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Abstract 

Background: Coronavirus disease 2019 (COVID-19) is very contagious. Cases appear faster than the available Poly-
merase Chain Reaction test kits in many countries. Recently, lung computerized tomography (CT) has been used as 
an auxiliary COVID-19 testing approach. Automatic analysis of the lung CT images is needed to increase the diag-
nostic efficiency and release the human participant. Deep learning is successful in automatically solving computer 
vision problems. Thus, it can be introduced to the automatic and rapid COVID-19 CT diagnosis. Many advanced deep 
learning-based computer vison techniques were developed to increase the model performance but have not been 
introduced to medical image analysis.

Methods: In this study, we propose a self-supervised two-stage deep learning model to segment COVID-19 lesions 
(ground-glass opacity and consolidation) from chest CT images to support rapid COVID-19 diagnosis. The proposed 
deep learning model integrates several advanced computer vision techniques such as generative adversarial image 
inpainting, focal loss, and lookahead optimizer. Two real-life datasets were used to evaluate the model’s performance 
compared to the previous related works. To explore the clinical and biological mechanism of the predicted lesion 
segments, we extract some engineered features from the predicted lung lesions. We evaluate their mediation effects 
on the relationship of age with COVID-19 severity, as well as the relationship of underlying diseases with COVID-19 
severity using statistic mediation analysis.

Results: The best overall F1 score is observed in the proposed self-supervised two-stage segmentation model (0.63) 
compared to the two related baseline models (0.55, 0.49). We also identified several CT image phenotypes that medi-
ate the potential causal relationship between underlying diseases with COVID-19 severity as well as the potential 
causal relationship between age with COVID-19 severity.

Conclusions: This work contributes a promising COVID-19 lung CT image segmentation model and provides pre-
dicted lesion segments with potential clinical interpretability. The model could automatically segment the COVID-19 
lesions from the raw CT images with higher accuracy than related works. The features of these lesions are associated 
with COVID-19 severity through mediating the known causal of the COVID-19 severity (age and underlying diseases).
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Background
Coronavirus disease 2019 (COVID-19) is a newly iden-

tified infectious disease, which was first reported in 

December 2019 [1]. According to an interactive COVID-

19 dashboard created by Johns Hopkins University, 

COVID-19 has spread to more than 190 counties and 

caused 3,957,898 global deaths out of more than 182 

million diagnosed cases by July 2nd, 2021 [2]. Several 

interventions have been applied worldwide to control 

the COVID-19 pandemic, such as case isolation, close 

contact quarantine, population lockdown, face covering, 

sanitization, and vaccination. Although these preventa-

tive measures have successfully reduced the number of 

deaths and confirmed cases, we will likely experience 

more waves of COVID-19 as restrictions are loosened 

and the new variants appear [3].

Recently, many efforts have been made to develop arti-

ficial intelligence (AI) models to support medical imag-

ing-based COVID-19 rapid diagnosis [4]. Compared to 

Polymerase Chain Reaction (PCR) which is the current 

gold standard COVID-19 diagnosis test, medical imag-

ing such as computerized tomography (CT) scans of the 

lungs does not waste consumables. �erefore, CT imag-

ing-based COVID-19 diagnosis is more efficient as it 

would not be limited by the delay of available testing kits, 

especially when AI is introduced to release the need for 

human involvement in image reading [5]. However, cur-

rent AI COVID-19 diagnostic models based on medical 

imaging generally lack transparency and clinical inter-

pretability [6]. �e complexity of AI models and their low 

reproducibility have weakened their applications in clini-

cal practice [7]. Hence, it is critical to develop AI-based 

COVID-19 diagnosis models with clinical interpretabil-

ity. Age, underlying diseases, and sometimes gender are 

observed to be related to the risk of COVID-19 [8, 9]. 

Lung CT image is a good predictor of COVID-19 status. 

�is is likely due to its associations with age, gender, and 

underlying diseases [10, 11]. If this is the case, mediation 

analysis [12] between the age, gender, underlying disease 

and the risk of COVID-19 through lung CT image phe-

notypes can potentially be used to reason on the model 

predictions both biologically and statistically. �is may 

have the potential to improve the cost-effectiveness, diag-

nosis efficacy, and clinical utility of AI-based COVID-19 

CT imaging diagnosis [6].

�ere are several related works that used self-super-

vised learning approaches for predicting if the CT lung 

images is COVID-19 positive or COVID-19 nega-

tive. Chen et  al. [13]  proposed to use contrastive self-

supervised learning with 3 major components—data 

augmentation, representation learning, and few-shot 

classification. �e data augmentation that they used 

involved cropping two parts of the CT lung images, one 

part undergone random cropping followed by random 

flipping, the other part undergone random cropping fol-

lowed by colour distortion. �en, representation learn-

ing was trained to improve on the similarity score where 

cropped images from the same CT lung image achieved 

higher similarity score and cropped images from differ-

ent CT lung images achieved a lower similarity score. 

After training representation learning on the model, the 

pre-trained model was used to encode the query image 

and the support set of CT lung images. �e encoded fea-

tures were passed into prototypical networks to conduct 

the few-shot classification. �e limitation of the work 

in this approach is that support set images are required 

for the classification. It can also be hard for the classifi-

cation to get a good performance if the encoded features 

of the query image are very different from the support 

set images. Li et al. [14] used self-supervised dual-track 

learning to rank. Since there are more available COVID-

19 negative samples than COVID-19 positive samples, 

their method selected a subset of the negative samples to 

train on the network so that a more balanced data was 

trained. �e way the subset of the negative samples was 

selected is that they generated two soft labels (“difficulty” 

and “diversity”) for the negative samples by computing 

the earth mover’s distance between the COVID-19 nega-

tive samples and the COVID-19 positive samples and 

selected the soft labels generated accordingly.

