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Self-Supervised Deep Learning Encodes High-Resolution

Features of Protein Subcellular Localization

Hirofumi Kobayashi1*, Keith C. Cheveralls1, Manuel D. Leonetti1*, & Loic A. Royer1*

1CZ Biohub, San Francisco, USA.

Abstract

Elucidating the diversity and complexity of protein local-

ization is essential to fully understand cellular architec-

ture. Here, we present cytoself, a deep learning-based ap-

proach for fully self-supervised protein localization pro-

filing and clustering. cytoself leverages a self-supervised

training scheme that does not require pre-existing knowl-

edge, categories, or annotations. Applying cytoself to im-

ages of 1311 endogenously labeled proteins from the re-

cently released OpenCell database creates a highly resolved

protein localization atlas. We show that the representations

derived from cytoself encapsulate highly specific features

that can be used to derive functional insights for proteins

on the sole basis of their localization. Finally, to better un-

derstand the inner workings of our model, we dissect the

emergent features from which our clustering is derived, in-

terpret these features in the context of the fluorescence im-

ages, and analyze the performance contributions of the dif-

ferent components of our approach.

Systematic and large-scale microscopy-based cell assays

are becoming an increasingly important tool for biological

discovery1, 2, playing a key role in drug screening3, 4, drug

profiling5, 6, and for mapping sub-cellular localization of the

proteome7, 8. In particular, large-scale datasets based on

immuno-fluorescence or endogenous fluorescent tagging com-

prehensively capture localization patterns across the human

proteome9, 10. Together with recent advances in computer vi-

sion and deep learning11, such datasets are poised to help sys-

tematically map the cell’s spatial architecture. This situation is

reminiscent of the early days of genomics, when the advent of

high-throughput and high-fidelity sequencing technologies was

accompanied by the development of novel algorithms to ana-

lyze, compare, and categorize these sequences, and the genes

therein. However, images pose unique obstacles to analysis.

While sequences can be compared against a frame of reference

(i.e. genomes), there are no such references for microscopy

images. Indeed, cells exhibit a wide variety of shapes and ap-

pearances that reflect a plurality of states. This rich diversity

is much harder to model and analyze than, for example, se-

quence variability. Moreover, much of this diversity is stochas-

tic, posing the additional challenge of separating information

of biological relevance from irrelevant variance. The funda-

mental computational challenge posed by image-based screens

is therefore to extract well-referenced vectorial representations

* Correspondence: hirofumi.kobayashi@czbiohub.org,

manuel.leonetti@czbiohub.org, loic.royer@czbiohub.org

that faithfully capture only the relevant biological information

and allow for quantitative comparison, categorization, and bio-

logical interpretation.

Previous approaches to classify and compare images have

relied on engineered features that quantify different aspects of

image content – such as cell size, shape and texture12–15. While

these features are, by design, relevant and interpretable, the un-

derlying assumption is that all the relevant features needed to

classify an image can be identified and appropriately quanti-

fied. This assumption has been challenged by deep learning’s

recent successes11. On a wide range of computer vision and

image classification tasks, hand-designed features cannot com-

pete against learned features that are automatically discovered

from the data itself16, 17. In all cases, once features are available,

the typical approach consists of boot-strapping the annotation

process by either (i) unsupervised clustering techniques18, 19,

or (ii) manual curation and supervised learning20, 21. In the

case of supervised approaches, human annotators examine im-

ages and assign localization, and once sufficient data is gar-

nered, a machine learning model is trained in a supervised man-

ner, and later applied to unannotated data16, 21, 22. Another ap-

proach consists of reusing models trained on natural images

to learn generic features upon which supervised training can

be bootstrapped5, 23. While successful, these approaches suffer

from potential biases, as manual annotation imposes our own

preconceptions. Overall, the ideal algorithm should not rely on

human knowledge or judgments, but instead automatically syn-

thesize features and classify images without a priori assump-

tions – that is, solely on the basis of the images themselves.

Recent advances in computer vision and machine learning

have shown that forgoing manual labeling is possible and nears

the performance of supervised approaches24, 25. Instead of an-

notating datasets, which is inherently non-scalable and labor-

intensive, self-supervised models can be trained from large un-

labeled datasets26–30. Self-supervised models are trained by for-

mulating an auxiliary pretext task, typically one that withholds

parts of the data and instructs the model to predict them31. This

works because the task-relevant information within a piece of

data is often distributed over multiple observed dimensions27.

For example, given the picture of a car, we can recognize the

presence of a vehicle even if many pixels are hidden, perhaps

even when half of the image is occluded. Now consider a large

dataset of pictures of real-world objects (e.g. ImageNet32).

Training a model to predict missing parts from these images

forces it to identify their characteristic features30. Once trained,

the representations that emerge from pretext tasks capture the

essential features of the data, and can be used to compare and
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categorize images.

What first principles can underpin the self-supervised analy-

sis, comparison, and classification of protein subcellular local-

ization patterns? We know that protein localization is highly

correlated with protein function and activity, yet localization

patterns can also vary from cell to cell, depending on cell

shape, density, cell state, etc. Therefore, when training a self-

supervised model to distill a protein’s localization signature,

regardless of these variations, an effective strategy is to ensure

that the model can identify a given labeled protein solely from

fluorescence images. This is the key insight that underpins our

work and from which our self-supervised model is derived.

