or expert data analysis.

In such a scenario, the vehicle must be capable of self-

supervised recalibration. This problem is inherently difficult

for a number of reasons that we will briefly discuss here.

1) Parameters change over time—although the vehicle

may be factory calibrated, the transformations can change

slowly over time due to vibration, thermal expansion, loose

parts, or any number of other common problems that follow

from normal usage.

2) Parameters must be inferred from the data—as

the cameras may be installed in different places on the
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Fig. 1. Exemplary output of our calibration algorithm. The ground truth tra-
jectory and landmark positions are shown in green, their respective estimates
in blue, and the integrated odometry path in red. An information theoretic
measure is used to automatically identify and store novel measurement
sequences (shown in blue), discarding redundant information and building
a sparse but complete calibration dataset from data collected at different
times.

vehicle, their pose cannot be measured directly. Instead, the

transformations must be inferred from the data produced by

the full system. However, this is only possible if the motion

of the vehicle renders the parameters observable1.

3) Normal operation may result in unobservable direc-

tions in parameter space—unfortunately, for this and many

other practical problems normal operation may not render all

directions in parameters space observable. In this example,

when two cameras do not share an overlapping field of view,

planar motion renders the calibration problem degenerate2;

the transformation between cameras only becomes observ-

able under general 3D motion.

4) Unobservable directions in parameter space may

appear observable in the presence of noise—even if our

hypothetical car is piloted only on a plane (a degenerate

case), noise in the measurements can make unobservable

parameters appear observable. We call these parameters

numerically unobservable to mirror the related concept of

numerically rank-deficient matrices.

Existing algorithms for self calibration generally handle

issues (1) and (2). Issue (3) is dealt with by designing ex-

periments that guarantee all parameters become observable.

To the best of our knowledge, no published self-calibration

1Informally, observability means that the parameters can be inferred from
some local batch of measurement data [1]

2See [2] for a handy table of degenerate cases or [3] for a more theoretical
analysis.



algorithm is able to cope with issue (4). Therefore, unless

we plan to require all vehicle owners to outfit their parking

places with calibration patterns or regularly drive off-road,

new advances for online system calibration are required.

In this paper, we propose an algorithm to deal with all of

these difficulties. Our approach exploits the algebraic links

between the Gauss-Newton algorithm, the Fisher Information

Matrix, and nonlinear observability analysis to automatically

detect directions in parameter space that are numerically

unobservable and avoid updating our parameters in these

directions; at any given time, directions in the parameter

space that are observable will be updated based on the latest

information, while unobservable directions will remain at

their initial guess. Novel sets of measurements are detected

using a mutual information test, and added to a working

set that is used to estimate the parameters. The result is

an algorithm that listens to an incoming stream of data,

automatically accumulating a batch of data that may be used

to calibrate a full robot system. The only requirements are

that (i) the parameters are theoretically observable given

some ideal set of data, (ii) it is possible to implement

a batch Gauss-Newton estimator for the system state and

calibration parameters based on a set of measurements, and

(iii) we have some reasonable initial guess for the calibration

parameters (e.g. from factory calibration). Fig. 1 shows a

typical calibration run of our algorithm.

The remainder of the paper is structured as follows.

Section II will give a brief overview over related approaches.

Section III is dedicated to the mathematical grounding of our

method. Section IV demonstrates the validity of our approach

through extensive experiments and evaluation. Section V will

conclude the paper.

II. RelatedWork

The problem of sensor calibration has been a recurring one

in the history of robotics and computer vision. Thereby, it

has been addressed using a variety of sensor setups and algo-

rithms. A calibration process may involve recovering intrin-

sic, e.g. focal length for a camera, and extrinsic parameters,

i.e. the rigid transformation between the sensor’s coordinate

system and a reference coordinate system. For the former,

one could devise a naive approach where the parameters

are accurately determined during the manufacturing process.

