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Abstract

Efficient exploration is a long-standing problem

in sensorimotor learning. Major advances have

been demonstrated in noise-free, non-stochastic

domains such as video games and simulation.

However, most of these formulations either get

stuck in environments with stochastic dynamics

or are too inefficient to be scalable to real robotics

setups. In this paper, we propose a formulation for

exploration inspired by the work in active learn-

ing literature. Specifically, we train an ensem-

ble of dynamics models and incentivize the agent

to explore such that the disagreement of those

ensembles is maximized. This allows the agent

to learn skills by exploring in a self-supervised

manner without any external reward. Notably,

we further leverage the disagreement objective

to optimize the agent’s policy in a differentiable

manner, without using reinforcement learning,

which results in a sample-efficient exploration.

We demonstrate the efficacy of this formulation

across a variety of benchmark environments in-

cluding stochastic-Atari, Mujoco and Unity. Fi-

nally, we implement our differentiable exploration

on a real robot which learns to interact with ob-

jects completely from scratch. Project videos and

code are at https://pathak22.github.

io/exploration-by-disagreement/.

1. Introduction

Exploration is a major bottleneck in both model-free and

model-based approaches to sensorimotor learning. In model-

based learning, exploration is a critical component in col-

lecting diverse data for training the model in the first place.

On the other hand, exploration is indispensable in model-

free reinforcement learning (RL) when rewards extrinsic
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to the agent are sparse. The common approach to explo-

ration has been to generate “intrinsic” rewards, i.e., rewards

automatically computed based on the agents model of the

environment. Existing formulations of intrinsic rewards in-

clude maximizing “visitation count” (Bellemare et al., 2016;

Lopes et al., 2012; Poupart et al., 2006) of less-frequently

visited states, “curiosity” (Oudeyer & Kaplan, 2009; Pathak

et al., 2017; Schmidhuber, 1991a) where prediction error is

used as reward signal and “diversity rewards” (Eysenbach

et al., 2018; Lehman & Stanley, 2011a;b) which incentivize

diversity in the visited states. These rewards provide con-

tinuous feedback to the agent when extrinsic rewards are

sparse, or even absent altogether.

Generating intrinsic rewards requires building some form

of a predictive model of the world. However, there is a key

challenge in learning predictive models beyond noise-free

simulated environments: how should the stochastic nature

of agent-environment interaction be handled? Stochasticity

could be caused by several sources: (1) noisy environment

observations (e.g, TV playing noise), (2) noise in the execu-

tion of agent’s action (e.g., slipping) (3) stochasticity as an

output of the agent’s action (e.g., agent flipping coin). One

straightforward solution to learn a predictive forward model

that is itself stochastic! Despite several methods to build

stochastic models in low-dimensional state space (Chua

et al., 2018; Houthooft et al., 2016), scaling it to high di-

mensional inputs (e.g., images) still remains challenging.

An alternative is to build deterministic models but encode

the input in a feature space that is invariant to stochastic-

ity. Recent work proposed building such models in inverse

model feature space (Pathak et al., 2017) which can handle

stochastic observations but fail when the agent itself is the

source of noise (e.g. TV with remote (Burda et al., 2019)).

Beyond handling stochasticity, a bigger issue in the current

intrinsic reward formulations is that of sample efficiency.

The agent performs an action and then computes the reward

based on its own prediction and environment behavior. For

instance, in curiosity (Oudeyer & Kaplan, 2009; Pathak

et al., 2017), the policy is rewarded if the prediction model

and the observed environment disagree. From an explo-

ration viewpoint, this seems like a good formulation, i.e,

rewarding actions whose effects are poorly modeled. But

this reward is a function of environment dynamics with

respect to the performed action. Since the environment

https://pathak22.github.io/exploration-by-disagreement/
https://pathak22.github.io/exploration-by-disagreement/
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Figure 1. Self-Supervised Exploration via Disagreement: At time step t, the agent in the state xt interacts with the environment by

taking action at sampled from the current policy π and ends up in the state xt+1. The ensemble of forward models {f1, f2, ..., fn} takes

this current state xt and the executed action at as input to predict the next state estimates {x̂1
t+1, x̂

2
t+2, ..., x̂

n

t+1}. The variance over the

ensemble of network output is used as intrinsic reward rit to train the policy π. In practice, we encode the state x into an embedding space

φ(x) for all the prediction purposes.

dynamics is unknown, it is treated as black-box and the

policy’s gradients have to be estimated using high-variance

estimators like REINFORCE (Williams, 1992) which are

extremely sample-inefficient in practice.