As it has been more than one year since the occurrence 

of COVID-19, many lung CT image datasets are now 

available online. �ough effective, deep learning requires 

data sets with a large sample size to achieve better per-

formance [15]. However, only few COVID-19 CT image 

dataset has segmentation label information. �erefore, 

it is important to effectively utilize them. Voulodimos 

et al. proposed two deep learning models to do COVID-

19 infected area segmentation from CT image patches 

[16, 17]. �ese patches acted as augmentations of the 

raw images. Ma et al. further proposed the data-efficient 

learning which involves few-shot learning, domain gen-

eralization for COVID-19 segmentation with limited 

training data [18]. Transfer learning is also widely used 

to complement the sample size issue in COVID-19 infec-

tion detection and segmentation from medical images 

[19–21]. However, transfer learning usually involves 

models pretrained on non-medical images, which may 

not perform well in the medical image scenario. Incor-

porating unlabeled data into model training strategies is 

also an approach to improve the prediction performance 

when the labeled data have limited size [22]. Yao et  al. 

even proposed a label-free deep learning-based seg-

mentation model which took advantage of unsupervised 

anomaly detection techniques [23]. However, their model 

only outperformed other unsupervised approaches and 
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maybe not comparable with supervised methods. Self-

supervised learning is another way to involve unlabeled 

data. It aims at creating tasks to generate auto-achieva-

ble labels without additional human annotations [24]. 

In the context of self-supervision, image inpainting [25] 

refers to the creation of a task for the model to generate 

the content of missing or damaged regions based on the 

surrounding information [26–28]. �e images are dam-

aged on purpose by making some missing regions. �en 

the model is trained to recover the damaged images to 

their raw versions. Image inpainting was reported to have 

excellent pre-training ability for convolutional neural net-

work (CNN) based image segmentation, because it can 

improve network feature learning [26, 29]. By controlling 

the complexity of missing regions in the images, we can 

manage the difficulty of the inpainting task. However, it 

is hard to create proper missing regions for network to 

learn, because the missing regions can either be too com-

plex for the network to start learning or too simple to be 

able to learn good representations [30]. A coach network 

with generative adversarial mechanism [31] can be used 

to create the missing region masks with proper complex-

ity. �e created mask can initially be simple. Once the 

network can predict the inpainting of the CT images with 

good performance, the coach network increases the com-

plexity of the masking to reduce the performance of the 

network, similar to how the generative adversarial net-

work (GAN) [31] works.

Automatic lung CT image lesion segmentation is not 

easy due to its variation [32]. To distinguish different 

kinds of lesions is even harder. To exhaust the informa-

tion in COVID-19 lung CT images and help us to under-

stand the disease thoroughly, it is important to segment 

and understand COVID-19 lung CT lesions at a pixel 

level, including ground-glass opacity (GGO) and con-

solidation. �e recently developed COVID-19 Lung 

Infection Segmentation Network (InfNet) [22] uses a 

two-stage strategy to solve the multi segmentation prob-

lem. �at is, the overall lesion is first segmented, and 

then passed to the second stage for further distinguishing 

into the GGO or consolidation lesion [22].

In diagnostic radiology, consolidation could be either 

pus, edema, blood, or a tumor replacing the airspace in 

the lung, while GGO is either the filling of pus, edema, 

hemorrhage, inflammation, or tumor cells in the alveo-

lar space [33, 34. �ese two lung CT patterns often pre-

sent together, but GGO is more commonly observed in 

COVID-19 lung CT images than consolidation [35]. �is 

is the case in the segmented lung CT image dataset we 

found online [36]. �is imbalanced label problem might 

overwhelm the default binary cross entropy loss func-

tion in training the binary classifier. When distinguishing 

the GGO and consolidation from overall lesion segment, 

the negative samples— which are the consolidations—

are easier to classify than the positive samples (GGO) 

because the large number of negative samples contribute 

to the majority of the loss and have a huge influence on 

the gradient. Focal loss is an improved loss function that 

could reduce the weight of easy samples and focus more 

on samples in minority class. It can improve the perfor-

mance of the classification network when the dataset has 

class imbalance [37].

In addition to choosing the loss function wisely, 

another important technical point for training the net-

work is to configure the most advanced iterative method 

to optimize the loss function. Currently, many success-

ful networks are trained using the stochastic gradi-

ent descent (SGD) algorithm [38], and its variants. To 

improve SGD, and other optimizers, a novel algorithm 

called Lookahead was proposed [39. It uses two nested 

loops to update two sets of network weights. �e fast 

weights of the network are trained several times in a 

small inner loop using an optimizer such as SGD, then 

the direction of the gradient is used to update the slow 

weights using the outer loop [39]. It is almost guaranteed 

to achieve fast convergence with minimal computational 

overhead [39].

In the current study, we propose an advanced deep 

learning model called self-supervised InfNet (SSIn-

fNet) which uses InfNet as a backbone, and integrates 

generative adversarial image inpainting, focal loss, and 

lookahead optimizer techniques (Fig. 1) to improve lung 

lesion segmentation performance compared to bench-

mark models. Furthermore, the clinical mechanisms of 

the predicted multi lung lesion segments (GGO segment 

and consolidation segment) on COVID-19 are evalu-

ated in this study using statistic mediation analysis. �e 

identified mediation effects could significantly increase 

the interpretability of the network and support certain 

image features as potential diagnostic image biomarkers 

for COVID-19.

Methods
Data split

Two COVID-19 datasets were involved in this study. One 

is the Integrative Resource of Lung CT Images and Clini-

cal Features (ICTCF) [40] which contains the clinical 

severity for each patient. �ere are 6654 lung CT images 

from 1338 patients with their clinical severity in ICTCF. 

�e other is Med-Seg (medical segmentation) COVID-

19 dataset [36] which contains 932 CT lung images with 

the ground truth labels of their GGO and consolidation 

segments. �e segments and data splits are shown in 

Fig. 2. We split the dataset into training set and test set. 

To prevent data leakage, we split the dataset based on the 

patients rather than the CT lung images.
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Supervised InfNet

�e supervised InfNet (SInfNet) is a recently developed 

CNN model for COVID-19 lung CT segmentation [22], 

which was used as both our backbone and one of the 

baseline models. We did not change the overall struc-

ture and default hyperparameters of the original SInfNet 

Fig. 1 Overview of the proposed self-supervised COVID-19 lung infection segmentation (SSInfNet) model and statistic causal mediation analysis 
of the predicted segments. The black path shows the main workflow of the proposed two-stage SSInfNet model and the follow-up statistical 
mediation analysis. The first stage is a single SSInfNet which takes the damaged CT image as input, and outputs the reconstructed image (blue 
path), the edges of overall lesion segment (orange path), and the single segment itself. The inpainting loss and edge loss are intended to increase 
the complexity of the single SSInfNet to improve its segmentation ability. The coach network (presented in the blue path) forms a generative 
adversarial mechanism with single SSInfNet to further improve the later model’s performance. Continuing to proceed along the black path, the raw 
CT image and the predicted overall lesion segment (as prior) are used as input for the multi SSInfNet to further divide the overall lesion segments 
into ground-glass opacity and consolidation segments. Image inpainting is also involved in this stage (green path). For the multi segmentation, 
we use the focal technique as its loss function and lookahead optimizer as its training strategy. At the end, the predicted multi segments are used 
to extract several images features with Python’s PyRadiomics [41] package. The image features act as mediators in the mediation analysis model 
between the independent variables (age, gender, and underlying diseases) and the dependent variable (COVID-19 severity)
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model (Additional file 1: Figure S1). A complete SInfNet 

consists of two parts: a single SInfNet (Additional file 1: 