Here, we describe the development, validation and util-

ity of cytoself, a deep learning-based approach for fully self-

supervised protein localization profiling and clustering. The

key innovation is a pretext task that ensures that the localization

features that emerge from different images of the same protein

are sufficient to identify the target protein. We further demon-

strate the ability of cytoself to reduce images to feature profiles

characteristic of protein localization.

Results

A robust and comprehensive image dataset. A prerequisite

to our deep-learning approach is a collection of high-quality im-

ages of fluorescently labeled proteins obtained under uniform

conditions. Our OpenCell10 dataset of live-cell confocal images

of 1311 endogenously labeled proteins (opencell.czbiohub.org)

meets this purpose. We reasoned that providing a fiducial chan-

nel could provide a useful reference frame for our model to cap-

ture protein localization. Hence, in addition to the labeled pro-

tein channel (mNeonGreen2), we also imaged a nuclear fiducial

channel (Hoechst 33342) and convert it into a distance map (see

Methods). On average, we imaged the localization of a given

protein in 18 fields of views, from each of which 45 cropped

images containing 1-3 cells were extracted (for a total of 800

cropped images per protein). This scale, as well as the uniform

conditions under which the images were collected, are impor-

tant because our model must learn to ignore image variance and

instead focus on protein localization. Finally, in our approach

all images that represent the same protein are labeled by the

same unique identifier (we used the protein’s gene name, but

the identifier can be arbitrary). This identifier does not carry

any explicit localization information, nor is it linked to any

metadata or annotations, but rather is used to link together all

the different images that represent the localization of the same

protein.

A Deep Learning model to identify protein localization fea-

tures. Our deep learning model is based on the Vector Quan-

tized Variational Autoencoder architecture (VQ-VAE34, 35). In a

classical VQ-VAE, images are encoded into a quantized latent

representation, a vector, and then decoded to reconstruct the in-

put image (see Fig. 1). The encoder and decoder are trained

so as to minimize any distortion between input and output im-

ages. The representation produced by the encoder is assembled

by arraying a finite number of symbols (indices) that stand for

vectors in a codebook (Fig. 1b, Supp. Fig.7). The codebook

vectors themselves evolve during training so as to be most ef-

fective for the encoding-decoding task34. The latest incarna-

tion of this architecture (VQ-VAE-233) introduces a hierarchy

of representations that operate at multiple spatial scales (termed

VQ1 and VQ2 in the original VQ-VAE-2 study). We chose this

architecture as a starting point because of the large body of evi-

dence that suggests that quantized architectures currently learn

the best image representations34, 35. As shown in Fig. 1b we de-

veloped a variant that utilizes a split vector quantization scheme

to improve quantization at large spatial scales (see methods sec-

tion, Supp. Fig. 7).

Better protein localization encoding via self-supervision.

Our model consists of two pretext tasks applied to each individ-

ual cropped image: First, it is tasked to encode and then decode

the image (VQ-VAE). Second, it is tasked to predict the identi-

fier associated with the image solely on the basis of the encoded

representation. In other words, that second task aims to predict,

for each single cropped image, which one of the 1,311 proteins

in our library the image corresponds to. The first task forces

our model to distill lower-dimensional representations of the

images, while the second task forces these representations to be

strong predictors of protein identity. This second task assumes

that protein localization is the primary image information that

is correlated to protein identity. Therefore, predicting the iden-

tifier associated with each image is key to encourage our model

to learn localization-specific representations. Interestingly, it is

acceptable, and in some cases perfectly reasonable, for these

tasks to fail. For example, when two proteins have identical lo-

calization, it is impossible to resolve the identity of the tagged

proteins from images alone. Moreover, the autoencoder might

be unable to perfectly reconstruct an image from the interme-

diate representation, when constrained to make that representa-

tion maximally predictive of protein identity. It follows that the

real output of our model is not the reconstructed image, nor the

predicted identity of the tagged protein, but instead the distilled

image representations, which we refer to as ‘localization en-

codings’ obtained as a necessary by-product of satisfying both

pretext tasks. More precisely, our model encodes for each im-

age two representations that correspond to two different spa-

tial scales: the local and global representations, that correspond

to VQ1 and VQ2 respectively. The global representation cap-

tures large-scale image structure with each representation being

a scaled-down 4×4 pixels image with 576 features (values) per

pixel. The local representation captures finer spatially resolved

details with each representation being a 25 × 25 pixels image

with 64 features per pixel. We use the global representations to

perform localization clustering, and the local representations to

provide a finer and spatially resolved decomposition of protein

localization. Overall, imposing the two pretext tasks defines a

set of localization features capable of quantitatively and pre-
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Figure 1: Self-supervised deep learning of protein subcellular localization with cytoself. (a) Workflow of the learning process.

Only images and the identifiers of proteins are required as input. We trained our model with a fiducial channel, but its presence

is optional as its performance contribution is negligible (see Fig. 6). The protein identification pretext task ensures that images

corresponding to the same or similar proteins have similar representations. (b) Architecture of our VQ-VAE-233 based Deep

Learning model featuring our two innovations: split-quantization and protein identification pretext task. Numbers in the encoders

and decoders indicate encoder1, encoder2, decoder1 or decoder2 in Supp. Fig. 9. (c) The level of utilization of the codebook

(i.e. perplexity) increases with each training iteration and is enhanced by applying split quantization.

cisely representing protein localization patterns within cells. It

follows that features identified by cytoself can create a high-

resolution protein localization atlas.