We address both the challenges by proposing an alternative

formulation for exploration taking inspiration from active

learning. The goal of active learning is to selectively pick

samples to label such that the classifier is maximally im-

proved. However, unlike current intrinsic motivation for-

mulations where an agent is rewarded by comparing the

prediction to the ground-truth, the importance of a sample

is not computed by looking at the ground-truth label but

rather by looking at the state of the classifier itself. For

instance, a popular approach is to label the most uncer-

tain samples by looking at the confidence of the classifier.

However, since most of the high-capacity deep neural net-

works tend to overfit, confidence is not a good measure of

uncertainty. Hence, taking an analogy from the Query-by-

Committee algorithm (Seung et al., 1992), we propose a

simple disagreement-based approach: we train an ensem-

ble of forward dynamics models and incentivize the agent

to explore the action space where there is maximum dis-

agreement or variance among the predictions of models

of this ensemble. Taking actions to maximize the model-

disagreement allows the agent to explore in a completely

self-supervised manner without relying on any external re-

wards. We show that this approach does not get stuck in

stochastic-dynamics scenarios because all the models in

the ensemble converge to mean, eventually reducing the

variance of the ensemble.

Furthermore, we show that our new objective is a differen-

tiable function allowing us to perform policy optimization

via direct likelihood maximization – much like supervised

learning instead of reinforcement learning. This leads to a

sample efficient exploration policy allowing us to deploy

it in a real robotic object manipulation setup with 7-DOF

Sawyer arm. We demonstrate the efficacy of our approach

on a variety of standard environments including stochas-

tic Atari games (Machado et al., 2017), MNIST, Mujoco,

Unity (Juliani et al., 2018) and a real robot.

2. Exploration by Disagreement

Consider an agent interacting with the environment E . At

time t, it receives the observation xt and then takes an action

predicted by its policy, i.e., at ∼ π(xt; θP ). Upon executing

the action, it receives, in return, the next observation xt+1

which is ‘generated’ by the environment. Our goal is to

build an agent that chooses its action in order to maximally

explore the state space of the environment in an efficient

manner. There are two main components to our agent: an

intrinsic forward prediction model that captures the agent’s

current knowledge of the states explored so far, and policy

to output actions. As our agent explores the environment,

we learn the agent’s forward prediction model to predict the

consequences of its own actions. The prediction uncertainty

of this model is used to incentivize the policy to visit states

with maximum uncertainty.

Both measuring and maximizing model uncertainty are chal-

lenging to execute with high dimensional raw sensory input

(e.g. images). More importantly, the agent should learn

to deal with ‘stochasticity’ in its interaction with the en-

vironment caused by either noisy actuation of the agent’s

motors, or the observations could be inherently stochastic.

A deterministic prediction model will always end up with a

non-zero prediction error allowing the agent to get stuck in

the local minima of exploration.

Similar behavior would occur if the task at hand is too dif-
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ficult to learn. Consider a robotic arm manipulating a key-

bunch and observing its outcome. Predicting the change in

pose and position of each key in the keybunch is extremely

difficult. Although the behavior is not inherently stochastic,

our agent could easily get stuck in playing with the same

keybunch and not try other actions or even other objects.

Existing formulations of curiosity reward or novelty-seeking

count-based methods would also suffer in such scenarios.

Learning probabilistic predictive models to measure uncer-

tainty (Houthooft et al., 2016), or measuring learnability by

capturing the change in prediction error (Oudeyer & Kaplan,

2009; Schmidhuber, 1991a) have been proposed as solu-

tions, but have been demonstrated in low-dimensional state

space inputs and are difficult to scale to high dimensional

image inputs.