Similarly, the transformation could be retrieved by means of

some measuring instrument. However, the disadvantages of

such purely engineered methods are manifold. Apart from

their impracticality, it can be nearly impossible to reach a

satisfying accuracy and thus hinder the proper use of the

sensor in a robotic system. Furthermore, external factors

such as temperature variations or mechanical shocks may

seriously bias a factory calibration. Therefore, much efforts

have been dedicated over the years to develop algorithms for

calibration of systems in the field.

The use of a known calibration pattern such as a checker-

board coupled with nonlinear regression has become the most

popular method in computer vision during the last decade. It

has been deployed both for intrinsic camera calibration [4]

and extrinsic calibration between heterogeneous sensors [5].

While being relatively efficient, this procedure still requires

expert knowledge to reach a good level of accuracy. It can

also be quite inconvenient on a mobile platform requiring

frequent recalibration.

In an effort to automate the process in the context of

mobile robotics, several authors have included the calibration

problem in a state-space estimation framework, either with

filtering [6] or smoothing [7] techniques. Filtering techniques

based on the Kalman filter are appealing due to their inher-

ently online nature. However, in case of nonlinear systems,

smoothing techniques based on iterative optimization are

usually superior in terms of accuracy. While building on

this latter method, our approach attempts to reduce its

computational load and copes with degenerate cases.

More recently, Brookshire and Teller [8] have carried out a

formal observability analysis in order to identify degenerate

paths of the calibration run. In contrast to the method

presented in this paper, their approach still expects that the

robot travels along non-degenerate paths.

A last class of methods relies on an energy function to

be minimized. For instance, Levinson and Thrun [9] have

defined an energy function based on surfaces and Sheehan

et al. [10] on an information theoretic quantity measuring

point cloud quality.

To the best of the authors’ knowledge, little research

has been devoted to efficiently deal with degenerate cases

frequently occurring during calibration. The majority of the

authors indeed assumes that their optimization routine runs

on well-behaved data. As demonstrated in the next sections,

this can be a critical point in real-world scenarios. In contrast,

our approach does not require any of these assumptions and

is suitable for online, autonomous, and long-term operations

on various platforms and sensors.

III. Model

In this section, we will first state our problem in a proba-

bilistic manner and present the mathematical groundings of

our method. A practical algorithmic sketch will conclude the

presentation.

A. Problem Formulation

In the following, we borrow the formalism of the prob-

abilistic discrete-time Simultaneous Localization and Map-

ping (SLAM) model [11]. For the sake of clarity, we consider

here a robot with a single sensor observing a known number

of landmarks at each timestep. Furthermore, we assume the

correspondences between sensor’s measurements and land-

marks are known. While this latter assumption involves data

association techniques which go beyond the scope of this

paper, the extension to multiple sensors is straightforward.

Let X = {x0:K} be a set of latent random variables (LRV)

representing robot states up to timestep K, U = {u1:K} a

set of observable random variables (ORV) representing mea-

sured control inputs, L = {ℓ1:N} a set of LRV representing N

landmark positions,Z = {z11:N :K1:N
} a set of ORV representing

K × N landmark measurements, and Θ an LRV representing



the calibration parameters of the robot’s sensor. The goal of

the calibration procedure is to compute the posterior marginal

distribution of Θ given all the measurements up to timestep

K,

p(Θ | U,Z) =

∫

X,L
p(Θ,X,L | U,Z). (1)

Following [11], the full joint posterior on the right-hand side

of (1) may further be factorized into

p(Θ,X,L | U,Z) ∝

p(Θ, x0,L)

K∏

k=1

p(xk | xk−1,uk)

K∏

k=1

N∏

i=1

p(zki
| xk, ℓi,Θ). (2)

We may then approximate (2) with a normal distribution

whose mean, µΘXL, and covariance, ΣΘXL, have to be es-

timated. To this end, we first derive a Maximum a Posteriori

(MAP) estimator for the mean,

µ̂ΘXL = arg max
Θ,X,L

p(Θ,X,L | U,Z)

= arg min
Θ,X,L

− log p(Θ,X,L | U,Z).
(3)

When setting the prior p(Θ, x0,L) to a uniform distribution,

(3) becomes a Maximum Likelihood (ML) estimator.