Mapping protein localization with cytoself. Obtaining im-

age representations that are highly correlated with protein lo-

calization and invariant to other sources of heterogeneity (i.e.

cell state, density, and shape) is only the first step for bio-

logical interpretation. Indeed, while these representations are

lower dimensional than the images themselves, they still have

too many dimensions for direct inspection and visualization.

Therefore, we performed dimensionality reduction using the

Uniform Manifold Approximation and Projection (UMAP) al-

gorithm on the set of global localization-encodings obtained

from all images (see methods). The result is visualized as

a scatterplot (Fig. 2) in which each point represents a single

(cropped) image in our dataset (test set only, 10% of entire

dataset) to generate a highly detailed map reflecting the full

diversity of protein localizations. The resulting UMAP corre-

sponds to a protein localization atlas that reveals a hierarchy

of clusters and sub-clusters reflective of eukaryotic subcellular

architecture. We can evaluate and explore this map by label-

ing each protein according to its sub-cellular localization ob-

tained from manual annotations of the proteins in our image

dataset (Supp. File 2). The most pronounced delineation corre-

sponds to nuclear versus non-nuclear localizations (Fig. 2, top

right and bottom left, respectively). Within the nuclear clus-

ter, sub-clusters are resolved that correspond to nucleoplasm,

chromatin, nuclear membrane, and the nucleolus. Strikingly,

within each region, tight clusters that correspond to specific

cellular functions can be resolved. For example, subunits in-

volved in splicing (SF3 splicesome), transcription (core RNA

pol) or nuclear import (Nuclear pore) cluster tightly together

(outlined in Fig. 3). Similarly, sub-domains emerge within the

non-nuclear cluster, the largest corresponding to cytoplasmic

and vesicular localizations. Within these domains are several

very tight clusters corresponding to mitochondria, ER exit sites

(COPII), ribosomes, clathrin coated vesicles. (Fig. 2). Outside

of these discrete localization domains, there are many proteins

which exhibit mixed localization patterns (see gray points in

Fig. 2). Prominent among these is a band of proteins inter-

spersed between the nuclear and non-nuclear regions. Fig. 3a

illustrates the transition between nuclear and cytoplasmic over

this mixed localization region. Along that path from lower left

to upper right are proteins having a mostly diffuse cytoplas-

mic localization (e.g. NFKB1, ARAF and KIF3A), followed

by proteins with mixed localizations (e.g. MAP2K3, RANBP9,

and ANAPC4) and finally proteins with mostly diffuse nuclear

localization (e.g. CDK2, POLR2B, and CHEK1). These re-

sults confirm that our model learns image representations that

are accurate and high-resolution signatures of protein localiza-

tion. Our feature embedding is qualitatively comparable to pre-

vious results obtained by supervised classification of protein

localization21. However, in contrast to the extensive manual an-

notation required in previous studies, our approach is entirely

self-supervised.

High resolution clustering identifies protein complexes.

The resolving power of our approach is further illustrated by

examining well-known stable protein complexes. For exam-
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images. To reveal the underlying structure of our map, each point in the central UMAP is colored according to 9 distinct protein

localization categories (mitochondria, vesicules, nucleoplasm, cytoplasm, nuclear membrane, ER, nucleolus, Golgi, chromatin

domain). Tight clusters corresponding to functionally-defined protein complexes can be identified within each localization cat-
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ple, all subunits of the SF3 spliceosome, mediator, 20S protea-

some, core RNA polymerase, nuclear pore, ribosome, the co-

translational oligosaccharyltransferase complex (OST), as well

as COPII, and clathrin-coats (full list of subunits per com-

plex in Supp. File. 3) form tight and well-resolved clusters,

which importantly, are placed within their respective cellular

domains (Fig. 3b). Fluorescent images of 11 representative sub-

units (SF3A1, MED11, PSMD1, PSMA1, POLR2H, NUP153,

RSP16, RSP18, OSTC, SEC31A, and CLTA) from these com-

plexes illustrate these discrete localization patterns. Notably,

despite the diversity of cell shapes and sizes, the localization

encodings for subunits of the same complex (e.g. the 20S pro-

teasome subunits PSMD6 and PSMA1) converge. Thus, cy-

toself accurately identifies and spatially clusters protein com-

plexes solely on the basis of the fluorescence images. An analy-

sis of the relationship between localization patterns and protein-

protein interactions is detailed in our companion study10. In

particular, more than half of the protein pairs that interact di-

rectly with one another share nearly identical localization en-

codings.