Figure  2A) and a multi SInfNet (Additional file  1: Fig-

ure  3A). �e single SInfNet only predicts the infected 

region without classifying them more specifically. �e 

input of the single SInfNet is a raw CT lung image and 

the output includes the edge contour of the overall lesion 

regions and four overall lesion region segmentations with 

different sizes as shown in Additional file  1: Figure S1. 

A CT lung image is first passed into the initial convolu-

tional layers of the single InfNet to extract image features. 

�en, the features generated from the convolutional layer 

are fed into the partial decoder module, reverse attention 

module, and the edge detection module. �e edge detec-

tion module is meant to help the network with the detec-

tion of the boundaries of the segmentation. �e reverse 

attention and the partial decoder generate the segmenta-

tion of the infection regions of the CT lung images.

�e prediction from the single SInfNet represents the 

overall infected regions and acts as a prior to be fed, con-

catenated with the original CT images, into the multi 

SInfNet. �e multi SInfNet is used to predict multiple 

labeled segmentations. �e segmentations include the 

predicted background, GGO, and consolidation.

Self-supervised InfNet

�e self-supervised InfNet (SSInfNet) is our proposed 

COVID-19 segmentation CNN model, which, like the 

SInfNet, includes two parts, a single SSInfNet (Addi-

tional file  1: Figure S2B) and a multi SSInfNet (Addi-

tional file  1: Figure S3B). It is obtained by integrating 

generative adversarial image inpainting, focal loss, 

and Lookahead optimizer to SInfNet. �e original 

SInfNet model generates 5 different predictions: an 

edge segmentation prediction and the 4 segmenta-

tions of the infected regions. To utilize the ability of a 

self-supervised method for the SInfNet’s segmenta-

tion, we generate masks fed into the SInfNet model. 

�e last convolution layer that outputs the prediction 

is not used for the self-supervised case. However, the 

last convolutional layer is replaced with a different con-

volutional layer to reconstruct the image and the edge 

Fig. 2 Segment visualization and data split. A Examples of raw lung CT images in both Med-seg dataset and ICTCF dataset. Images are all in the 
axial view which looks down through the body. B The overall lesion segment. This is the label for the proposed single self-supervised COVID-19 
network (SSInfNet) model for lung infection segmentation, and it exists only in Med-seg dataset. C The ground-glass opacity segment (red) and 
consolidation segment (green). This is the label for multi SSInfNet and it is also only available for the Med-seg dataset. D The table shows the data 
utilization in the development of the proposed SSInfNet models. As ICTCF does not contain segment labels, it was used only for the self-supervised 
image inpainting in the training stage. The Med-seg image data was split into training, validation, and testing sets, approximately under the ratio of 
6:1:1. After the model was well developed, it was applied to the ICTCF dataset for further statistic mediation analysis because only ICTCF contains 
COVID-19 clinical severity information, which means Med-seg data was not used in the mediation analysis
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appropriately. Everything else is kept the same as the 

SInfNet architecture (Additional file  1: Figure S2A). 

�is process allows the network learns meaningful rep-

resentations of the CT images. We can use these mean-

ingful representations to segment the infected regions 

of CT lung images. After learning the self-supervised 

features for InfNet, the training continues as normal, 

similar to the SInfNet algorithm. �e training starts 

with the weights trained using the self-supervised 

inpainting method. �e last layer is changed to its orig-

inal layer instead of the replaced convolutional layer.

By learning features from image inpainting, the model 

can learn features that are closer related to image seg-

mentation. As creating masks can be a complex task 

for the network to learn to inpaint, the mask can either 

be too complex for the network to start learning or too 

simple to be able to learn good representations. We 

use a coach network that increases the complexity of 

the masking of the CT images throughout the train-

ing of the network. �e mask created is initially simple, 

once the network can predict the inpainting of the CT 

images with good performance, the coach increases the 

complexity of the masking to reduce the performance 

of the network. �e loss for the coach network is con-

structed from the loss of the image inpainting from the 

SSInfNet. �e coach network and the SSInfNet both 

works together as a MinMax algorithm. �e SSInfNet 

tries to minimize the loss to generate better image 

inpainting while the coach network tries to increase the 

loss of the image inpainting through generating more 

complex masks. In the beginning, the masks generated 

by the coach network are quite simple. �rough the 

training of the coach network, as the SSInfNet gets bet-

ter at predicting image inpainting, the coach network 

starts to generate more complex masks. �e loss func-

tion for the coach network is:

where.

• M is the mask created by the coach network

• x is the CT lung image

• Lcoach is the loss for the coach network

• Lrec is the loss for the reconstruction loss

A constraint is applied to this loss function because 

the coach network would just create a mask that masks 

all regions. After all, no context information would be 

present for the network to learn and a maximum loss is 

achieved. �e constraint is:

(1)Lcoach(x) = 1 − Lrec(x ⊙ M)

(2)B̂(x) = B(x) − SORT (B(x))k|B(x)

�e backbone, B, of the coach network has a similar 

network architecture as the InfNet models. SORT(B(x)) 

sorts the features in descending order over the activation 

map. k represents the kth elements in the sorted list and 

k helps to control the fraction of the image to be erased. 

�e regions that have scores smaller than the kth element 

are erased from the images. If k is 0.75, then 0.75 percent 

of the image is not erased. �e score is scaled into a range 

of [0,1] using a sigmoid, σ, activation function. C(x) is the 

coach network that is fed with the CT lung images. �e 

illustration of the coach network can be seen in Fig. 1.