We shall further refine our problem by defining motion

and observation models,

xk = h(xk−1,uk,wk),

zki
= g(xk, ℓi,Θ,nk),

(4)

where

wk ∼ N(0,Wk), and

nk ∼ N(0,Nk)
(5)

are normally distributed process and observation noise vari-

ables, with known covariance Wk and Nk. Although, the

functions h(·) and g(·) might be nonlinear in their parameters,

we can approximate p(xk | xk−1,uk) and p(zki
| xk, ℓi,Θ) as

normal distributions through linearization.

B. Least Squares Solution

In case of linear motion and observation models, there

exists a closed-form solution to (3) based on the least squares

method due to the normally distributed noise variables. In the

other case, one can resort to nonlinear least squares methods

that iteratively solve a linearized version of the problem. In

the following, we employ the Gauss-Newton algorithm [12]

for this purpose.

From (3) and the approximation that the densities involved

are normal, we can turn the MAP problem into the minimiza-

tion of a sum of squared error terms. Nonlinear optimization

techniques start with an initial guess, µ̂ΘXL, and refine it

iteratively with δµ̂ΘXL until convergence. δµ̂ΘXL is chosen

in such a way that it minimizes a quadratic approximation of

the objective function around µ̂ΘXL. Gauss-Newton method

only requires the stacked Jacobian matrix of the error terms,

H. In block matrix form, the update takes the form

(HT T−1H)δµ̂ΘXL = −HT T−1e(µ̂ΘXL), (6)

where T, the error covariance matrix, is built from diagonal

blocks of Wk and Nk, and e(µ̂ΘXL) is the error evaluated at

the current estimate µ̂ΘXL.

At convergence of the algorithm to the estimate µ̂ΘXL, the

quantity HT T−1H is the Fisher Information Matrix (FIM)

and the inverse of the estimate covariance matrix, Σ̂ΘXL.

If we let T−1 = LT L be the Cholesky decomposition of

the error covariance matrix, (6) can be rewritten as

(LH)T (LH)δµ̂ΘXL = −(LH)T Le(µ̂ΘXL), (7)

which we can recognize as the normal equations of the linear

system

(LH)δµ̂ΘXL = −Le(µ̂ΘXL). (8)

Thus, instead of solving (6), we can take advantage of matrix

decompositions to solve (8) directly. Not only can this be

more computationally efficient, the use of a rank-revealing

decomposition allows the estimation of the numerical rank

of the FIM, and consequently (as described below) provides

information about the numerical observability of the param-

eters for a given batch of data.

Let LH be of size m×n with the following thin3 Singular

Value Decomposition (SVD) decomposition [13],

LH = UnSnVT
n , (9)

where Un is an m × n matrix with orthogonal columns,

Sn = diag(σ1, · · · , σn), Vn is an n×n matrix with orthogonal

columns, and σi are the singular values of LH. From (9) and

using the orthogonality of Un and Vn, we can solve (6) as

δµ̂
(S VD)

ΘXL = −VnS−1
n UT

n Le(µ̂ΘXL). (10)

Although useful for illustrating the concepts of our ap-

proach, the SVD decomposition can be computationally

demanding for large matrices. In practice, we therefore use

the thin QR decomposition [13] of LH,

LHΠ = QnRn, (11)

where Π is a permutation matrix, Qn an m × n matrix with

orthogonal columns, and Rn an n×n upper triangular matrix.

In standard QR decomposition, Π is the identity matrix,

otherwise it reflects column pivoting. From (11) and using

the orthogonality of Qn, (6) can be expressed as

RnΠ
Tδµ̂

(QR)

ΘXL = −QT
n Le(µ̂ΘXL), (12)

which, due the upper triangular form of Rn, can be easily

solved by back substitution.

3Only the first n out of m columns of U are computed in a thin SVD
decomposition.