Extracting feature spectra for quantitative analysis of pro-

tein localization. We have shown that cytoself can generate a

highly resolved map of protein localization on the basis of dis-

tilled image representations, i.e. each protein’s ‘localization en-

coding’. Can we dissect and understand the features that make

up these representations and interpret their meaning? To answer

this question, we created a feature spectrum of the main compo-

nents contributing to each protein’s localization encoding. The

spectra were constructed by calculating the histogram of code-

book feature indices present in each image – as if each code-

book feature was an ingredient present in the images at different

concentrations (see Supp. Fig. 8, and Fig. 1a, and methods for

details). To group related and possibly redundant features to-

gether, we performed hierarchical biclustering36 (Fig. 4a), and

thus obtained a meaningful linear ordering of features by which

the spectra can be sorted. Plotting these results on a heatmap

reveals 11 feature clusters from the top levels of the feature hier-

archy (Fig. 4a, bottom). To understand and interpret the image

localization patterns represented by these clusters, we chose

four representative images (as described in the methods sec-

tion) from each (see bottom Fig. 4a and Supp. Fig. 10). These

images illustrate the variety of distinctive localization patterns

that are present at different levels across all proteins. For exam-

ple, the features in the first clusters (i, ii, iii, and iv) corresponds

to a wide range of diffuse cytoplasmic localizations. Cluster v

features are unique to nucleolus proteins. Features making up

cluster vi correspond to very small and bright punctate struc-

tures, which are often characteristic of centrosomes, vesicules,

or cytoplasmic condensates. Clusters vii, viii, and x correspond

to different types of nuclear localization patterns. Cluster ix are

dark features corresponding to non-fluorescent background re-

gions. Finally, cluster xi corresponds to a large variety of more

abundant, punctate structures occurring throughout the cells,

primarily vesicular, but also Golgi, mitochondria, cytoskeleton,

and subdomains of the ER. To make this analysis more quanti-

tative we computed the average feature spectrum for all proteins

belonging to each localization family such as Golgi, nucleolus,

etc.(see Fig. 4b), again using the manual annotations as refer-
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Figure 4: Feature spectral analysis.

Figure 4: (Continued) (a) Quantized features in the local rep-

resentation are reordered by hierarchical clustering to form

a feature spectra (cf. Supp. Fig. 8). The color bar indi-

cates the strength of correlation. Negative values indicate

anti-correlation. On the basis of the feature clustering, we

identified 11 primary top-level clusters, which are illustrated

with representative images (see also Supp. Fig. 10). (b) Fea-

ture spectrum for each unique localization family. Occur-

rence indicates how many times a feature vector is found in

the local representation of an image. (c) The feature spec-

trum of FAM241A, a poorly characterized orphan protein.

(d) Fluorescence images for FAM241A versus representative

images of other ER localized proteins. (e) Correlation be-

tween FAM241A and other unique localization categories.

All spectra, as well as the heatmap are vertically aligned.

ence (as in Fig. 3, Supp. File. 2). This analysis confirms that

certain spectral clusters are specific to certain localization fam-

ilies and thus correspond to characteristic textures and patterns

in the images. For example, the highly specific chromatin and

mitochondrial localizations both appear to elicit very narrow

responses in their feature spectra. Finally, we ask whether this

feature spectrum could be used to determine the localizations

of proteins not present in our training data. For demonstration

purposes, we computed the feature spectrum of FAM241A – a

protein of unknown function. Visually (Fig. 4bc) and quantita-

tively (Fig. 4e), the spectrum of FAM241A is most correlated

to the consensus spectrum of proteins belonging to the Endo-

plasmic Reticulum (see Fig. 4e). As shown in Fig. 4d, images

for FAM241A do exhibit a localization pattern very similar to

that of proteins belonging to the endoplasmic reticulum (ER).

In our companion study10, we show that FAM241A is in fact

a new subunit of the OST (oligosaccharyltransferase) complex,

responsible for co-translational glycosylation at the ER mem-

brane.

Interpreting the features as patterns in the images. An im-

portant and very active area of research in deep learning is the

visualization, interpretation, and reverse-engineering of the in-

ner working of deep neural networks37, 38. To better understand

the relationship between our input images and the emergent

features obtained by cytoself, we conducted an experiment in

which we passed images into the autoencoder but prevented us-

age of a given feature by zeroing it before decoding. By com-

puting the difference between the input and reconstructed im-

ages, we identify specific regions of the images that are im-

pacted, and thus causally linked, to that feature. Three ex-

amples are illustrated in Fig.5: (a) POLR2E, a core subunit

shared between RNA polymerases I, II and III, (b) SEC22B,

a vesicle-trafficking protein, and (c) RPS18, a ribosomal pro-

tein. Highlighted in red on the images for each protein are

the consequences of individually subtracting one of the three

strongest peaks in their respective spectra. These difference

maps reveal the image patterns that are lost and hence linked

to that peak. The strongest peak (leftmost) of POLR2E’s spec-
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Figure 5: Interpreting image spectral features. Feature spectra were computed for each example proteins (a) POLR2E, (b)

SEC22B, and (c) RPS18. Subsequently, information derived from the indicated major peaks of their feature spectra was removed

by zeroing them out before passing the images again through the decoder. Highlighted in red are the differences between the

original image and resulting output images for the corresponding features. The feature classes outlined in Fig. 4 are shown as

background color for reference.
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Figure 6: Clustering performance quantifies the effect of re-

moving the indicated components of our model on its per-

formance. For each model variation, we trained five model

instances, compute 10 different UMAPs, compute clustering

scores using organelle-level and protein-complex-level ground

truth, and then report mean and standard error of the mean. The

low discrepancy in linear regression indicates our evaluation re-

sults are little affected by the clustering resolution.

trum clearly corresponds to high intensity punctate structures

within nucleoli, a localization recently established by Abra-

ham et al.39, while the two other peaks correspond to lower

intensity and more diffuse patterns. In the case of SEC22B the

strongest peak (leftmost) corresponds to cytoplasmic regions

with high densities of vesicles. Other peaks in the spectrum

of SEC22B correspond to regions with sparse punctate expres-

sion. Finally, for RPS18, the strongest peak (rightmost) cor-

responds to large, diffuse, and uniform cytoplasmic regions in

the images, whereas the two other selected peaks correspond to

brighter and more speckled regions (middle) as well as regions

adjacent to the nuclear boundary (leftmost). This analysis high-

lights both the interpretability but also the high complexity of

the image encodings generated by our model.

