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Abstract

Self-supervised learning (SSL) is a technique for learn-

ing useful representations from unlabeled data. It has been

applied effectively to domain adaptation (DA) on images

and videos. It is still unknown if and how it can be leveraged

for domain adaptation in 3D perception problems. Here we

describe the first study of SSL for DA on point clouds. We

introduce a new family of pretext tasks, Deformation Recon-

struction, inspired by the deformations encountered in sim-

to-real transformations. In addition, we propose a novel

training procedure for labeled point cloud data motivated

by the MixUp method called Point cloud Mixup (PCM).

Evaluations on domain adaptations datasets for classifica-

tion and segmentation, demonstrate a large improvement

over existing and baseline methods.

1. Introduction

Self-supervised learning (SSL) was recently shown to be

very effective for learning useful representations from un-

labeled images [9, 10, 16, 28, 29] or videos [12, 27, 48, 50].

The key idea is to define an auxiliary, “pretext” task, train

using supervised techniques, and then use the learned rep-

resentation for the main task of interest. While SSL is often

effective for images and videos, it is still not fully under-

stood how to apply it to other types of data. Recently, there

have been some attempts at designing SSL pretext tasks for

point cloud data for representation learning [18, 38, 43, 62],

yet this area of research is still largely unexplored. Since

SSL operates on unlabeled data, it is natural to test its effec-

tiveness for unsupervised domain adaptation (UDA).

Domain Adaptation (DA) has attracted significant atten-

tion recently [13, 36, 45, 46]. In UDA, one aims to classify

data from a Target distribution, but the only labeled sam-

ples available are from another, Source, distribution. This

learning setup has numerous application, including “sim-to-

real”, where a model is trained on simulated data in which

labels are abundant and is tested on real-world data. Re-

cently, SSL was successfully used in learning across do-

Figure 1: Adapting from a source domain of point clouds

to a target domain with a different distribution. Our archi-

tecture is composed of a shared feature encoder Φ, and two

task-specific heads: One for the supervised task on source

domain (hsup), and another for the self-supervised task that

can be applied to both domains (hSSL).

mains [4, 11, 33] and in domain adaptation for visual tasks

such as object recognition and segmentation [41,53]. While

SSL has been used to adapt to new domains in images, it is

unknown if and how SSL applies to DA for other data types,

particularly for 3D data.

The current paper addresses the challenge of developing

SSL for point clouds in the context of DA. We describe an

SSL approach for adapting to new point cloud distributions.

Our approach is based on a multi-task architecture with a

multi-head network. One head is trained using a classifica-

tion or segmentation loss over the source domain, while a

second head is trained using a new SSL loss.

To learn a representation that captures the structure of

the target domain, we develop a new family of pretext-tasks,

called Deformation Reconstruction (DefRec). We design it

to address common deformations that are encountered in

scanned point clouds. Scanning objects in their natural en-

vironments often leads to missing parts of the objects due to

occlusion (see Figure 3, third column). The key idea behind

the new pretext tasks is as follows: It deforms a region of the

shape by dislocating some of the points; then, the network

has to map back those points to their original location, re-
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constructing the missing regions of the shape. Importantly,

success in this task requires the network to learn the under-

lying statistical structures of objects.

In this paper, we provide an extensive study of different

approaches to deform a shape. We group these approaches

into three types: (1) Volume-based deformations: select-

ing a region based on proximity in the input space R3, (2)

Feature-based deformations: selecting regions that are se-

mantically similar by leveraging deep point embeddings;

and (3) Sampling-based deformations: selecting a region

based on three simple sampling schemes.

As a separate contribution, we propose a training proce-

dure for labeled point cloud data motivated by the MixUp

method [61], called Point Cloud Mixup (PCM). PCM is ap-

plied to source objects during training instead of the stan-

dard classification task. Together with DefRec, PCM yields

large improvements over the SoTA of domain adaptation in

a benchmark classification dataset in this area [32].

Finally, we designed a new DA benchmark for point

cloud segmentation based on a dataset published by [25].

We show that DefRec can be extended easily to segmenta-

tion tasks, leading to improved performance compared to

baseline methods.