The Rn matrix can also be used to compute the FIM and

its inverse, the estimate covariance, Σ̂ΘXL. If we drop the per-

mutation matrix for clarity, the FIM simply becomes RT
n Rn

and there exists an efficient algorithm [14] for recovering

any elements of the covariance estimate without inverting

the whole FIM.

At the convergence of the Gauss-Newton optimization,

we are thus left with the estimates µ̂ΘXL and Σ̂ΘXL of

the normal distribution p(Θ,X,L | U,Z). In order to

solve (1), we can employ the marginalization property of

normal distributions [15]. If we express the estimates in the

partitioned form,

µ̂ΘXL =





µ̂X
µ̂L
µ̂Θ




, Σ̂ΘXL =





Σ̂XX Σ̂XL Σ̂XΘ
Σ̂LX Σ̂LL Σ̂LΘ
Σ̂ΘX Σ̂ΘL Σ̂ΘΘ




, (13)

then p(Θ | U,Z) ∼ N(µ̂Θ, Σ̂ΘΘ). We can thus extract µ̂Θ
from µ̂ΘXL very efficiently, and by placing Θ to the right of

the Jacobian matrix H and using [14], Σ̂ΘΘ can be computed

in O(l), where l = card(Θ).

C. Truncated SVD and QR Solutions

There exists a solution to (6) iff the FIM is invertible, i.e., it

is full rank4. Jauffret [16] clearly articulates the link between

the rank of the FIM and observability of the parameters

being estimated. In the context of calibration, a singular FIM

corresponds to some unobservable directions in the param-

eter space given the current set of observations. Classical

observability analysis, for example the widely used method

of Hermann and Krener [17] (c.f. [18] or [19]), proves what

we will call structural observability—that there exists some

dataset for which the parameters are observable—it does not

guarantee that the parameters are observable for any dataset.

In real-world scenarios, where data is contaminated by

noise, the FIM might appear to be full rank although it is

actually rank-deficient. We can illustrate this with the matrix

A =





0.9999 1.9999 3.0014

4.0007 5.0015 6.0007

6.9998 8.0014 8.9988




. (14)

Although A is technically full rank, it was constructed from

a structurally rank-deficient matrix (the second row is a

linear combination of the first and the last row) with added

Gaussian noise.

Using SVD decomposition, we can identify a numerically

rank-deficient matrix by analyzing its singular values [20]

and consequently the numerical observability of the sys-

tem [21] [22]. The numerical rank r of a matrix is defined

as the index of its smallest singular value σr larger than a

user-defined tolerance ǫ, i.e.,

r = arg max
i

σi ≥ ǫ. (15)

4The rank of a matrix is the maximum number of linearly independent
column or row vectors. A matrix with m rows and n columns has full rank
when its rank is equal to min(m, n).

For example, the singular values of A are approximately

16.8, 1.1, and 0.0001. From (10), we can see that if some

of the σi are close to zero, i.e. r < n, the update vector

δµ̂
(S VD)

ΘXL will be large (scaled by 1/σi) and sometimes lead to

a divergence of the solution. In order to cope with this issue,

we can approximate LH with a lower-rank matrix yielding

the Truncated SVD (TSVD) [23] solution,

δµ̂
(TS VD)

ΘXL = −VrS
−1
r UT

r Le(µ̂ΘXL), (16)

with Ur an m × r matrix, Sr = diag(σ1, · · · , σr), Vr an n × r

matrix.

It is worth noting that TSVD applies a sharp filter to the

system, whereas regularization methods such as Tikhonov or

ridge regression work as a smooth filter. As shown in [24], it

nevertheless produces similar results at lower computational

costs when the matrix has a well-determined numerical rank,

i.e., a clearly defined jump in the singular values spectrum.

A similar approach can be derived using rank-revealing

QR decomposition [25] yielding the Truncated QR (TQR)

method [26]. The strategy is to apply QR factorization with

column pivoting in order to reveal the rank and to apply

a cutoff on the diagonal of the R matrix. It can further be

noted that the Q matrix need not be explicitly constructed,

but instead returned in the form of Householder reflections

that can be applied to the right-hand side of the linear system.