Identifying the essential components of our model. To

evaluate the impact of different aspects of our model on its

clustering performance, we conducted an ablation study. For

this, we retrained our model and recomputed a protein local-

ization UMAP (similar to Fig. 2), after individually removing

each component or input of our model, including: (a) the nu-

clear fiducial channel, (b) the distance transform applied to nu-

clear fiducial channel, (c) the split vector quantization, and (d)

the identification pretext task. To quantitatively evaluate the ef-

fects of their ablation on our results we developed a clustering

score (see Methods section) and used two ground-truth annota-

tion datasets to capture known protein localization at two differ-

ent cellular scales: the first is a manually curated list of proteins

with unique organelle-level localizations, whereas the second is

a list of proteins participating in stable protein complexes de-

rived from the CORUM database40. While the first ground-truth

dataset helps us assess how well does our encodings cluster to-

gether proteins belonging to the same organelles, the second

helps us assess whether proteins interacting within the same

complex cluster, and thus functionally related, are next to each

other in the UMAP. As shown in Fig. 6 and Supp. Table 1

the two scores derived from the two sets of ground-truth labels

mostly agree (correlation: 0.977) on which model variants per-

form better. The scores from both sets of ground-truth labels

make it clear that the single most important component of cyto-

self, in terms of clustering performance, is the protein identifi-

cation pretext task – the heart of our self-supervised approach.

Removing that component leads to a complete collapse in per-

formance (Supp. Fig. 11 and 12). Training the model without

nuclear channel, split quantization, distance transform, recon-

struction pretext task (decoder), or vector quantization does af-

fect performance but not as dramatically as when trained with-

out the identification pretext task. These components are im-

portant but not crucial to the performance of our model. In-

terestingly, forgoing the fiducial nuclear channel entirely led to

the smallest decrease in clustering score, suggesting that our

approach works well even in the absence of any fiducial marker

– a notable advantage that widens the applicability of our ap-

proach and greatly simplifies the experimental design. Also in-

teresting is the fact that using a fiducial marker without apply-

ing a distance transform is worse than having no fiducial marker

– unprocessed fiducial markers seem to confuse our model. Per-

haps the fine texture and shape details present in the nuclear

channel are unnecessary for our purpose and in fact confound-

ing. In conclusion, while all features contribute to the overall

performance of our model, the identification pretext task is the

key and necessary ingredient.

Discussion

We have shown that a self-supervised training scheme can pro-

duce image representations that capture the hierarchical orga-

nization of protein subcellular localization, solely on the basis

of a large dataset of fluorescence images. Our model generates

a high-resolution subcellular localization atlas capable of clas-

sifying not only discrete organelles, but also discrete protein

complexes. Moreover, we can represent each image with a fea-

ture spectrum to tease apart which aspects of the localization

pattern are represented by each quantized vector. Assuming

that a protein’s localization is highly correlated with its cellu-

lar function, cytoself will be an invaluable tool for function-

ally classifying many unknown or poorly studied proteins, and

for studying the effect of cellular perturbations and cell state

changes on protein subcellular localization.

Our method makes few assumptions, but imposes two pre-

text tasks. Of these, requiring the model to identify proteins

based solely on their localization encodings was essential. We

also included Hoescht DNA-staining as a fiducial marker, as-
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suming that this would provide a spatial reference frame against

which to interpret localization. Surprisingly however, this

added little to the performance of our model in terms of clus-

tering score. By comparison, the self-supervised approach by

Lu et al.29 applied a pretext task that predicts the fluorescence

signal of a labeled protein in one cell from its fiducial mark-

ers and from the fluorescence signal in a second, different cell

from the same field of view. This assumes that fiducial chan-

nels are available, and that protein fluorescence is always well-

correlated to these fiducials. In contrast, our approach only

requires a single fluorescence channel and yields better clus-

tering performance (Supp. Fig.13, 14, 15, Supp. Table2). In

summary, cytoself ’s performance is state-of-the-art for multi-

channel images, and is the first of its kind for single channel

images.

While powerful, there remains a few avenues for further de-

velopment of cytoself. For example, we trained our model

using two-dimensional maximum-intensity z-projections and

have not yet leveraged the full 3D confocal images available

in the OpenCell10 dataset. The third dimension might con-

fer an advantage for specific protein localization patterns that

are characterized by specific variations along the basal-apical

cell axis. Other important topics to explore are the automatic

suppression of residual batch effects, improved cell segmenta-

tion via additional fiducial channels, as well as automatic re-

jection of anomalous or uncharacteristic cells from our training

dataset. More fundamentally, significant conceptual improve-

ments will require an improved self-supervised model that ex-

plicitly disentangles cellular heterogeneity from localization di-

versity. Beyond imaging, we are curious whether the insights

behind our self-supervised learning approach could potentially

be used for other biological datasets.

Novel methods are being developed to tackle the complex-

ity and heterogeneity of cellular fluorescence images. Recent

computational methods focus on specific cellular events, for ex-

ample in a computational tour-de-force Cai et al.8 develop an

integrated map of the three-dimensional concentration of pro-

teins during cell division. By performing a spatio-temporal reg-

istration, much of the variance in the images is eliminated, thus

aiding comparison and analysis. In our case, while including a

nuclear fiducial channel was not strictly necessary, applying a

distance transform and thus creating a rudimentary cellular co-

ordinate system improved clustering performance. More work

is needed to understand how to aid our models to robustly fil-

ter out irrelevant information, and interpret potential relevant

information from cell shape changes.