This paper makes the following novel contributions. (1)

This is the first paper that studies SSL for domain adaptation

on point clouds. (2) We describe DefRec, a new family

of pretext tasks for point cloud data, motivated by the type

of distortions encountered in sim-to-real scenario. (3) We

achieve a new SoTA performance for domain adaption on

point clouds, including a large improvement over previous

approaches in a sim-to-real tasks. (4) We develop a new

variant of the Mixup method for point cloud data. (5) A

new DA benchmark for point cloud segmentation.

2. Related work

Deep learning on point clouds. Following the success

of deep neural networks on images, powerful deep archi-

tectures for learning with 3D point clouds were designed.

Early methods, such as [26,31,52], applied volumetric con-

volutions to occupancy grids generated from point clouds.

These methods suffer from limited performance due to the

low resolution of the discretization of 3D data. The seminal

work of [30,60] described the first models that work directly

on a point cloud representation. Following these studies, a

plethora of architectures was suggested, aiming to general-

ize convolutions to point clouds [3, 20, 22, 23, 39, 49]. We

refer the readers to a recent survey [17] for more details.

Self-supervised learning for point clouds. Recently,

several studies suggested using self-supervised tasks for

learning meaningful representations of point cloud data,

mostly as a pre-training step. In [38], it is suggested to gen-

erate new point clouds by splitting a shape into 3 × 3 × 3
voxels and shuffling them. The task is to find the voxel

assignment that reconstructs the original point cloud. [43]

proposed a network that predicts the next point in a space-

filling sequence of points that covers a point cloud. [62]

generated pairs of half shapes and proposed to learn a clas-

sifier to decide whether these two halves originate from the

same point cloud. [18] advocates combining three tasks:

clustering, prediction, and point cloud reconstruction from

noisy input. [6] learns a point cloud auto-encoder that also

predicts pairwise relations between the points. [42] sug-

gested learning local geometric properties by training a net-

work to predict the point normal vector and curvature. In

a concurrent work, [2] leveraged the SSL task proposed

by [38], as an auxiliary task for learning a variety of point

cloud tasks. Compared to these studies, our work provides a

systematic study of point cloud reconstruction pretext tasks

specifically for DA on point clouds, a setup that was not

addressed by any of the studies mentioned above.

Domain adaptation for point clouds. PointDAN [32]

designed a dataset based on three widely-used point cloud

datasets: ShapeNet [5], ModelNet [52] and ScanNet [8].

They proposed a model that jointly aligns local and global

point cloud features for classification. [40] proposed a

generic module to embed information from different do-

mains in a shared space for object detection. Several other

studies considered domain adaptation for LiDAR data with

methods that do not operate directly on the unordered set

of points [21, 34, 37, 51, 57]. [21] and [57] suggested DA

methods for point cloud segmentation from a sparse voxel

representation. [21] requires a paring of the point cloud and

image representation of the scenes, and [57] suggested to

apply segmentation on recovered 3D surfaces from the point

clouds. [34] suggested a method for DA on voxelized points

input using an object region proposal loss, point segmenta-

tion loss, and object regression loss. [37] addressed the task

of vehicle detection from a bird’s eye view (BEV) using a

CycleGAN. [51] designed a training procedure for object

segmentation of shapes projected onto a spherical surface.

Self-supervised learning for domain adaptation. SSL

for domain adaptation is a relatively new research topic. Ex-

isting literature is mostly very recent, and is applied to the

image domain, which is fundamentally different from un-

ordered point clouds. [15] suggested using a shared encoder

for both source and target samples followed by a classifica-

tion network for source samples and a reconstruction net-

work for target samples. [53] suggested using SSL pretext

tasks like image rotation and patch location prediction over

a feature extractor. [41] extended the solution to a multi-

task problem with several SSL pretext tasks. [4] advocated

the use of a Jigsaw puzzle [28] pretext task for domain gen-

eralization and adaptation. Our approach is similar to these

approaches in the basic architectural design, yet it is differ-

ent in the type of data and pretext tasks. [35] addressed the

problem of universal domain adaptation by learning to clus-
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ter target data in an unsupervised manner based on labeled

source data. Several other studies have shown promising

results in learning useful representations via SSL for cross-

domain learning. [33] suggested to train a network with syn-

thetic data using easy-to-obtain labels for synthetic images,

such as the surface normal, depth and instance contour. [11]

proposed using SSL pre-text tasks, such as image rotations,

as part of their architecture for domain generalization.