According to the discussion in [13], column scaling may

improve the conditioning of the system, i.e. the ratio between

the largest and the smallest singular value, and hence the

stability of the solution. Within our framework, scaling

is also relevant for merging quantities with miscellaneous

magnitudes and helps in setting a rank tolerance ǫ that is

widely applicable. We define the scaling matrix as

G = diag

{

1

||LH(:, 1)|| , · · · ,
1

||LH(:, n)||

}

, (17)

where ||·|| denotes the column vector norm and H(:, i) the i-th

column of H, and compute a solution to the scaled system,

LHGδµ̂
(s)

ΘXL = −Le(µ̂ΘXL). (18)

The unscaled solution is finally expressed as Gδµ̂
(s)

ΘXL.

D. Selecting Informative Measurements

Since we are mainly interested in calibrating our sensor

and thus in the posterior p(Θ | U,Z), we do not need

to consider all the measurements. Let us define a parti-

tion of the measurements D1 = {u1:i, z11:N :i1:N
} and D2 =

{ui+1:K , zi+11:N :K1:N
} with i < K. Using information theory, we

can quantify the information gain when estimating Θ with

D1 alone or with D1 ∪D2.

The mutual information (MI) [27] between two random

variables X and Y is defined as

I(X; Y) =

∫

X

∫

Y

p(x, y) log
p(x, y)

p(x)p(y)
, (19)

where p(x, y) is the joint density of X and Y, and p(x) and

p(y) their marginal densities. The MI measures the amount



of information X and Y share or, in other words, quantifies

the reduction of uncertainty in X when knowing Y.

Before deriving the MI for our purpose, it is worth

recalling another property of normal distributions [15]. If we

define Θ1 = Θ | D1 and consider the joint normal distribution

p(Θ1,D2) with parameters

µΘ1D2
=

(

µΘ1

µD2

)

, ΣΘ1D2
=

(

ΣΘ1Θ1
ΣΘ1D2

ΣD2Θ1
ΣD2D2

)

, (20)

then p(Θ1 | D2) is a normal distribution with parameters

µΘ1 |D2
= µΘ1

+ ΣΘ1D2
Σ
−1
D2D2

(D2 − µD2
)

ΣΘ1 |D2
= ΣΘ1Θ1

− ΣΘ1D2
Σ
−1
D2D2
ΣD2Θ1

.
(21)

Furthermore, ΣΘ1 |D2
can be recognized as the Schur comple-

ment of the joint covariance matrix ΣΘ1D2
.

Following an argument of [28], the MI between Θ1 and

D2 can then be computed as

I(Θ1;D2) =
1

2
log

|ΣΘ1Θ1
|

|ΣΘ1Θ1
− ΣΘ1D2

Σ
−1
D2D2
ΣD2Θ1

|

=
1

2
log
|ΣΘ1Θ1

|
|ΣΘ1 |D2

| ,
(22)

where | · | denotes the matrix determinant and ΣΘ1 |D2
is

the covariance estimate of Θ using D1 and D2, which is

computed by Gauss-Newton optimization. Thus, using (22),

we can measure the amount of information D2 conveys to

our current estimate Θ | D1.

E. Algorithm

Thus far, we have delivered a formal introduction to the

probabilistic groundings of our self-supervised calibration

approach. This section will be dedicated to a practical online

implementation of our algorithm.

The proposed calibration method is sketched in Alg. 1.

Defining Din f o as the set of informative measurements

at time t, we collect a measurement batch Dnew =

{ut:t+k, zt1:N :t+k1:N
} during k timesteps and compute p(Θ |

Din f o,Dnew) using Gauss-Newton method with TQR updates

and threshold ǫ. In a second step, if I(Θ | Din f o;Dnew) is

larger than a user-defined threshold λ, Dnew is added to Din f o

and the estimate of Θ is updated.

Given the structure of the model (2), the Jacobian matrix

H will be sparsely populated. Therefore, in order to obtain a

tractable and scalable method, we adopt sparse matrices al-

gorithms and data structures. The memory and computational

costs are then O(card(X) × card(L)).