More generally, our ability to generate data is outpacing the

human ability to manually annotate it. Moreover, there is al-

ready ample evidence that abundance of image data has a qual-

ity all its own, i.e. increasing the size of an image dataset of-

ten has higher impact on performance than improving the al-

gorithm itself41. Hence our conviction that self-supervision is

key to fully harness the deluge of data produced by novel in-

struments, end-to-end automation, and high-throughput image-

based assays.

Methods

Fluorescence image dataset. All experimental and imag-

ing details can be found in our companion study10. Briefly,

HEK293T cells were genetically tagged with split-fluorescent

proteins (FP) using CRISPR-based techniques42. After nuclear

staining with Hoechst 33342, live cells were imaged with a

spinning-disk confocal microscope (Andor Dragonfly). Typi-

cally, 18 fields of view were acquired for each one of the 1311

tagged protein, for a total of 24,382 three-dimensional images

of dimension 1024× 1024× 22 voxels.

Image data pre-processing. Each 3D confocal image was

first reduced to two dimensions using a maximum-intensity

projection along the z-axis followed by downsampling in the

XY dimensions by a factor of two to obtain a single 2D image

per field of view (512 × 512 pixels). To help our model make

use of the nuclear fiducial label we applied a distance trans-

form to a nucleus segmentation mask (see below). The distance

transform is constructed so that pixels within the nucleus were

assigned a positive value that represents the shortest distance

from the pixel to the nuclear boundary, and pixel values outside

of the nucleus were assigned a negative value that represents the

shortest distance to the nuclear boundary (see Fig. 1a). For each

dual-channel and full field-of-view image, multiple regions of

dimension 100 × 100 pixels were computationally chosen so

that at least one cell is present and centered, resulting in a total

of 1,100,253 cropped images. Cells (and their nuclei) that are

too close to image edges are ignored. The raw pixel intensi-

ties in the fluorescence channel are normalized between 0 and

1, and the nuclear distance channel is normalized between -1

and 1. Finally, we augmented our training data by randomly

rotating and flipping the images.

Nucleus segmentation. Nuclei are segmented by first thresh-

olding the nucleus channel (Hoechst staining) and then apply-

ing a custom iterative refinement algorithm to eliminate under

segmentation of adjacent nuclei. In the thresholding step, a

low-pass Gaussian filter is first applied, followed by intensity

thresholding using a threshold value calculated by Li’s iterative

Minimum Cross Entropy method43, 44. The resulting segmenta-

tion is refined by applying the following steps: (i) we generate

a ‘refined’ background mask by thresholding the laplace trans-

form at zero, (ii) we morphologically close this mask and fill

holes to eliminate intra-nuclear holes or gaps (empirically, this

requires a closing disk of radius at least 4 pixels), (iii) we mul-

tiply this ‘refined’ mask by the existing background mask to re-

store any ‘true’ holes/gaps that were present in the background

mask, (iv) we generate a mask of local minima in the laplace

transform, using an empirically-selected percentile threshold,

and finally (v) we iterate over regions in this local-minima mask

and remove them from the refined mask if they partially overlap
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with the background of the refined mask.

Detailed model architecture. All details of our model archi-

tecture are given in Suppl. Fig. 9 and diagrammed in Fig. 1b.

First, the input image (100×100×2 pixels) is fed to encoder1 to

produce a set of latent vectors which have two destinations: en-

coder2 and VQ1 VectorQuantizer layer. In the encoder2, higher

level representations are distilled from these latent vectors and

passed to the output. The output of encoder2 is quantized in

the VQ2 VectorQuantizer layer to form what we call in this

work the global representation. The global representation is

then passed to the fc2 classifier for purposes of the classifica-

tion pretext task. It is also passed on to decoder2 to reconstruct

the input data of encoder2. In this way, encoder2 and decoder2

form an independent autoencoder. The function of layer mse-

lyr1 is to adapt the output of decoder2 to match the dimensions

of the output of encoder1, which is identical to the dimensions

of the input of encoder2. In the case of the VQ1 VectorQuan-

tizer layer, vectors are quantized to form what we call the local

representations. The local representation is then passed to the

fc1 classifier for purposes of the classification pretext task, as

well as concatenated to the global representation that is resized

to match the local representations’ dimensions. The concate-

nated result is then passed to the decoder1 to reconstruct the

input image. Here, encoder1 and decoder1 form another au-

toencoder.

Split quantization. In the case of our global representation,

we observed that the high level of spatial pooling required (4×4
pixels) led to codebook under-utilization because the quantized

vectors are too few and each one of them has too many di-

mensions (Fig. 1b). To solve this challenge we introduce the

concept of split quantization. Instead of quantizing all the di-

mensions of a vector at once, we first split the vectors into sub-

vectors of equal length, and then quantize each sub-vectors us-

ing a shared codebook. The main advantage of split quantiza-

tion when applied to the VQ-VAE architecture is that one may

vary the degree of spatial pooling without changing the total

number of quantized vectors per representation. In practice,

to maintain the number of quantized vectors while increasing

spatial pooling, we simply split along the channel dimension.