2.1. Disagreement as Intrinsic Reward

Instead of learning a single dynamics model, we propose

an alternate exploration formulation based on ensemble of

models as inspired by the classical active learning litera-

ture (Seung et al., 1992). The goal of active learning is to

find the optimal training examples to label such that the ac-

curacy is maximized at minimum labeling cost. While active

learning minimizes optimal cost with an analytic policy, the

goal of an exploration-driven agent is to learn a policy that

allows it to best navigate the environment space. Although

the two might look different at the surface, we argue that

active learning objectives could inspire powerful intrinsic

reward formulations. In this work, we leverage the idea of

model-variance maximization to propose exploration formu-

lation. Leveraging model variance to investigate a system

is also a well-studied mechanism in optimal experimental

design literature (Boyd & Vandenberghe, 2004) in statistics.

As our agent interacts with the environment, it collects tra-

jectory of the form {xt, at, xt+1}. After each rollout, the

collected transitions are used to train an ensemble of pre-

diction models (i.e., forward models) {fθ1 , fθ2 . . . , fθk} of

the environment. Each of the model is trained to map a

given tuple of current observation xt and the action at to

the resulting state xt+1. These models are trained using

straightforward maximum likelihood estimation that mini-

mizes the prediction error, i.e, ‖f(xt, at; θ) − xt+1‖2. To

maintain the diversity across the individual models of the

ensemble, we initialize each model’s parameters differently

and train each of them on a subset of data randomly sampled

with replacement (bootstrap).

Each model in our ensemble is trained to predict the ground

truth next state. Hence, the parts of the state space which

have been well explored by the agent will have gathered

enough data to train all models, resulting in an agreement

between the models. Since the models are learned (and

not tabular), this property should generalize to unseen but

similar parts of the state-space. However, the areas which

are novel and unexplored would still have high prediction

error for all models as none of them are yet trained on such

examples, resulting in disagreement on the next state pre-

diction. Therefore, we use this disagreement as an intrinsic

reward to guide the policy. Concretely, the intrinsic reward

rit is defined as the variance across the output of different

models in the ensemble:

rit , Eθ

[

‖f(xt, at; θ)− Eθ[f(xt, at; θ)]‖
2
2

]

(1)

Note that the expression on the right does not depend on

the next state xt+1 — a property which will exploit in Sec-

tion 2.3 to propose efficient policy optimization.

Given the agent’s rollout sequence and the intrinsic reward

rit at each timestep t, the policy is trained to maximize the

sum of expected reward, i.e., maxθP Eπ(xt;θP )

[
∑

t γ
trit

]

discounted by a factor γ. Note that the agent is self-

supervised and does not need any extrinsic reward to ex-

plore. The agent policy and the forward model ensemble

are jointly trained in an online manner on the data collected

by the agent during exploration. This objective can be max-

imized by any policy optimization technique, e.g., we use

proximal policy optimization (PPO) (Schulman et al., 2017)

unless specified otherwise.

2.2. Exploration in Stochastic Environments

Consider a scenario where the next state xt+1 is stochas-

tic with respect to the current state xt and action at. The

source of stochasticity could be noisy actuation, difficulty

or inherent randomness. Given enough samples, a dynamic

prediction model should learn to predict the mean of the

stochastic samples. Hence, the variance of the outputs in

ensemble will drop preventing the agent from getting stuck

in stochastic local-minima of exploration. Note this is un-

like prediction error based objectives (Pathak et al., 2017;

Schmidhuber, 1991b) which will settle down to a mean

value after large enough samples. Since, the mean is differ-

ent from the individual ground-truth stochastic states, the

prediction error remains high making the agent forever cu-

rious about the stochastic behavior. We empirically verify

this intuition by comparing prediction-error to disagreement

across several environments in Section 4.2.

2.3. Differentiable Exploration for Policy Optimization

One commonality between different exploration meth-

ods (Bellemare et al., 2016; Houthooft et al., 2016; Pathak

et al., 2017), is that the prediction model is usually learned

in a supervised manner and the agent’s policy is trained us-

ing reinforcement learning either in on-policy or off-policy

manner. Despite several formulations over the years, the

policy optimization procedure to maximize these intrinsic

rewards has more or less remained the same – i.e. – treat-
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ing the intrinsic reward as a “black-box” even though it is

generated by the agent itself.