IV. Experiments

In order to evaluate and validate the approach proposed

in this paper, we have conducted experiments on simulated

and real-world data. We shall first start with the description

of the experimental conditions and then demonstrate the

performance of our algorithm, along with some comparisons

against existing methods.

Algorithm 1: calibrateSensor()

Input: Initial guesses Θ̂
(0)

, x̂
(0)

0
, L̂(0)

Input: Motion h(·) and observation g(·) models

Input: Batch size k, TQR threshold ǫ, MI threshold λ

Output: µ̂Θ and Σ̂ΘΘ

Din f o ← ∅ ;

t ← 1 ;

while calibrate do

// Collecting measurements ;

tinit ← t ;

Dnew ← ∅ ;

while t < tinit + k do

x̂
(0)
t ← h(x̂

(0)

t−1
,ut, 0) ;

Dnew ← Dnew ∪ {ut, zt1:N
} ;

t ← t + 1 ;
end

// TQR optimization with threshold ǫ ;

µ̂ΘXL ← arg max
Θ,X,L p(Θ,X,L | Din f o,Dnew) ;

// Marginalization ;

µ̂Θ ← µ̂ΘXL ;

Σ̂ΘΘ ← Σ̂ΘXL ;

// MI decision ;

if I(Θ | Din f o;Dnew) > λ then

Din f o ← Din f o ∪Dnew ;

Θ ∼ N(µ̂Θ, Σ̂ΘΘ) ;
end

end

A. Experimental Setup

Our method has been fully implemented in MATLAB

and we have used the SuiteSparseQR [29] package for

performing sparse matrix operations.

Although our eventual goal is full, self-supervised cali-

bration for an autonomous vehicle system with multiple het-

erogeneous sensors, the experiments in this paper are based

on a realistic, but somewhat simplified robotic system. This

allows us to precisely control the observability properties in

simulation and test the behavior of our algorithm.

Fig. 2 depicts our experimental setup. The platform is a

differential drive mobile robot equipped with a range sensor

delivering range and bearing measurements. The calibration

parameters of the range sensor consist in the transformation

of its coordinate system to the robot’s coordinate system. The

platform is further endowed with wheel odometers outputting

translational and rotational speeds. While navigating on the

plane, the robot observes a known number of landmarks

through its range sensor. Both the range sensor and the

odometry produce data at 10 Hz.

More formally, we adopt the following motion and obser-

vation models



ℓi

ri
k

φi
k

xk

yk
θk

δx

δy

ψ

Fig. 2. Experimental setup. A 2D robot moving in a plane and observing
landmarks with a range sensor providing range and bearing angle measure-
ments. The calibration process needs to find the 2D transformation between
the robot’s coordinate system and the sensor’s coordinate system.





xk

yk

θk





︸︷︷︸

xk

=





xk−1

yk−1

θk−1




+ T





cos θk−1 0

sin θk−1 0

0 1





((

vk

wk

)

+ wk

)

︸                                           ︷︷                                           ︸

h(xk−1,uk ,wk)

a = xi − xk − δx cos θk + δy sin θk

b = yi − yk − δx sin θk − δy cos θk
(

ri
k

φi
k

)

︸︷︷︸

zki

=

( √
a2 + b2

atan2(b, a) − θk − ψ

)

+ nk

︸                            ︷︷                            ︸

g(xk ,ℓi,Θ,nk)

,

(23)

where xk = [xk yk θk]T denotes the robot pose at timestep

k, T the sampling period, uk = [vk wk]T the measured

translational and rotational speeds, zki
= [ri

k
φi

k
]T the range

and bearing observation of landmark i with pose ℓi = [xi yi]
T ,

wk ∼ N(0,Wk) with Wk = diag(σ2
v , σ

2
w), nk ∼ N(0,Nk) with

Nk = diag(σ2
r , σ

2
φ), and Θ = [δx δy ψ]T the range sensor’s

calibration parameters.