After the self-supervision training is finished, the single 

SSInfNet is reused to train normally, using the segmenta-

tion of the CT lung images. Likewise, the multi SSInfNet 

network reuses the weights that are trained during the 

self-supervised multi SSInfNet to train normally, using 

the multi segmentations of the CT lung images.

�e proposed single SSInfNet architecture can be 

seen in Fig.  1 and Additional file  1: Figure S2B. Addi-

tional file 1: Figure S2A shows the original single SInfNet 

architecture. �e difference is that the last layer for each 

output prediction is replaced with a different linear acti-

vation layer. �e linear activation layer recreates the orig-

inal image that is covered by the masks. �e proposed 

multi SSInfNet architecture is shown in Fig. 1 and Addi-

tional file 1: Figure S3B. �e changes in the architecture 

for the multi SSInfNet are similar to the single SSInfNet 

where the last convolutional layer is replaced with a dif-

ferent linear activation layer to output the inpainting of 

the original image.

A loss is calculated for each of the outputs of the sin-

gle SInfNet model. �e first loss function is the edge 

loss, Ledge, which guides the model in representing better 

segmentation boundaries. �e other loss function is the 

segmentation loss, Lseg. �e segmentation loss combines 

both the loss of Intersection over Union (IoU) and the 

binary cross entropy loss (LBCE). �e segmentation loss 

equation for the single SInfNet is as follow:

λ is a hyperparameter that controls how much weight 

we want to put on the binary cross entropy loss. �e seg-

mentation loss is adapted to all Si predicted output where 

Si are created from fi such that i = 3, 4, 5. As low-level 

features use more computational resources due to larger 

spatial resolutions but achieves lesser performance. We 

use the features in the higher level (i = 3, 4, 5) instead. 

�e total loss function for the single SInfNet model is 

then:

(3)M = C(x) = σ(αB̂(x))

(4)Lseg = LIoU + �LBCE
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�e summation of the segmentation loss functions 

is calculated from the output of the parallel partial 

decoder and the three convolutional layers (i = 3, 4, 

5)). Gt refers to the ground truth labels. Sg is the out-

put from the parallel partial decoder to match with the 

ground truth label. Si is the different sizes of the seg-

mentation of infected regions output by the InfNet. �e 

different sizes of the segmentation of infected regions 

outputted by the SSInfNet are resized to the same 

shape as the ground truth segmentation image.

As for the multi SSInfNet, we use the default model 

and hyperparameters from the multi SInfNet. However, 

we train the multi SSInfNet without using any unla-

beled images during self-supervision because the multi 

SSInfNet requires the prior (infected region) as input. 

�e CT lung images and prior (infected region) for the 

CT lung images are concatenated together before being 

fed into the multi SSInfNet. �e prior is generated from 

the single SInfNet. �e multi SSInfNet labels the prior 

with background, ground-glass opacities, and consoli-

dations. �e loss function for the multi SSInfNet is as 

follow:

Where,

• yi is the ground truth value for the segmentation—

background, ground-glass opacities, or consolidation

• ŷi is the network’s predicted value for the segmenta-

tion

• N is the total number of the current training batch of 

data samples

�e loss function for the multi SInfNet uses the binary 

cross-entropy loss between the predicted and the ground 

truth segmentation. In order to improve the performance 

of the model and to aid in its generalization, we chose to 

use self-supervised learning to learn good representa-

tions of the CT lung images.

Additionally, we use the focal loss instead of the binary 

cross-entropy loss function for the Multi SSInfNet model 

to provide more weight on the smaller data label samples 

(consolidation). �e focal loss function is:

where.

(5)Ltotal = Lseg (Gt , Sg ) + Ledge +

5∑

i=3

Lseg (Gt , Si)

(6)Lbce =
1

N

N∑

i=1

yi · log(ŷi) + (1 − yi) · log(1 − ŷi)

(7)FL(pt) = −αt(1 − pt)
γ log(pt)

• FL is the focal loss

• pt is the Multi SSInfNet’s predicted output

• αt is a hyperparameter that controls the weight of 

positive and negative samples

• γ is the term that controls the rate of the down-

weighed examples

We also wrap the Lookahead optimizer around the 

SGD optimizer with k = 5 and alpha = 0.5. k is the num-

ber of inner-loops the SGD will optimize before the 

Lookahead optimizer starts optimizing. In our case, after 

the SGD optimizes the network weights for 5 iterations, 

the Lookahead optimizer will optimize using alpha mul-

tiplied by the difference between the network weights 

after the 5 iterations of SGD optimizer and the network 

weights before the 5 iterations of the SGD optimizer. �e 

alpha is used to control the intensity of the difference. 

�e pseudo code for our single/multi SSInfNet can be 

found in Additional file 1: Algorithm 1.

Experimental settings

For the Single SInfNet, we train the network for 500 

epochs. We use Adam as the optimizer with a learn-

ing rate of 0.0001. For the Multi SInfNet, we train the 

network for 500 epochs. We use SGD as the optimizer. 

�e momentum is set as 0.7 and the learning rate is 

set as 0.01. As for the Multi SSInfNet with added focal 

loss and lookahead optimizer, we train the network for 

500 epochs, use lookahead optimizer with k = 5 and 

alpha = 0.5, and wrap the Lookahead optimizer around 

the SGD optimizer where the momentum is set as 0.7 

and the learning rate is set as 0.01.

For the self-supervised version of both the Single 

SInfNet and Multi SInfNet, the self-supervised image 

inpainting is first trained. �en the weights from the 

trained networks, except for the last layer, are transferred 

and be used to train on the segmentation of the CT lung 

images. During the self-supervised image inpainting 

stage, we train the network for 2000 epochs. �e network 

is trained for the first 200 epochs before we train the 

coach network for 200 epochs which increases the com-

plexity of the masks generated. After that, we alternate 

in between training the self-supervised image inpainting 

for 100 epochs and the coach network for 100 epochs for 

1800 epochs in total. For every alternating between the 

training of the self- supervised image inpainting and the 

coach network, we set the learning rate to 0.1 at the start 

of the epoch, 0.01 at the 40th epoch, 0.001 at the 80th 

epoch, and 0.0001 at the 90th epoch to speed up conver-

gence. We use SGD as the optimizer for the self-super-

vised image inpainting, set the momentum to 0.9 and 

the weight decay to 0.0005. As for the optimizer for the 
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coach network, we use the Adam optimizer with a learn-

ing rate of 0.00001.