Let’s consider an example to understand the reason behind

the status quo. Consider a robotic-arm agent trying to push

multiple objects kept on the table in front of it by look-

ing at the image from an overhead camera. Suppose the

arm pushes an object such that it collides with another one

on the table. The resulting image observation will be the

outcome of complex real-world interaction, the actual dy-

namics of which is not known to the agent. Note that this

resulting image observation is a function of the agent’s

action (i.e., push in this case). Most commonly, the in-

trinsic reward ri(xt, at, xt+1) is function of the next state

(which is a function of the agent’s action), e.g., information

gain (Houthooft et al., 2016), prediction error (Pathak et al.,

2017) etc. This dependency on the unknown environment

dynamics absolves the policy optimization of analytical

reward gradients with respect to the action. Hence, the stan-

dard way is to optimize the policy to maximize the sequence

of intrinsic rewards using reinforcement learning, and not

make any use of the structure present in the design of rit.

We formulate our proposed intrinsic reward as a differen-

tiable function so as to perform policy optimization using

likelihood maximization – much like supervised learning

instead of reinforcement. If possible, this would allow the

agent to make use of the structure in rit explicitly, i.e., the

intrinsic reward from the model could very efficiently in-

form the agent to change its action space in the direction

where forward prediction loss is high, instead of providing

a scalar feedback as in case of reinforcement learning. Ex-

plicit reward (cost) functions are one of the key reasons for

success stories in optimal-control based robotics (Deisen-

roth & Rasmussen, 2011b; Gal et al., 2016), but they don’t

scale to high-dimensional state space such as images and

rely on having access to a good model of the environment.

We first discuss the one step case and then provide the

general setup. Note that our intrinsic reward formulation,

shown in Equation (1), does not depend on the environment

interaction at all, i.e., no dependency on xt+1. It is purely

a mental simulation of the ensemble of models based on

the current state and the agent’s prediction action. Hence,

instead of maximizing the intrinsic reward in expectation

via PPO (RL), we can optimize for policy parameters θP
using direct gradients by treating rit as a differentiable loss

function. The objective for a one-step reward horizon is:

min
θ1,...,θk

(1/k)

k
∑

i=1

‖fθi(xt, at)− xt+1‖2 (2)

max
θP

(1/k)

k
∑

i=1

[

‖fθi(xt, at)− (1/k)

k
∑

j=1

fθj (xt, at)‖
2
2

]

s.t. at = π(xt; θP )

This is optimized in an alternating fashion where the forward

predictor is optimized keeping the policy parameters frozen

and vice-versa. Note that both policy and forward models

are trained via maximum likelihood in a supervised manner,

and hence, efficient in practice.

Generalization to multi-step reward horizon To op-

timize policy for maximizing a discounted sum of se-

quence of future intrinsic rewards rit in a differentiable

manner, the forward model would have to make predic-

tions spanning over multiple time-steps. The policy objec-

tive in Equation (2) can be generalized to the multi-step

horizon setup by recursively applying the forward predic-

tor, i.e., maxθP
∑

t r
i
t(x̂t, at) where x̂t = f(x̂t−1, at; θ),

at = π(xt; θP ), x̂0 = x0, and rit(.) is defined in Equa-

tion (1). Alternatively, one could use LSTM to make for-

ward model itself multi-step. However, training a long term

multi-step prediction model is challenging and an active

area of research.

3. Implementation Details and Baselines

Learning forward predictions in the feature space It

has been shown that learning forward-dynamics predictor

fθ in a feature space leads to better generalization in contrast

to raw pixel-space predictions (Burda et al., 2019; Pathak

et al., 2017). Our formulation is trivially extensible to any

representation space φ because all the operations can be

performed with φ(xt) instead of xt. Hence, in all of our

experiments, we train our forward prediction models in

feature space. In particular, we use random feature space

in all video games and navigation, classification features in

MNIST and ImageNet-pretrained ResNet-18 features in real

world robot experiments. We use 5 models in the ensemble.