Throughout our experiments, we have used a non-

informative prior p(Θ, x0,L), i.e., a uniform distribution. The

use of priors is still subject to controversial discussions [30]

between Bayesian and non-Bayesian statisticians. Here, we

argue that everything should come from the data itself and

not from some subjective prior information that could bias

the inference.

Our algorithm requires only 3 free parameters, namely the

rank threshold ǫ, the batch size k, and the MI threshold λ.

Optimally, k should be inferred from the dynamics of the

system. While a large k induces storage of uninformative

measurements, a small k leads to useless runs of optimization

and makes it difficult to discover informative sequences of

measurements. In this setup, we have used a batch size of

k = 100 (ten seconds of data). Concerning the MI threshold,

a small λ will keep most of the measurements and a large

λ will ignore them all. We have set this value to λ = 0.5
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Fig. 3. Straight path example. The green line represents the ground truth
path, the red line the integrated odometry path, the green circles the ground
truth landmark positions, and the red circles the guessed landmark positions.

[bits] in our experiments. The ǫ parameter shall be discussed

below.

B. Simulated Data

In our simulation environment, we can generate vari-

ous paths for the robot, along with corresponding sensor

measurements, and thus analyze the behavior of multiple

algorithms, especially in degenerate cases. We have created

an environment with N = 17 landmarks uniformly distributed

on a 20m × 20m grid. We have set the noise parameters

empirically to σ2
v = 4.4 × 10−3, σ2

w = 8.2 × 10−2, σ2
r =

9.0036 × 10−4, and σ2
φ = 6.7143 × 10−4. The calibration

parameters are fixed at δx = 0.219 [m], δy = 0.1 [m], and

ψ = π/4 [rad].

In a first effort, we want to support the claims of Sec. III-

C with a representative example. We simulated the robot

driving along a straight path as shown in Fig. 3. Intuitively,

the problem is structurally unobservable. Indeed, it has 5

unobservable parameters, 3 corresponding to the global pose

of the map and trajectory (as no global measurements or

prior are included) and 2 for the calibration offset variables

δx and δy. In the absence of noise, 5 of the singular values

of the Jacobian matrix are zero up to machine precision,

i.e., a structural rank deficiency. However, when noise is

added, only 3 singular values remain at 0 for the same

problem. From the integrated odometry path in Fig. 3, the

calibration parameters appear indeed as observable and a

naive algorithm without regularization will thus wrongly

optimize. Fig. 4 shows the singular values in these two cases

and the related concept in the QR decomposition. With our

TSVD/TQR method, we can deal with this issue by setting an

adequate ǫ threshold that will recover the correct rank defi-

ciency and therefore only optimize the observable parts. The

threshold is application-specific and should be a function of

the system noise. Obviously, at a certain level of noise, gaps

in the singular values spectrum become indistinguishable. In

our setup, we have determined the threshold empirically from

the scaled system (18) and set it to ǫ = 0.013.

To conclude this section on simulated data, we will analyze

the performance of different algorithms, namely an Extended



0 10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

 

 

0 10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

 

 

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

Fig. 4. Straight path example analysis. The first column shows the
singular values and the diagonal elements of the R matrix from the QR
decomposition in the noise-free case, and the second column in the noisy
case. Only the 100 lower values from the scaled system (18) are plotted for
visualization purpose.

Kalman Filter (EKF) similar to [6], a standard batch non-

linear least squares (LS) method without regularization [7],

and our TQR-MI approach, on a sine wave path with varying

amplitude such that the offset parameters range from unob-

servable (straight path or zero amplitude) to fully observable

(higher amplitude). To get significant statistical results, we

have repeated the experiment 100 times with the same initial

conditions (δ
(0)
x = 0.23 [m], δ

(0)
y = 0.11 [m], ψ(0) = 0.8 [rad])

and amplitudes from 0 [m] to 5 [m] with steps of 0.5 [m] over

5000 timesteps (500 [s] of data). Fig. 5 displays the result

of this experiment. At amplitude 0, we clearly witness that

the LS and EKF estimators fail to yield reasonable offset

parameters. With our TQR-MI method, these parameters

remain at their initial guess until an amplitude of 1 and

only the angle gets optimized. As the amplitude grows, our

method becomes comparable to the LS estimator, while using

fewer measurements. In these experiments, the EKF is fed

by a vague initial prior and exhibits instability in case of

unobservability. A more concentrated prior would improve

the results at the cost of introducing potential bias.