Deep learning of point cloud reconstruction and com-

pletion. Numerous methods were suggested for point cloud

completion and reconstruction. Most of these studies fo-

cus on high-quality shape reconstruction and completion.

Our paper draws inspiration from these studies and sug-

gests effective pretext reconstruction tasks for domain adap-

tation. [1] suggested to learn point clouds representations

with an Autoencoder (AE) based on the architecture pro-

posed in [30]. In Section 5 we show that our method com-

pares favorably to theirs. [7] proposed to reconstruct point

clouds by training a GAN on a latent space of unpaired

clean and partial point clouds. Training GANs may be chal-

lenging because of common pitfalls such as mode collapse,

our method, on the other hand, is much easier to train. [58]

suggested architecture for up-sampling a point cloud by

learning point features and replicating them. [59] suggested

an object completion network of partial point clouds from a

global feature vector representation. [47] extended [59] ap-

proach by a cascaded refinement of the reconstructed shape.

3. Approach

In this section, we present the main building blocks of

our approach. We first describe our general pipeline and

then explain in detail our main contribution, namely, De-

fRec, a family of SSL tasks. We conclude the section by

describing PCM, a training procedure inspired by the Mixup

method [61] that we found to be effective when combined

with DefRec. For clarity, we describe DefRec in the context

of a classification task. An extension of DefRec to segmen-

tation is detailed in Section 5.4.1

3.1. Overview

We tackle unsupervised domain adaptation for point

clouds. Here, we are given labeled instances from a source

distribution and unlabeled instances from a different, target,

distribution. Both distributions of point clouds are based on

objects labeled by the same set of classes. Given instances

from both distributions, the goal is to train a model that cor-

rectly classifies samples from the target domain.

We follow a common approach to tackle this learning

setup for DA, learning a shared feature encoder, trained on

two tasks [55]. (1) A supervised task on the source domain;

and (2) A self-supervised task that can be trained on both

1Code available at https://github.com/IdanAchituve/DefRec and PCM

Figure 2: Illustration of five deformations of the same table

object. Each method selects points to be deformed, marked

in orange. Once selected, points are dislocated to a random

position near the center. For the Feature-based deformation

we also show the shape after dislocating the points (dislo-

cated points are in blue).

source and target domains. To this end, we propose a new

family of self-supervised tasks. In our self-supervised tasks,

termed Deformation Reconstruction (DefRec), we first de-

form a region/s in an input point cloud and then train our

model to reconstruct it.

More formally, let X ,Y denote our input space and label

space accordingly. Let S ⊂ X × Y represent labeled data

from the source domain, and T ⊂ X represent unlabeled

data from the target domain. We denote by x ∈ Rn×3 the

input point cloud and x̂ ∈ Rn×3 the deformed version of

it, where n is the number of points. Our training scheme

has two separate data flows trained in an alternating fash-

ion and in an end-to-end manner. Supervised data flow and

self-supervised data flow. Both data flows use the same fea-

ture encoder Φ which is modeled by a neural network for

point clouds. After being processed by the shared feature

encoder, labeled source samples are further processed by a

fully connected sub-network (head) denoted by hsup and a

supervised loss is applied to their result (either the regular

cross-entropy loss or a mixup variant that will be described

in Section 3.3). Similarly, after the shared feature encoder,

the unlabeled source/target samples are fed into a different

head, denoted hSSL which is in charge of producing a recon-

structed version of x̂. A reconstruction loss is then applied

to the result as we explain in the next subsection. The full

architecture is depicted in Figure 1.

3.2. Deformation reconstruction

When designing a self-supervision task, several consid-

erations should be taken into account. First, the task should

encourage the model to capture the semantic properties of

the inputs. The scale of these properties is important: a

task that depends on local features may not capture the se-

mantics, and a task that depends on full global features

may be over permissive. In general it is useful to focus

on mesoscale features, capturing information at the scale
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of “regions” or parts.