Back-propagation through forward model To directly

optimize the policy with respect to the loss function of the

forward predictor, as discussed in Section 2.3, we need to

backpropagate all the way through action sampling process

from the policy. In case of continuous action space, one

could achieve this via making policy deterministic, i.e. at =
πθP with epsilon-greedy sampling (Lillicrap et al., 2016).

For discrete action space, we found that straight-through

estimator (Bengio et al., 2013) works well in practice.

Baseline Comparisons ‘Disagreement’ refers to our ex-

ploration formulation optimized using PPO (Schulman et al.,

2017) as discussed in Section 2.1, unless mentioned other-

wise. ‘Disagreement [Differentiable]’ refers to the direct

policy optimization for our formulation as described in Sec-

tion 2.3. ‘Pathak et.al. [ICML 2017]’ refers to the curiosity-

driven exploration formulation based on the prediction error

of the learned forward dynamics model in inverse model ac-

tion space (Pathak et al., 2017). ‘Burda et.al. [ICLR 2019]’
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Figure 2. Sanity Check in Non-Stochastic Environments: We compare different intrinsic reward formulations across near-deterministic,

non-stochastic standard benchmark of the Atari games. Our disagreement-based approach compares favorably to state-of-the-art

approaches without losing accuracy in non-stochastic scenarios.

refers to the random feature-based prediction-error (Burda

et al., 2019). ‘Pred-Error Variance’ is an alternative abla-

tion where we train the agent to maximize the variance of

the prediction error as opposed to the variance of model

output itself. Finally, we also compare our performance to

Bayesian Neural Networks for measuring variance. In par-

ticular, we compared to Dropout NN (Gal & Ghahramani,

2015) represented as ‘Bayesian Disagreement’.

4. Experiments

We evaluate our approach on several environments includ-

ing Atari games, 3D navigation in Unity, MNIST, object

manipulation in Mujoco and real world robotic manipula-

tion task using Sawyer arm. Our experiments comprise of

three parts: a) verifying the performance on standard non-

stochastic environments; b) comparison on environments

with stochasticity in either transition dynamics or observa-

tion space; and c) validating the efficiency of differentiable

policy optimization facilitated by our objective.

4.1. Sanity Check in Non-Stochastic Environments

We first verify whether our disagreement formulation is able

to maintain the performance on the standard environment

as compared to state of the art exploration techniques. Al-

though the primary advantage of our approach is in handling

stochasticity and improving efficiency via differentiable pol-

icy optimization, it should not come at the cost of perfor-

mance in nearly-deterministic scenarios. We run this sanity

check on standard Atari benchmark suite, as shown in Fig-

ure 2. These games are not completely deterministic and

have some randomness as to where the agent is spawned

upon game resets (Mnih et al., 2015). The agent is trained

with only an intrinsic reward, without any external reward

from the game environment. The external reward is only

used as a proxy to evaluate the quality of exploration and

not shown to the agent.

We train our ensemble of models for computing disagree-

ment in the embedding space of a random network as dis-

cussed in Section 3. The performance is compared to curios-

ity formulation (Pathak et al., 2017), curiosity with random

features (Burda et al., 2019), Bayesian network based uncer-

tainty and variance of prediction error. As seen in the results,

our method is as good as or slightly better than state-of-the-

art exploration methods in most of the scenarios. Overall,

these experiments suggest that our exploration formulation

which is only driven by disagreement between models out-

put compares favorably to state of the art methods. Note that

the variance of prediction error performs significantly worse.

This is so because the low variance in prediction error of

different models doesn’t necessarily mean they will agree

on the next state prediction. Hence, ‘Pred-Error Variance’

may sometimes incorrectly stop exploring even if output

prediction across models is drastically different.

4.2. Exploration in Stochastic Environments

A) Noisy MNIST. We first build a toy task on MNIST to

intuitively demonstrate the contrast between disagreement-

based intrinsic reward and prediction error-based re-

ward (Pathak et al., 2017) in stochastic setups. This is a

one-step environment where the agent starts by randomly

observing an MNIST image from either class 0 or class 1.