We compare our self-supervised method against some 

supervised models trained on the COVID-19 data-

sets. We train and follow the same network structure, 

but change from supervised learning to self-supervised 

learning, and compare the performance between the 

supervised and the self-supervised approaches. We want 

to determine if self-supervised learning is a useful way to 

help the SInfNet improve its performance in segmenting 

the ground-glass opacities or consolidation around the 

infected region of the CT lung images.

Performance evaluation metrics

Five metrics are used to measure the models’ perfor-

mance: F1, intersection over union (IoU), Recall, and Pre-

cision and the area under the curve (AUC) of a receiver 

operating characteristic (ROC):

�e F1-Score is also called the Dice Coefficient. It is 

used to measure the overlap between the ground-truth 

infected region and the predicted infected region. �e 

F1-Score equation is defined as:

where T is the ground truth infected region and P is the 

predicted infected region.

�e Intersection over Union (IoU) is a different 

method to measure the overlap between the ground truth 

infected region and the predicted infected region. �e 

IoU equation is defined as:

where T is the ground truth infected region and P is the 

predicted infected region.

�e Recall is used to measure how much of the ground 

truth infected region is present in the predicted infected 

region. �e equation is as follow:

where T is the ground truth infected region and P is the 

predicted infected region.

�e Precision is used to measure how much of the 

predicted infected region is present in the ground truth 

infected region. �e equation is as follow:

(8)F1 =
2 ∗ |T ∩ P|

|T | + |P|

(9)IoU =
T ∩ P

T ∪ P

(10)Recall =
T ∩ P

T

(11)Pr ecision =
T ∩ P

P

where T is the ground truth infected region and P is the 

predicted infected region.

For each of above performance metrics, we first per-

form the calculation within each test sample, separately. 

We compute the mean and the error interval of the esti-

mated mean for each of the metrics in the entire test set. 

�e mean is defined as:

where Metric refers to F1, IoU, Recall, Precision or AUC. 

N refers to the number of test samples. �e error is 

defined as:

where SE is the standard error of the test samples for the 

given metric. �e error interval of the estimated mean is 

defined as − error and + error.

Generation of image phenotypes

�e well-trained multi SSInfNet outputs three kinds of 

image-level segments: the overall lesion segments, the 

GGO segments, and the consolidation segments. �ese 

image-level segments act as masks in the Python radi-

omic package PyRadiomics [41] for extracting image 

phenotypes, separately. �ree runs of phenotype extrac-

tion are executed with the inputs of overall lesion seg-

ments plus the original images, the GGO segments plus 

the original images, and the consolidation segments plus 

the original images, respectively. We select first order 

measurements, such as Gray Level Co-occurrence Matrix 

(GLCM) measurement, Gray Level Dependence Matrix 

(GLDM) measurement, and Neighboring Gray Tone Dif-

ference Matrix (NGTDM) measurement, as our image 

phenotypes. �e definition and formulas of these image 

phenotypes can be found in Additional file  1: Table  S1. 

After the segments-based image-level phenotypes are 

generated, we take the average of them to make the image 

phenotypes at patient-level.

Mediation analysis

Univariate mediation analyses are performed to deter-

mine the potential causal mechanism in which age, gen-

der, or underlying diseases is associated with COVID-19 

severity through an intermediate image phenotype. 

Let y be the dependent variable which is the binarized 

COVID-19 severity. In the original ICTCF dataset, sever-

ity is measured with 9 levels: Control (Healthy), Control, 

Control (Community-acquired pneumonia), Suspected, 

Suspected (COVID-19-confirmed later), Mild, Regu-

lar, Severe, and Critically ill. We code these 9 levels of 

the severity into 2 levels by grouping Control (Healthy), 

(12)mean =

∑N
i=1Metric(ŷi, yi)

N

(13)error = SE × 1.96
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Control, Control (Community-acquired pneumonia), 

Suspected into one group (coded as 0) and Suspected 

(COVID-19-confirmed later), Mild, Regular, Severe, and 

Critically ill into another group (coded as 1). Let m be a 

mediator (patient-level image phenotype), x be an inde-

pendent variable (age, gender, or underlying diseases). 

Hence, we can fit the below regression models [12]:

Here, β and ǫ are the parameters of the models to be 

estimated and tested. βs are the coefficients of variables, 

while ǫ are the residuals. If the abovementioned three 

regressions are significant (adjusted p-value < 0.05) and 
|β11| > |β31| , we say that x is associated with y, mediated 

through m, which provides a potential mechanism expla-

nation of how x has influence on y through m. �e indi-

rect effect of x on y through m is defined as β21 × β32.

For multiple mediation analysis, we first perform a 

pair-wise correlation analysis of the significant mediators 

from the univariate mediation analysis using the R pack-

age, corrplot [42], to control the potential confounding 

influence on the multiple mediation analysis. �e media-

tor pairs that have absolute correlation coefficient greater 

than 0.8 are first identified. �en, one phenotype within 

each of these correlated pairs is removed. �e filtering 

criteria include both less indirect effect or less commonly 

used in medical research. �e remaining mediators with 

the two independent variables (age and the underlying 

diseases) are input into a multiple mediation model for 

further identifying the indirect effect when controlling 

for each other using R package lavaan [43. Lavaan is a tool 

for structure equation modeling (SEM) which is a very 

general and powerful multivariate technique. SEM uses 

conceptual model, path diagram and linked regression-

style equations to model complex relationships among a 

network of variables. �us, it allows multiple independ-

ent variables and mediators, even multiple dependent 

variables in the model [43–45]. We build our equation 

system as below for our special case (two independent 

(14)

y = β10 + β11x+ ∈1

m = β20 + β21x+ ∈2

y = β30 + β31x + β32m+ ∈3

variables, one dependent variable, and several mediators 

linked to different independent variables.):

where x1 is the age, x2 is the underlying disease. Mc is the 

significant mediators for both age and underlying disease. 

Ma represents the significant mediators for age, while Mu 

refers to the significant mediators for underlying dis-

eases. �e θs are the coefficients which are estimated and 

tested when the model is fit. ε are the residuals.