We observed that the global representations’ perplexity, which

indicates the level of utilization of the codebook, substantially

increases when split quantization is used compared to standard

quantization (Fig. 1c). As shown in Supp. Fig. 7, split quan-

tization is performed along the channel dimension by splitting

each channel-wise vector into nine parts, and quantizing each

of the resulting ‘sub-vectors’ against the same codebook. Split

quantization is only needed for the global representation.

Global and local representations. The dimensions of the

global and local representations are 4 × 4 × 576 and 25 ×
25 × 64 voxels, respectively. These two representations are

quantized with two separate codebooks consisting of 2048 64-

dimensional features (or codes).

Identification pretext task. The part of our model that is

tasked with identifying the protein determining is implemented

as a 2-layer perceptron built by alternatively stacking fully con-

nected layers with 1000 hidden units and non-linear ReLU lay-

ers. The output of the classifier is a one-hot encoded vector for

which each coordinate corresponds to one of the 1311 proteins.

We use categorical cross entropy as classification loss during

training.

Computational efficiency. Due to the large size of our image

data (1,100,253 cropped images of dimensions 100 × 100 × 2
pixels) we recognized the need to make our architecture more

efficient and thus allow for more design iterations. We opted to

implement the encoder using principles from the EfficientNet

architecture in order to increase computational efficiency with-

out loosing learning capacity45. Specifically, we split the model

of EfficientNetB0 into two parts to make the two encoders in our

model (Supp.Fig. 9). While we did not notice a loss of perfor-

mance for the encoder, we did observed that EfficientNet did

not perform as well for decoding. Therefore, we opted to keep

a standard architecture based on a stack of residual blocks for

the decoder46

Training protocol The whole dataset (1,100,253 cropped im-

ages) were split into training, validation and testing data by

8:1:1. All results shown in the figures are from testing data.

We used the Adam optimizer with the initial learning rate of

0.0004. The learning rate was multiplied by 0.1 every time the

validation loss did not improve for 4 epochs, and the training

was terminated when the validation loss did not improve for

more than 12 consecutive epochs.

Dimensionality reduction and clustering. Dimensionality

reduction is performed using Uniform Manifold Approxima-

tion and Projection (UMAP)47 algorithm. We used the refer-

ence open-source python package umap-learn (version 0.5.0)

with default values for all parameters (i.e. the Euclidean dis-

tance metric, 15 nearest neighbors, and a minimal distance of

0.1). We used AlignedUMAP for the clustering performance

evaluation to facilitate the comparison of different projections.

Specifically in the ablation study, we computed UMAPs of all

seven model variants together using AlignedUMAP function

(Supp. Fig11 and 12). In the comparison with a previous study,

we computed UMAPs of two variances of our model and three

variances of the previous study together using AlignedUMAP

function (Supp. Fig14 and 15).

Ground truth labels in UMAP representation. We use two

sets of ground truth labels to evaluate the performance of cyto-

self at two different cellular scales. First, we use a manually

curated list of proteins with exclusive organelle-level localiza-

tion patterns (Supp. File 2). Second, we collected 38 protein

complexes from the CORUM database 40 (Supp. File 1). The

38 protein complexes were collected by following conditions:

i) all subunits are present in the OpenCell data, ii) no overlap-
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ping subunit across the complexes, iii) each protein complex

consists of more than 1 subunit.

Clustering score. To calculate a clustering score, we assume

a collection of n points (vectors) in R
m: S = {xi ∈ R

m|0 ≤
i ≤ n}, and that we have a (ground truth) assignment of each

point xi to a class Cj , and these classes form a partition of S:

S =
⋃

j

Cj

Ideally, the vectors xi are such that all points in a class are

tightly grouped together, and that the centroids of each class

are as far apart from each other as possible. This intuition is

captured in the following definition of our clustering score:

Γ(Ci) =
σ∗({µ∗(Cj)}j)

µ∗({σ∗(Cj)}j)

Where {.}k denotes the set of values obtained by evaluating

the expression for each value of parameter k, and where µ∗ and

σ∗ stand for the robust mean (median) and robust standard de-

viation (computed using medians). Variance statistics were ob-

tained by training model variant 5 times followed by computing

UMAP 10 times per trained model.

Feature spectrum. Supp. Fig. 8a illustrates the workflow for

constructing the feature spectra. Specifically, we first obtain

the indices of quantized vectors in the latent representation for

each image crop, and then calculate the histogram of indices in

all images of each protein. As a result, we obtain a matrix of

histograms in which rows correspond to protein identification

(ID) and columns to the feature indices (Supp. Fig. 8b). At this

point, the order of the columns (that is, the feature indices) is

arbitrary. Yet, different features might be highly correlated and

thus either related or even redundant (depending on how “satu-

rated” the codebook is). To meaningfully order the feature in-

dices, we compute the Pearson correlation coefficient between

the feature index “profiles” (the columns of the matrix) for each

pair of feature indices to obtain a 2048 × 2048 pairwise corre-

lation matrix (see Supp. Fig. 8c). Next we perform hierarchical

biclustering in which the feature indices with the most simi-

lar profiles are iteratively merged48. The result is that features

that have similar profiles are grouped together (Supp. Fig. 8d).

This ordering yields a more meaningful and interpretable view

of the whole spectrum of feature indices. We identified a num-

ber of clusters from the top levels of the feature hierarchy and

manually segment them into 11 major feature clusters (ordered

i through xi). Finally, for a given protein, we can produce a in-

terpretable feature spectrum by ordering the horizontal axis of

the quantized vectors histogram in the same way.