The dynamics of the environment are defined as follows:

1) images with label 0 always transition to another image

from class 0. 2) Images with label 1 transition to a randomly

chosen image from class label 2 to 9. This ensures that a

transition from images with label 0 has low stochasticity

(i.e., transition to the same label). On the other hand, transi-

tions from images with label 1 have high stochasticity. The

ideal intrinsic reward function should give similar incentive

(reward) to both the scenarios after the agent has observed a

significant number of transitions.
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Figure 3. Performance of disagreement across ensemble vs predic-

tion error based reward function on Noisy MNIST environment.

This environment has 2 sets of state with different level of stochas-

ticity associated with them. The disagreement-based intrinsic

reward converges to the ideal case of assigning the same reward

value for both states. However, the prediction-error based reward

function assigns a high reward to states with high stochasticity.

Figure 3 shows the performance of these methods on the

test set of MNIST as a function of the number of states

visited by the agent. Even at convergence, the prediction

error based model assigns more reward to the observations

with higher stochasticity, i.e., images with label 1. This

behavior is detrimental since the transition from states of

images with label 1 cannot ever be perfectly modeled and

hence the agent will get stuck forever. In contrast, our

ensemble-based disagreement method converges to almost

zero intrinsic reward in both the scenarios after the agent

has seen enough samples, as desired.

B) 3D Navigation in Unity. The goal in this setup is to

train the agent to reach a target location in the maze. The

agent receives a sparse reward of +1 on reaching the goal.

For all the methods, we train the policy of the agent to

maximize the summation of intrinsic and sparse extrinsic re-

ward. This particular environment is a replica of VizDoom-

MyWayHome environment in unity ML-agent and was pro-

posed in Burda et al. (2019). Interestingly, this environment

has 2 variants, one of which has a TV on the wall. The

agent can change the channel of the TV but the content is

stochastic (random images appear after pressing button).

The agent can start randomly anywhere in the maze in each

episode, but the goal location is fixed. We compare our pro-

posed method with state-of-the-art prediction error-based

exploration (Burda et al., 2019). The results are shown

in Figure 4. Our approach performs similar to the base-

line in the non-TV setup and outperforms the baseline in

the presence of the TV. This result demonstrates that an

ensemble-based disagreement could be a viable alternative

in realistic stochastic setups.

C) Atari with Sticky Actions. As discussed in Sec-

tion 4.1, the usual Atari setup is nearly deterministic. There-

fore, a recent study (Machado et al., 2017) proposed to

Figure 4. Comparison of prediction-error based curiosity reward

with our proposed disagreement-based exploration on 3D naviga-

tion task in Unity with and without the presence of TV+remote.

While both the approaches perform similar in normal case (left),

disagreement-based approach performs better in the presence of

stochasticity (right).

introduce stochasticity in Atari games by making actions

‘sticky’, i.e., at each step, either the agent’s intended ac-

tion is executed or the previously executed action is re-

peated with equal probability. As shown in Figure 5, our

disagreement-based exploration approach outperforms pre-

vious state-of-the-art approaches. In Pong, our approach

starts slightly slower than Burda et.al. (Burda et al., 2019),

but eventually achieves a higher score. Further note that the

Bayesian network-based disagreement does not perform as

well as ensemble-based disagreement. This suggests that

perhaps dropout (Gal & Ghahramani, 2015) isn’t able to

capture good uncertainty estimate in practice. These experi-

ments along with the navigation experiment, demonstrate

the potential of ensembles in the face of stochasticity.

4.3. Differentiable Exploration in Structured Envs

We now evaluate the differentiable exploration objective

proposed in Section 2.3. As discussed earlier, the policy is

optimized via direct analytic gradients from the exploration

module. Therefore, the horizon of exploration depends

directly on the horizon of the module. Since training long-

horizon models from high dimensional inputs (images) is

still an unsolved problem, we evaluate our proposed formu-

lation on relatively short horizon scenarios. However, to

compensate for the length of the horizon, we test on large

action space setups for real-world robot manipulation task.

A) Enduro Video Game. In this game, the goal of the

agent is to steer the car on racing track to avoid enemies.