Sensitivity analyses

A series of sensitivity analyses are performed to further 

support our conclusions. �ese analyses include: a three-

fold cross validations performed using both single SSIn-

fNet and multi SSInfNet to ensure that the performance 

is consistent, a comparison with transfer learning- based 

FCN8 segmentation network [46], further experiments 

on other independent datasets [47] to show the gener-

alization ability of our models, ablation studies to explore 

which techniques (generative adversarial image inpaint-

ing, focal loss, and lookahead optimizer) we use in the 

multi SSInfNet model contribute to the improved per-

formance, and a computation cost analysis to show the 

difference between the different models’ computation 

efficiency. �e details of these analyses could be found in 

Additional file 1: Sensitivity Analysis.

Results
Single SSInfNet

�e segmentation performance of the proposed single 

SSInfNet and the two baseline models (single U-net and 

single SInfNet) can be found in Fig.  3A and B. In this 

stage, the models do not segment either GGO or consoli-

dation. �ey segment and represent the entire infected 

region as one overall lesion. U-Net [48] and supervised 

(15)

y = θ00 + θ01x1 + θ02x2 + ε0

Mc = θc0 + θc1x1 + θc2x2 + εc

Ma = θa0 + θa1x1 + εa

Mu = θu0 + θu2x2 + εu

y = θ(n+1)0 + θ(n+1)1x1 + θ(n+1)2x2 + θ(n+1)3

M1 + . . . + θ(n+1)(n+2)Mn + εn+1

Fig. 3 Visual comparison and quantitative comparison of segmentation results among different networks. A Four examples of the original lung 
CT images, their overall segments predicted by three different networks and the ground truth overall lesion annotation. The two baseline models 
are the single U-net and the single SInfNet (supervised COVID-19 lung infection segmentation) model. The proposed model is the single SSInfNet 
(self-supervised COVID-19 lung infection segmentation) model. B The mean and error of five quantitative model performance metrices calculated 
from the 35 test samples. C Three examples of the original lung CT images, their GGO and consolidation segments predicted by three different 
networks and the ground truth lesion annotations. The two baseline models are the multi U-net and the multi SInfNet models. The proposed model 
is the multi SSInfNet model. D The mean and error of five model performance metrics calculated from the 35 test samples. The Overall showed the 
averaged performance for GGO, consolidation, and background

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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InfNet [22 (SInfNet) were selected as baseline models for 

comparing performance with our proposed SSInfNet. 

U-Net is a classical CNN and is often used as baseline or 

backbone of segmentation networks [49–53], while the 

SInfNet is our backbone model and was developed to 

solve the same COVID-19 segmentation problem. Five 

classical metrices (F1, IoU, Recall, Precision and AUC of 

the receiver operating characteristic) were used to quan-

titatively measure the networks’ performances. As the 

prediction is at the pixel level, we calculated the perfor-

mance metrices at the sample level instead of the entire 

test set. �erefore, the mean and error for each of these 

performance metrices in the entire test set were shown 

in Fig.  3B. Observed from Fig.  3B, the proposed single 

SSInfNet and the baseline single SInfNet achieved com-

parable performances. �e overall AUC and error based 

on the single SSInfNet is comparable to that of the single 

SInfNet (Additional file 1: Figures S3B, S4; Table S2), and 

both models outperform the baseline single U-net (Addi-

tional file 1: Figure S4) in terms of the overall AUC.

Even though the baseline single SInfNet has better 

mean values for F1, IoU, and Recall, the self-supervised 

approach helps create robustness and consistency in the 

model to better handle outliers. �is can be observed by 

the fact that in Fig. 3A, the baseline single SInfNet over-

estimated the overall infected region of an outlier image 

(the last row) while the single SSInfNet did a better job 

at predicting outliers, where its prediction is more closely 

related to the ground truth than that of the baseline sin-

gle SInfNet.

Even though the baseline single SInfNet has better 

mean values for F1, IoU, and Recall, the self-supervised 

InfNet approach helps handle some outliers in a better 

way. �is can be observed by the fact that in Fig. 3A, the 

baseline single SInfNet overestimated the overall infected 

region of an outlier image (the last row) while the single 

SSInfNet did a better job at predicting outliers, where 

its prediction is more closely related to the ground truth 

than that of the baseline single SInfNet.

Multi SSInfNet

Figure 3C and D show the multi SSInfNet performance. 

�is is the second stage of solving the proposed multi 

segmentation problem. In this stage, the network breaks 

down the previous overall segments predicted by the sin-

gle SSInfNet into two parts, the GGO and the consolida-

tion. �e overall segments from the single SSInfNet act 

as a prior and is fed, along with the CT lung images, into 

the multi SSInfNet. �e output is a pixel level 3-chan-

nel matrix with each cell in one channel annotating the 

probability of being GGO, another channel annotating 

the probability of being consolidation, and the last chan-

nel annotating probability of being background. Again, 

the multi U-net and multi SInfNet were used as baseline 

models for comparison. �e proposed multi SSInfNet 

was able to achieve better performance than the baseline 

multi U-net and multi SInfNet. As visualized in Fig. 3C, 

the multi SSInfNet achieved better performance in eval-

uating the GGO and the consolidation areas of the CT 

lung images than the multi SInfNet and the multi U-net, 

in terms of predicting the visible most similar segments 

to the ground truth. However, as Fig. 3D shows, the base-

line multi SInfNet achieved a better recall than the rest of 

the networks. But, as we can see in Fig. 3C, multi SInfNet 

predicted more consolidation segments, even in areas 

that were not infected. On the third row of Fig. 3C, the 

multi SInfNet overestimated the consolidation region in 

a CT lung image from a healthy individual. Since recall is 

the true positives over the total actual consolidation area, 

the multi SInfNet seems to overestimate the consolida-

tion area which results in a higher recall than the other 

networks. �is explains well why the precision for the 

SInfNet is lower, as most of its prediction of the consoli-

dation area is not accurate. Hence, this decreases the per-

formance of the multi SInfNet while the proposed multi 

SSInfNet handled this problem very well.

Mediation analysis

A total of 204 averaged image phenotypes for 1338 

patients were created from the output of the proposed 

multi SSInfNet using Python’s radiomic package PyRa-

diomics [41]. �e PyRadiomic algorithm needs a mask 

and the original image as input, and it outputs a list of 

continuous measures as image phenotypes. According 

to different measure approach, these image phenotypes 

can be categorized into first order features, Gray Level 

Co-occurrence Matrix (GLCM) features, Gray Level 

Dependence Matrix (GLDM) features, Neighboring Gray 

Tone Difference Matrix (NGTDM) features and so on. 