Second, for the specific case of designing SSL for DA,

we want the SSL task to “bridge” the distribution gap from

the Source to the Target distribution. Intuitively, it would be

beneficial if the SSL deformation of target samples can im-

itate the same deformations that are observed from source

to target because then the learned representation tends to be

invariant to these gaps. We designed DefRec, our family of

SSL tasks, with these intuitions in mind.

The main idea of our SSL family of tasks is to recon-

struct deformed input samples. However, a key question re-

mains: which deformations and reconstruction tasks would

produce meaningful representations for domain adapta-

tion? We examine three types of region selection methods:

Volume-based, Feature-based and Sampling-based. In all

cases, the deformation is achieved by selecting a subset of

points and deforming them by sampling new points from an

isotropic Gaussian distribution with a small standard devia-

tion. Figure 2 illustrates all types of deformations.

Volume-based deformations. Perhaps the simplest and

most intuitive way to define a region is based on proximity

in the input space. We propose two alternatives to generate

distorted point clouds. (1) split the input space (say, the box

which bounds all points in the cloud) to k × k × k equally-

sized voxels and pick one voxel v uniformly at random (we

found that k = 3 works well). (2) the deformation region

is a sphere with a fixed radius r that is centered around a

single data point p selected at random. For both alternatives,

we replace all the points with new points sampled from a

Gaussian distribution around the center of v (for the first

method) or p (for the second method).

Feature-based deformations. Going beyond input-

space proximity, we wish to deform regions defined by their

semantics. We follow [49], which showed that distances

of point features taken from deeper layers capture semantic

similarity more than input-space proximity. Given an input

point cloud x ∈ Rn×3 we obtain a representation of the

points Φl(x) at layer l, pick one point uniformly at random

and based on the representations take its k nearest neigh-

bors. We replace all selected points with points sampled

around the origin.

Sample-based deformations. In this case, a region is

defined based on points sampled according to three com-

mon sampling protocols inspired by [19]: (1) Split: Ran-

domly selecting a hyperplane that traverses the shape and

separate it into two half-spaces. All points from the smaller

part are taken, and points from the second part are randomly

sampled with probability p that is drawn from a uniform

distribution on [0, 1] for each input; (2) Gradient: Sampling

points with a likelihood that decreases linearly along the

largest axis of the shape; and (3) Lambertian: A sampling

method that depends on the normal orientation. For each

input, we fix a “view” direction (drawn uniformly at ran-

dom). The probability of sampling a point is proportional

to the clamped inner product between the surface normal

(which is estimated based on neighboring points) and the

fixed “view” direction. In all methods, we limit the number

of sampled points to be smaller than a constant to prevent

large deformations. Sampled points are relocated and scat-

tered around the origin.

Data flow and loss function. The self-supervised data

flow starts with generating a new input-label pair (x̂, x) ∈

Ŝ ∪ T ⊂ X × X by using any of the methods suggested

above. The deformed input x̂ is first processed by Φ, pro-

ducing a representation Φ(x̂). This representation is then

fed into hSSL which is in charge of producing a recon-

structed version of x̂. A reconstruction loss LSSL, which

penalizes deviations between the output hSSL(Φ(x̂)) and the

original point cloud x is then applied.

We chose the loss function LSSL to be the Chamfer dis-

tance between the set of points in x that falls in the de-

formed region R and their corresponding outputs. More

explicitly, if I ⊂ {1, . . . , n} represents the indices of the

points in x ∩R, the loss takes the following form:

LSSL(Ŝ ∪ T ; Φ, hSSL) =∑

(x̂,x)∈Ŝ∪T

dChamfer ({xi}i∈I , {hSSL(Φ(x̂))i}i∈I)

(1)

where xi is the i-th point in the point cloud x, and

dChamfer(A,B) =
∑

a∈A

minb∈B‖a−b‖22+
∑

b∈B

mina∈A‖b−a‖22

(2)

is the symmetric Chamfer distance between A,B ⊂ R3.

Since the Chamfer distance is computed only on within-

region points, it does not burden the computation.