The agent is trained to explore via purely intrinsic rewards,

and the extrinsic reward is only used for evaluation. In order

to steer the car, the agent doesn’t need to model long-range

dependencies. Hence, in this environment, we combine our

differentiable policy optimization with reinforcement learn-

ing (PPO) to maximize our disagreement based intrinsic
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Figure 5. Stochastic Atari Games: Comparison of different ex-

ploration techniques in the the Atari (‘sticky’) environment. The

disagreement-based exploration is robust across both the scenarios.

reward. The RL captures discounted long term dependency

while our differentiable formulation should efficiently take

care of short-horizon dependencies. We compare this for-

mulation to purely PPO based optimization of our intrinsic

reward. As shown in Figure 6, our differentiable explo-

ration expedites the learning of the agent suggesting the

efficacy of direct gradient optimization. We now evaluate

the performance of only differentiable exploration (without

reinforcement) in short-horizon and large-structured action

space setups.

B) Object Manipulation by Exploration.

We consider the task of object manipulation in complex

scenarios. Our setup consists of a 7-DOF robotic arm that

could be tasked to interact with the objects kept on the

table in front of it. The objects are kept randomly in the

workspace of the robot on the table. Robot’s action space is

end-effector position control: a) location (x, y) of point on

the surface of table, b) angle of approach θ, and c) gripper

status, a binary value indicating whether to grasp (open

the gripper fingers) or push (keep fingers close). All of

our experiments use raw visual RGBD images as input and

predict actions as output. Note that, to accurately grasp

or push objects, the agent needs to figure out an accurate

combination of location, orientation and gripper status.

The action space is discretized into 224× 224 locations, 16

orientations for grasping (fingers close) and 16 orientations

for pushing leading to final dimension of 224× 224× 32.

The policy takes as input a 224 × 224 RGBD image and

produces push and grasp action probabilities for each pixel.

Following (Zeng et al., 2018), instead of adding the 16

rotations in the output, we pass 16 equally spaced rotated

images to the network and then sample actions based on

the output of all the inputs. This exploits the convolutional

structure of the network. The task has a short horizon but

very large state and action spaces. We make no assumption

about either the environment or the training signal. Our

robotic agents explore the work-space purely out of their

Figure 6. Performance comparison of disagreement-based explo-

ration with or without the differentiable policy optimization in

Enduro Atari Game. Differentiability helps the agent learn faster.

own intrinsic reward in a pursuit to develop useful skills.

We have instantiated this setup in a Mujoco simulation as

well as in the real world robotics scenarios.

B1) Object Manipulation in MuJoCo. We first carry out

a study in simulation to compare the performance of differ-

entiable variant of our disagreement objective against the

reinforcement learning based optimization. We used Mu-

JoCo to simulate the robot performing grasping and pushing

on tabletop environment as described above.

To evaluate the quality of exploration, we measure the fre-

quency at which our agent interacts (i.e., touches) with the

object. This measure is just used to evaluate the exploration

quantitatively and is not used as a training signal. It repre-

sents how quickly our agent’s policy learns to explore an

interesting part of space. Figures 7a shows the performance

when the environment consists of just a single object which

makes it really difficult to touch the object randomly. Our

approach is able to exploit the structure in the loss, resulting

in order of magnitude faster learning than REINFORCE.

B2) Real-World Robotic Manipulation. We now deploy

our sample-efficient exploration formulation on real-world

robotics setup. The real-world poses additional challenges,

unlike simulated environments in terms of behavior and

the dynamics of varied object types. Our robotic setup

consisted of a Sawyer-arm with a table placed in front of it.

We mounted KinectV2 at a fixed location from the robot to

receive RGBD observations of the environment.