C. Real-world Data

In order to validate our method on real-world data, we

have used the “Lost in the Woods Dataset” provided with

the courtesy of Tim Barfoot [31]. This dataset contains

approximately 20 minutes of a robot driving amongst a forest

of tubes which serve as landmarks. The ground truth comes

from a motion capture system that tracks robot motion and

tube locations. For the calibration parameters, we have only

access to δx = 0.219 [m] that was roughly measured with a

tape. We assume the others are implicitly set to 0 (δy = 0 [m]

and ψ = 0 [rad]). Fig. 6 displays the qualitative result of our

algorithm. Using only 10% of the measurements, we could

recover accurate landmark positions, robot poses, and cal-

ibration parameters. For visualization, estimated landmarks

and poses have been aligned to the ground truth using the

algorithm from [32].

Since the ground truth calibration parameters are inaccu-

rate, Tab. I compares our method against a standard least

squares (LS) estimator that exploits all the measurements.

−2 0 2 4 6 8 10 12 14

−4

−3

−2

−1

0

1

2

3

4

x [m]

y
 [

m
]

 

 

Fig. 6. Application of our algorithm on the “Lost in the Woods dataset”.
The green line represents the ground truth path, the red line the integrated
odometry path, the green crosses the ground truth landmark positions, the
blue points the estimated landmark positions, and the blue crosses the
estimated robot poses. Our MI selection scheme picks only 10% of the
measurements for the optimization.

TABLE I

Comparison of a standard least squares estimator and our method on the

“Lost in theWoods dataset”.

LS TQR-MI

δ̂x [m] 0.2357 0.2344

δ̂y [m] 0.0031 0.0087

ψ̂ [rad] 0.0804 0.0754

Σ̂δx [m2] 0.0908 × 10−5 0.1903 × 10−4

Σ̂δy [m2] 0.3917 × 10−5 0.7243 × 10−4

Σ̂ψ [rad2] 0.0286 × 10−5 0.0582 × 10−4

K 12609 1209

Our TQR-MI algorithm performs the optimization with

K = 1209 out of 12609 timesteps. Although the calibration

parameters are the same magnitude, the higher variances

stem from the fewer number of considered measurements.

V. Conclusion

In this paper, we have presented a novel approach to

the automatic calibration of mobile robot sensors. We have

included the calibration parameters in a SLAM formulation

and computed an MAP estimator using a Gauss-Newton

algorithm. To cope with unobservability, we have employed

truncated QR decomposition as a regularization method.

For long-term and online operations, we have devised a

mutual information selection scheme that solely captures

informative measurements relevant to the calibration. Our

algorithm has been thoroughly tested and validated through

extensive simulated and real-world experiments on a 2D

robot equipped with a laser range finder (LRF).

In the near future, we will consider the self calibration

of multiple sensors (cameras, 3D/2D LRF, GPS/INS system,

. . . ) mounted on an autonomous car and a C++ implementa-

tion. From a research point of view, we would like to further

automate the selection of the free parameters. Lastly, we want

to detect stepwise changes in the calibration parameters in

order to trigger recalibration in case of mechanical shocks.
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Fig. 5. Comparison of a least squares (red), EKF (blue), and our TQR-MI (green) estimator on a sine wave path of 5000 timesteps with varying
amplitudes (0 to 5 [m] with steps of 0.5 [m]). For each amplitude and method, 100 simulations are performed and the RMS errors of the computed
calibration parameters (δx, δy, and ψ) are reported. The plots are scaled to show the behavior of the algorithms near RMS = 0.
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