In our experiments, we found that applying DefRec only

to target samples yields better results. Therefore, unless

stated otherwise, that is the selected approach.

3.3. Point cloud mixup

We now discuss an additional contribution that is inde-

pendent of the proposed SSL task, but we find to operate

well with DefRec. The labeled samples from the source

domain are commonly used in domain adaptation with a

standard cross-entropy classification loss. Here, we suggest

an alternative loss motivated by the Mixup Method [61].

Mixup is based on the Vicinal Risk Minimization princi-

ple, as opposed to Empirical Risk Minimization, and can

be viewed as an extension of data augmentation that in-

volves both input samples and their labels. Given two im-

ages and their ”one-hot” labels (x, y), (x′, y′), the Mixup

method generates a new labeled sample as a convex combi-

nation of the inputs (γx+(1−γ)x′, γy+(1−γ)y′), where γ

is sampled from a Beta distribution with fixed parameters.
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Figure 3: A comparison of typical shapes from the datasets:

ModelNet-10, ShapeNet-10, and ScanNet-10.

We generalize this method to point clouds. Since point

clouds are arbitrarily ordered, a naive convex combina-

tion of two points (similarly to pixels) may result in ar-

bitrary positions. Hence, such combination of two point

clouds may be meaningless. Instead, we propose the fol-

lowing Point Cloud Mixup (PCM) procedure. Given two

point clouds x, x′ ∈ Rn×3, first sample a Mixup coefficient

γ ∽ Beta(α, β) (α, β = 1 worked well in our case) and

then form a new shape by randomly sampling γ · n points

from x and (1 − γ) · n points from x′. The union of the

sampled points yields a new point cloud, x ∈ Rn×3. As

in the original Mixup method, the label is a convex combi-

nation of the one-hot label vectors of the two point clouds

γy + (1− γ)y′. See Figure 1 (green box) for illustration.

To summarize, using PCM, the supervised data

flow starts with sampling two labeled point clouds

(x, y), (x′, y′) ∈ S. They are then combined into a new

labeled point cloud (x, y). x is fed into the shared encoder

Φ to produce a point-cloud representation Φ(x) ∈ Rd. This

representation is further processed by a fully connected sub-

network (head) hsup. A cross-entropy loss Lce is then ap-

plied to the output of hsup and the new label y.

Mixup for DA. Extensions of the Mixup method were

offered as a solution for DA on images data [24, 54, 56].

We, on the other hand, propose to use SSL methods, and

in particular DefRec. Our formulation of Mixup for point-

cloud data can be applied to any classification task and not

necessarily for DA. We found that PCM improves the accu-

racy of various baselines (Section C.1 in the Appendix), and

was particularly beneficial when combined with DefRec.

3.4. Overall loss

The overall loss is a linear combination of a supervised

loss and an SSL loss:

L(S, T ; Φ, hsup, hsup) =

Lce(S; Φ, hsup) + λLSSL(Ŝ ∪ T ; Φ, hSSL),
(3)

where λ is a parameter that controls the importance of the

self-supervised term. To use PCM, Lce(S; Φ, hsup) can be

replaced with Lce(S; Φ, hsup).

Figure 4: Average test accuracy on PointDA-10 dataset

across six adaptations tasks. Dashed red line indicates the

average accuracy of the unsupervised baseline.

4. Experiments

We evaluate our method on PointDA-10, a DA dataset

designed by [32] for classification of point clouds. For seg-

mentation, we introduce a benchmark dataset, PointSegDA.

4.1. PointDA10

PointDA-10 ( [32]) consists of three subsets of three

widely-used datasets: ShapeNet [5], ModelNet [52] and

ScanNet [8]. All three subsets share the same ten distinct

classes (like chair, table, bed). ModelNet-10 (called Mod-

elNet hereafter) contains 4183 train samples and 856 test

samples sampled from clean 3D CAD models. ShapeNet-10

(called ShapeNet hereafter), contains 17,378 train samples

and 2492 test samples sampled from several online repos-

itories of 3D CAD models. ScanNet-10 (called ScanNet

hereafter) contains 6110 train and 1769 test samples. Scan-

Net is an RGB-D video dataset of scanned real-world indoor

scenes. Samples from this dataset are significantly harder to

classify because: (i) Many objects have missing parts, due

to occlusions and, (ii) some objects are sampled sparsely.