In every run, the robot starts with 3 objects placed in front

of it. Unlike other self-supervised robot learning setups, we

keep fewer objects to make exploration problem harder so

that it is not trivial to interact with the objects by acting

randomly. If either the robot completes 100 interactions
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(b) Real Robot (c) Real Robot Setup

Figure 7. Measuring object interaction rate with respect to the number of samples in (a) Mujoco, and (b) real-world robot. Note that the

Mujoco plot is in log-scale. We measure the exploration quality by evaluating the object interaction frequency of the agent. In both the

environments, our differentiable policy optimization explores more efficiently. (c) A snapshot of the real-robotic setup.

or there are no objects in front of it, objects are replaced

manually. Out of a total of 30 objects, we created a set of 20

objects for training and 10 objects for testing. We use the

same metric as used in the simulation above (i.e., number

of object interactions) to measure the effectiveness of our

exploration policy during training. We monitor the change

in the RGBD image to see if the robot has interacted with

objects. Figure 7b shows the effectiveness of differentiable

policy optimization for disagreement over prediction-error

based curiosity objective. Differentiable-disagreement al-

lows the robotic agent to learn to interact with objects in

less than 1000 examples.

We further test the skills learned by our robot during its

exploration by measuring object-interaction frequency on

a set of 10 held-out test objects. For both the methods, we

use the checkpoint saved after 700 robot interaction with

the environment. For each model, we evaluate a total of

80 robot interaction steps with three test objects kept in

front. The environment is reset after every 10 robot steps

during evaluation. Our final disagreement exploration policy

interacts approximately 67% of times with unseen objects,

whereas a random policy performs at 17%. On the other

hand, it seems that REINFORCE-based curiosity policy just

collapses and only 1% of actions involve interaction with

objects. Videos are available at https://pathak22.

github.io/exploration-by-disagreement/.

5. Related Work

Exploration is a well-studied problem in the field of rein-

forcement learning. Early approaches focused on studying

exploration from theoretical perspective (Strehl & Littman,

2008) and proposed Bayesian formulations (Deisenroth &

Rasmussen, 2011a; Kolter & Ng, 2009) but they are usually

hard to scale to higher dimensions (e.g., images). In this

paper, we focus on the specific problem of exploration using

intrinsic rewards. A large family of approaches use “curios-

ity” as an intrinsic reward for training the agents. A good

summary of early work in curiosity-driven rewards can be

found in (Oudeyer & Kaplan, 2009; Oudeyer et al., 2007).

Most approaches use some form of prediction-error between

the learned model and environment behavior (Pathak et al.,

2017). This prediction error can also be formulated as sur-

prise (Achiam & Sastry, 2017; Schmidhuber, 1991a; Sun

et al., 2011). Other techniques incentivize exploration of

states and actions where prediction of a forward model is

highly-uncertain (Houthooft et al., 2016; Still & Precup,

2012). Finally, approaches such as Lopes et al. (2012) try

to explore state space which help improve the prediction

model. Please refer to the introduction Section 1 for details

on formulations using curiosity, visitation count or diversity.

However, most of these efforts study the problem in the

context of external rewards.

Apart from intrinsic rewards, other approaches include us-

ing an adversarial game (Sukhbaatar et al., 2018) where one

agent gives the goal states and hence guiding exploration.

Gregor et al. (2017) introduce a formulation of empower-

ment where agent prefers to go to states where it expects

it will achieve the most control after learning. Researchers

have also tried using perturbation of learned policy for ex-

ploration (Fortunato et al., 2017; Fu et al., 2017; Plappert

et al., 2017) and using value function estimates (Osband

et al., 2016). Again these approaches have mostly been

considered in the context of external rewards and are not

efficient enough to be scalable to real robotics setup.

Our work is mostly inspired by large-body of work in ac-

tive learning (AL). In the AL setting, given a collection of

unlabeled examples, a learner selects which samples will

be labeled by an oracle (Settles, 2010). Common selec-

tion criteria include entropy (Dagan & Engelson, 1995),

uncertainty sampling (Lewis & Gale, 1994) and expected

informativeness (Houlsby et al., 2011). Our work is inspired

by by (Seung et al., 1992), and we apply the disagreement

idea in a completely different setting of exploration and

show its applicability to environments with stochastic dy-

namics and improving sample-efficiency. Concurrent to this

work, Shyam et al. (2019) also showed the advantages of

model-based exploration where they use simulated rollouts

to estimate novelty.

https://pathak22.github.io/exploration-by-disagreement/
https://pathak22.github.io/exploration-by-disagreement/
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