�ree kinds of image segments (GGO, consolidation, and 

overall lesion) were separately input into the PyRadiomic 

algorithm as the mask of the original image. Each mask 

contributed 68 image phenotypes in four of the above 

defined phenotype categories, as listed in Additional 

file 1: Table S1.

R’s package, lavaan, was used to conduct the univariate 

mediation analysis for each combination of a given inde-

pendent variable, dependent variable, and image pheno-

type. �e independent variables include age (continuous), 

gender (binary), and the number of underlying diseases 

(continuous). �e dependent variable is the binarized 

COVID-19 severity. All consolidation-based image phe-

notypes were not significant (adjusted p-value > 0.05) 

in the univariate mediation analysis. �erefore, the 

results of the consolidation- and overall lesion (con-

solidation + GGO)- based image phenotype analyses 
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are not reported here. Among all 68 GGO- based image 

phenotypes, 37 of them have significant (adjusted 

p-value < 0.05) mediation effects on COVID-19 sever-

ity. �irty-two of these 37 mediators were mediating the 

indirect effect of underlying disease on COVID-19 sever-

ity, while 27 of these 37 mediators were mediating the 

indirect effect of age on COVID-19 severity. �e results, 

including the categories and names of the image pheno-

types, the adjusted p-value of the indirect effects and the 

estimated coefficients for these image phenotypes, can be 

found in Fig. 4A (for age variable) and Fig. 4B (for under-

lying disease variable), respectively.

�e correlations among these mediators were calcu-

lated based on their patient-level averaged feature val-

ues, and the results are demonstrated in Fig. 5. Mediators 

with high absolute correlation coefficients are more line-

arly dependent and hence have similar effect on COVID-

19 severity. So, the correlation between each pair of the 

image phenotypes was compared and one of the two 

phenotypes was removed if their absolute correlation 

coefficient was greater than 0.8. It was suggested by the 

PyRadiomics that some features are the confounding of 

the segment area [41. �us, only the area variable was 

kept among those phenotypes. Since the entropy meas-

ures the uniformity and is more widely incorporated in 

medical image phenotype related researches [54], the 

entropy phenotype was kept while the uniformity phe-

notype was removed. �e MCC (Maximal Correlation 

Coefficient) and IMC1 (Informational Measure of Cor-

relation) measures the complexity of the texture. We 

decided to keep IMC1 because it has been widely used 

and reported in lung cancer studies [55, 56]. After the 

correlation filtering, 3 mediators (Entropy, Kurtosis, and 

Skewness) were left for the underlying disease variable 

and 5 mediators (Mean, Area, Entropy, Kurtosis, and 

IMC1) were left for the age variable. �e remaining 3 and 

5 mediators were input into the mediation analysis mod-

els with multiple mediators. �e results can be found in 

the path plot (Fig. 6).

Sensitivity analyses

From the results of the three-fold cross-validation (Addi-

tional file 1: Table S2), we can see that the baseline single 

SInfNet performs the best for most of the performance 

metrics. Self-supervised SSInfNet does not show an 

improvement in the single segmentation for the CT lung 

images. However, as shown in Additional file 1: Table S3, 

the multi SSInfNet shows a better performance than both 

the multi U-Net and the multi SInfNet in the three-fold 

cross-validation, suggesting that the multi SSInfNet can 

generalise well in segmenting GGO and consolidation 

regions of the CT lung images. �ese three-fold cross-

validation based results are consistent with those shown 

in Fig. 3B (single InfNet) and 3D (multi InfNet) based on 

the training, test, and validation strategy used to develop 

the models.

As shown in the Additional file  1: Table  S4, the pro-

posed new method, multi SSInfNet, achieves the best 

performance among the multi FCN8 (with pre-trained 

weights), mullti U-Net, and the baseline multi SInfNet 

models. Further experiments on other independent data-

sets were applied to evaluate the generalization ability 

of our models (Additional file  1: Tables S5, S6). For the 

independent data set 2 (see Additional file 1: Additional 

data sets), due to the nature of the very small dataset on 

which we tested the methods, the dataset did not repli-

cate a good generalisation behaviour from the methods 

that were trained on (Additional file 1: Table S5A (Single 

InfNet) and S5B (Multi InfNet)). However, for a relatively 

larger independent data set 3 (see Additional file 1: Addi-

tional data sets), we can see that its results (Additional 

file 1: Table S6B) are consistent with our current dataset 

where our multi SSInfNet shows a better performance in 

segmenting the CT lung images (Fig. 3D) than the base-

line multi SInfNet (Fig. 3B). �e results that we obtained 

from the baseline SInfNet and the SSInfNet can be found 

in Additional file 1: Table S6A.

�e results of the ablation studies can be found in 

Additional file 1: Table S7. We can see that all the addi-

tional techniques added on the baseline SInfNet have 

improved performance on the segmentation of the CT 

lung images. �ey compensate with each other and then 

achieve a higher performance.

�e computational cost analysis of different models is 

shown in the Additional file 1: Table S8. Overall, the time 

taken to process 1 image for baseline multi SInfNet is 

1.06 times longer than the time taken to process 1 image 

for multi SSInfNet. �e multi FCN8 has the best com-

putation efficiency with 0.74 times shorter time than the 

time taken by the baseline multi SInfNet.

Discussion
Lung CT imaging was proposed as a backup diagnosis 

and monitoring tool for COVID-19 in emergency break-

outs when PCR kits are not available [57, 58]. Others also 

suggested that PCR testing and lung CT imaging should 

be used together for routine COVID-19 diagnosis and 

prognosis to enhance the clinical protocol of COVID-

19 [58, 59]. Some radiologists suggested to avoid using 

confirmative statement about COVID-19 identification 

from lung CT imaging because CT may not be able to 

distinguish among different viruses [60], but a recent 

study showed that 7 radiologists successfully identified 

COVID-19 distinguished from other viral infections 

with 93–100% specificity based on lung CT imaging fea-

tures [61]. In many studies, lung CT imaging showed 
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comparable sensitivity with PCR in diagnosis of COVID-

19. �e sensitivity of PCR ranges from 42 to 71% [57, 60, 

62], while the reported sensitivity of lung CT imaging-

based diagnosis for COVID-19 varies from 60 to 90% 

[57, 60, 62–64]. �ere are also some concerns about the 

cost of lung CT imaging as the PCR test is much cheaper 

than lung CT scan [65]. Although the cost of healthcare 

services is complex, the major cost of a medical imaging-

based test is spent on using radiologists for image reading 

[66]. Hence, it is a promising area to introduce AI into 

Fig. 4 Significant image phenotypes in the univariate mediation analyses. A Forest plot showing the 32 mediators of age’s indirect effect on 
COVID-19 risk. B Forest plot showing the 27 mediators of underlying disease’s indirect effect on COVID-19 risk
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lung CT imaging-based diagnosis to assist radiologists. 