See Figure 3 for a comparison of typical shapes from all the

datasets mentioned above. Further details about the experi-

mental setup are provided in Section B in the Appendix.

4.2. PointSegDA

For evaluating point cloud segmentation we built a new

benchmark dataset called PointSegDA. It is based on a

dataset of meshes of human models proposed by [25],

which consists of four subsets: ADOBE, FAUST, MIT, and

SCAPE. They share eight classes of human body parts (feet,

hand, head, etc.) but differ in point distribution, pose and,

scanned humans. Point clouds were extracted and labeled

from the meshes to accommodate our setup. PointSegDA

differs from PointDA-10 in the type of the domain shifts

(different humans, poses and discretizations in each subset),

the actual shapes and in the fact that it represent deformable

objects. Thus, PointSegDA allows us to show the applica-

bility of DefRec in a fundamentally different setup. Further

details are provided in Appendix A and B.2.
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Method ModelNet to

ShapeNet

ModelNet to

ScanNet

ShapeNet to

ModelNet

ShapeNet to

ScanNet

ScanNet to

ModelNet

ScanNet to

ShapeNet

Supervised-T 93.9 ± 0.2 78.4 ± 0.6 96.2 ± 0.1 78.4 ± 0.6 96.2 ± 0.1 93.9 ± 0.2

Supervised 89.2 ± 0.6 76.2 ± 0.6 93.4 ± 0.6 74.7 ± 0.7 93.2 ± 0.3 88.1 ± 0.7

Unsupervised 83.3 ± 0.7 43.8 ± 2.3 75.5 ± 1.8 42.5 ± 1.4 63.8 ± 3.9 64.2 ± 0.8

DANN [14] 75.3 ± 0.6 41.5 ± 0.2 62.5 ± 1.4 46.1 ± 2.8 53.3 ± 1.2 63.2 ± 1.2

PointDAN [32] 82.5 ± 0.8 47.7 ± 1.0 77.0 ± 0.3 48.5 ± 2.1 55.6 ± 0.6 67.2 ± 2.7

RS [38] 81.5 ± 1.2 35.2 ± 5.9 71.9 ± 1.4 39.8 ± 0.7 61.0 ± 3.3 63.6 ± 3.4

DAE-Global [18] 83.5 ± 0.8 42.6 ± 1.4 74.8 ± 0.8 45.5 ± 1.6 64.9 ± 4.4 67.3 ± 0.6

DAE-Point 82.5 ± 0.4 40.2 ± 1.6 76.4 ± 0.7 50.2 ± 0.5 66.3 ± 1.5 66.1 ± 0.5

DefRec (ours) 83.3 ± 0.2 46.6 ± 2.0 79.8 ± 0.5 49.9 ± 1.8 70.7 ± 1.4 64.4 ± 1.2

DefRec + PCM (Ours) 81.7 ± 0.6 51.8 ± 0.3 78.6 ± 0.7 54.5 ± 0.3 73.7 ± 1.6 71.1 ± 1.4

Table 1: Test accuracy on PointDA-10 dataset, averaged over three runs (± SEM).

4.3. Network architecture

The input to the network is a point cloud with 1024

points (for PointDA-10) or 2048 points (for PointSegDA).

For a feature extractor and the supervised task head, we

used DGCNN [49] with the same configurations as in the

official implementation. As for the SSL head, differently

from common solutions in the literature (e.g. [1, 18]), it

takes as input the global feature vector (of size 1024) con-

catenated to the feature representations of the points from

the backbone network. We consistently found that it gener-

ates better solutions. Additional details on the architecture

are presented in Appendix B.

5. Results

We now discuss the results of using DefRec and PCM.

The same pre-processing and experiemntal setup was ap-

plied to all methods (ours and baselines). In all experiments

we report the mean accuracy and standard error of the mean

(SEM) across three runs with different seeds. For each of

the three deformation types of DefRec we examined differ-

ent hyper-parameters, such as radii size for volume-based

deformations or layer depth for feature-based deformations.

See detailed explanation in Appendix B.