Software and hardware All deep learning architectures

were implemented in TensorFlow 1.1549 on Python 3.7. Train-

ing was performed on NVIDIA V100-32GB GPUs.
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Suppl. Files

1. proteins corum.csv, A list of protein subunits collected

from CORUM40 as a ground truth to compute clustering

scores. See Methods for how they were selected.

2. proteins uniloc.csv, A list of proteins that has only one lo-

calization pattern.

3. proteins subunits.csv, List of protein subunits for protein

complexes mentioned in Fig. 2 and Fig. 3b.

Suppl. Figures

model variation organelle-level complex-level

full model 3.41 ± 0.18 5.96 ± 0.25

without nuclear channel 3.35 ± 0.23 5.38 ± 0.19

without distance transform 3.17 ± 0.18 4.90 ± 0.13

without vector quantization 2.98 ± 0.14 4.46 ± 0.15

without id. pretext task 1.13 ± 0.094 1.26 ± 0.062

without split quantization 2.85 ± 0.20 5.04 ± 0.16

without decoder 2.98 ± 0.17 4.48 ± 0.12

Table 1: (Supplementary.) Clustering performance quantifies

the effect of removing the indicated aspects of our model on its

performance. We train the models 5 times, compute 10 different

UMAPs per trained model, and then report mean and standard

error mean (µ± sem.).

model variation organelle-level complex-level

full model 3.46 ± 0.12 5.70 ± 0.19

without nuclear channel 3.43 ± 0.18 4.95 ± 0.16

Lu et al. (conv3 1) 2.19 ± 0.097 2.67 ± 0.045

Lu et al. (conv4 1) 2.33 ± 0.11 2.88 ± 0.10

Lu et al. (conv5 1) 2.91 ± 0.18 3.06 ± 0.084

Table 2: (Supplementary.) Clustering performance in our

full model surpasses the previously reported cell-inpainting

model29. We train the models 5 times, compute 10 different

UMAPs, compute clustering scores using organelle-level and

protein-complex-level ground truth, and then report mean and

standard error of the mean (µ ± sem.). For the latent repre-

sentations in the inpainting model, we examined the 3 network

layers discussed in Lu et al. to produce image representations

for UMAP. Note that our approach works with single fluores-

cence channel whereas the approach by Lu et al. needs at least

two channels.
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Figure 7: (Supplementary.) A schematic of split quantization. (a), Without split quantization, there are only 4 × 4 = 16
quantized vectors in the global representation. (b), With split quantization, there are 4 × 4 × 9 = 144 quantized vectors in the

global representation, resulting in more opportunities for codes in the codebook to be used.
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Figure 8: (Supplementary.) Process of constructing feature spectra. (a) First, the quantized vectors in the local representation

were extracted and converted to a histogram by counting the occurrence of each quantized vector. (b) Next, taking the average of

the histograms per protein ID over the all data and create a 2D histogram. (c) Pearson’s correlation between any two representation

indices were calculated and plotted as a 2D matrix. (d) Finally, hierarchical clustering was performed on the correlation map so

that similar features are clustered together, revealing the structure inside the local representation. The whole process corresponds

to the Spectrum Conversion in Fig. 1a.
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a b c d e

Figure 9: (Supplementary.) Detailed structure of VQ-VAE model. (a) the whole model structure, (b) the structure of encoder1,

(c) the structure of encoder2, (d) the structure of decoder1, (e) the structure of decoder2.
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Figure 10: (Supplementary.) On the basis of the feature clustering, we identified, and manually segmented 11 primary top-

level clusters, which are illustrated them with representative images. The localizations of the example images shown in each

cluster are (i) cytoplasmic/membrane, (ii) cytoplasmmic/nucleoplasm, (iii) ER, (iv) membrane, (v) nucleolus, (vi) vesicles, (vii)

nucleoplasm, (viii) nucleoplasm, (ix) unsuccessful image, (x) cytoplasmic/nucleoplasm, (xi) vesicles.
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Figure 11: (Supplementary.) Identifying the essential components of our model with organelle-level ground truth. Protein

localization maps were derived after removing one-by-one key components of our model. Aligned UMAPs are given to aid

visual comparison.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.03.29.437595doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437595
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 12: (Supplementary.) Identifying the essential components of our model with protein-complex-level ground truth. Protein

localization maps were derived after removing one-by-one key components of our model. Aligned UMAPs are given to aid visual

comparison.
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Figure 13: (Supplementary.) Clustering performance in our full model surpasses the previously reported cell-inpainting model29.

We train the models 5 times, compute 10 different UMAPs, compute clustering scores using organelle-level and protein-complex-

level ground truth, and then report mean and standard error of the mean. For the latent representations in the inpainting model,

we examined the 3 network layers discussed in Lu et al. to produce image representations for UMAP. Note that our approach

works with single fluorescence channel whereas the approach by Lu et al. needs at least two channels.
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Figure 14: (Supplementary.) Comparing UMAP representation of latent representation from cytoself and cell-inpainting29 anno-

tated with organelle-level ground truth. Aligned UMAPs are given to aid visual comparison.
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Figure 15: (Supplementary.) Comparing UMAP representation of latent representation from cytoself and cell-inpainting29 anno-

tated with protein-complex-level ground truth. Aligned UMAPs are given to aid visual comparison.
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