Furthermore, it is possible to increase the sensitivity 

and specificity of PCR alone or human involved lung CT 

imaging COVID-19 diagnosis.

When introducing AI into healthcare, the accuracy of 

the model is not the whole picture. �e interpretability 

and transparency of the model should always be kept 

in mind. Lung CT image segmentation, in its very core 

spirit, is to split human understandable regions from the 

less informative background regions to assist people’s 

decision-making. �erefore, lung CT image segmenta-

tion model makes more clinical sense than a binary clas-

sifier which takes the raw lung CT image as input and 

gives a simple yes or no answer especially. �e compu-

tationally segmented lung regions could be further ana-

lyzed for biological explanations and diagnostic values.

InfNet is able to achieve a competent performance 

on segmentation of infected region for CT lung images. 

�e authors of the InfNet further extended the network 

by introducing semi-supervised learning to InfNet. �ey 

generated pseudo labels and utilized the pseudo labels 

to train their model using a two-step strategy. However, 

their method of semi-supervised by generating pseudo-

labels when used in the dataset that we used takes a few 

months to finish generating the pseudo-labels. �is is 

not feasible in real world applications. Hence, here we 

Fig. 5 Hierarchical clustering of the ordered correlation matrix of the 37 image phenotypic mediators from the univariate mediation analysis. The 
color represents the correlation coefficient
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propose to use a self-supervised learning strategy. �e 

self-supervised method creates a huge speed up improve-

ment when compared to their method of semi-super-

vised learning.

To increase the model performance, self-supervised 

image inpainting was used in this study for model pre-

training, focal loss was used to replace the traditional 

cross entropy loss, Lookahead optimizer was used along 

with SGD to manage the training iteration. �e integra-

tion of these advanced techniques achieved the best 

model performance, as compared to other baseline 

models. �e proposed Multi SSInfNet model is better at 

dealing with outliers and makes fewer false positive in 

predicting the minority class, which, for COVID-19, is 

the consolidation lesion.

To enhance the interpretation of the proposed Multi 

SSInfNet model, we further extracted the lung imaging 

phenotypes from the output of the model and applied 

statistical mediation analysis to explore the potential 

causal association of the patients’ age, gender, and under-

lying diseases with COVID-19 severity through the 

identified lung CT imaging mediators. We showed that 

8 image phenotypes from the predicted GGO segments 

were significantly correlated with COVID-19 severity and 

the age or underlying disease(s) of a patient with COVID-

19. �e entropy and kurtosis of the computational GGO 

segments have a positive mediation effect on both under-

lying diseases caused COVID-19 severity and age caused 

COVID-19 severity. Entropy represents the uncertainty 

of the pixel values within the GGO segment. A higher 

entropy indicates a more chaotic GGO segment [41]. 

Kurtosis measures the peakedness of the GGO pixel value 

distribution. A higher kurtosis implies that the GGO 

pixel values are concentrated towards the tails rather 

than towards the mean [41]. �is means that elders or 

people with sever underlying diseases will probably have 

more chaotic and peakier distributed GGO segments, 

and thus will suffer from severer COVID-19. In addi-

tion to these two lung image phenotypes, the area and 

IMC1 of the computational GGO segments have a posi-

tive mediation effect on age caused COVID-19 severity, 

which suggests that elders often have bigger GGO lesions 

and more correlate distributed probability of the pixel 

values [41] within the GGO regions. Skewness of com-

putational GGO segments also has a positive mediation 

effect on underlying diseases caused COVID-19 sever-

ity, which suggests that underlying diseases could cause 

asymmetrically distributed pixel values within GGO 

regions, thus leading to severer COVID-19. Interestingly, 

these lung image phenotypes have also been reported as 

potential image biomarkers for lung adenocarcinoma [67, 

Fig. 6 Path plot of the mediation analysis model with multiple mediators. The standardized effect estimates of each variable are shown on 
the edges of the paths. The mediators are Entropy, Kurtosis, Skewness, Mean, Area, and IMC1. Dependent variable is the COVID-19 severity, and 
independent variables are the Underlying disease and Age. Curves with arrowheads on both sides is the standardized residual variance. Solid curve 
is for dependent variable and mediators. Dash line curve is for independent variables. Straight dash line represents the standardized covariance of 
two independent variables. Straight solid line with arrowhead on one side is the standardized effect estimate
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non-small cell lung cancer [68], pulmonary interstitial 

pneumonia [69], and so on [70, 71].

One limitation of this study is that we do not have the 

resource to recruit radiologists into our experiment. We 

also do not have failure and success information of the 

PCR test and lung CT image test for the same patients. 

�ese could be future directions for institutes that are 

able to get these resources.

Conclusion
In conclusion, our work carefully considers several 

aspects of AI-based COVID-19 imaging diagnosis and 

prognosis, in terms of the model performance, model 

interpretability, and biological mechanism of the com-

putational segmental image phenotypes associated 

with COVID-19. A series of sensitivity analyses have 

shown the robustness and generalizability of our pro-

posed method. �e clinical explanation of the computa-

tional GGO segment is also well addressed. Eight GGO 

segment-based image features have been identified as 

potential image biomarkers for COVID-19 severity. 

Comparing with previous works, our model shows better 

performance and is well interpreted both clinically and 

statistically.
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tion) COVID-19 dataset. Prior was obtained from the single segmentation 

InfNet. Table S5. Model performance on independent COVID-19 CT 
Dataset set 2. Table S6. Model performance on the independent COVID-
19 CT Data set 3. Table S7. Results of ablation studies. The performance of 
the ablation of our proposed multi-SSInfNet. Multi-SSInfNet refers to the 
self-supervised SInfNet with Focal Loss and Lookahead optimizer. We tried 
a variety of the model with a subtraction of the different technologies to 
carry out the ablation. Table S8. Computational costs of processing one 
image
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