5.1. Classification accuracy

We compared DefRec with the following baselines: (1)

Unsupervised, using only labeled source samples. (2)

DANN [14], a baseline commonly used in DA for images.

Training with a domain classifier to distinguish between

source and target. (3) PointDAN [32] that suggested to align

features both locally and globally. The global feature align-

ment is implemented using the method proposed in [36] and

therefore this baseline can also be seen as an extension of

it. (4) RS, using the SSL task for point clouds suggested

in [38] instead of DefRec. Split the space to 3×3×3 equally

sized voxels, shuffling them and, assign the network to re-

construct the original order. (5) Denoising Auto-Encoder

(DAE)-Global [18], reconstruction from a point cloud per-

turbed with i.i.d Gaussian noise. Since this method pro-

posed to reconstruct from a global feature vector we also

compared to (6) DAE-Point, reconstruction from a point

cloud perturbed with i.i.d. Gaussian noise with the same

input to hSSL as DefRec; a concatenation of the global fea-

ture vector to the point features. We also present two upper

bounds: (1) Supervised-T, training on target domain only

and, (2) Supervised, training with labeled source and target

samples. DefRec, RS, DAE-Point and DANN all have 2.5M

parameters, compared with 11.1M in PointDAN and 12.6M

parameters in DAE-Global.

We test several deformation types, each with its own

variants (such as the radius size for volume-based deforma-

tions). To get a unified measure of performance, we treated

the deformation type and its variants as hyperparameters.

Then, for each adaptation, we followed a stringent proto-

col and picked the model that maximized accuracy on the

validation set of the source distribution.

Table 1 shows the classification accuracy of all methods

on the six adaptation tasks. Figure 4 shows the average ac-

curacy per method across the six adaptation tasks. As can

be seen, our methods outperform all baselines in 5 out of

6 adaptations. The average across six adaptations of both

of our methods (DefRec and DefRec + PCM) is the high-

est. DefRec + PCM improve by 5% compared to the best

baseline and by 5.5% compared to PointDAN, the natural

competitor on this dataset. Also, DefRec is more accu-

rate on sim-to-real adaptations (ModelNet-to-ScanNet and

ShapeNet-to-Scannet). This observation validates our intu-

ition: (i) DefRec promotes learning semantic properties of

the shapes and, (ii) DefRec helps the model in generalizing

to real data that has missing regions/parts.

Appendix C.1 further quantifies the effect of combining

PCM with baseline methods. PCM boosts the performance

of several baselines. However, our proposed DefRec+PCM

is still superior. Appendix C.2 present a variant of DefRec

in which the deformation types are combined efficiently.
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Deformation

Type

ModelNet to

ShapeNet

ModelNet to

ScanNet

ShapeNet to

ModelNet

ShapeNet to

ScanNet

ScanNet to

ModelNet

ScanNet to

ShapeNet

Avg.

Volume-based 81.7 ± 0.6 51.8 ± 0.3 78.6 ± 0.7 54.5 ± 0.3 73.7 ± 1.6 71.1 ± 1.4 68.6 ± 0.8

Feature-based 83.8 ± 0.8 44.3 ± 0.7 75.6 ± 1.0 52.2 ± 0.7 74.0 ± 1.7 77.2 ± 0.5 67.9 ± 0.9

Sample-based 85.0 ± 0.5 44.6 ± 2.0 72.3 ± 1.9 52.1 ± 0.1 73.3 ± 0.7 74.3 ± 0.7 66.9 ± 1.0

Table 2: Performance per deformation type. Test accuracy on PointDA-10 dataset, averaged over three runs (± SEM).

Method ModelNet to

ShapeNet

ModelNet to

ScanNet

ShapeNet to

ModelNet

ShapeNet to

ScanNet

ScanNet to

ModelNet

ScanNet to

ShapeNet

Avg.

PCM only 83.7 ± 0.6 42.6 ± 0.9 71.4 ± 1.5 46.1 ± 1.7 71.5 ± 1.0 74.6 ± 0.5 65.0 ± 1.0

DefRec only 82.7 ± 0.6 43.9 ± 1.3 79.8 ± 0.5 48.0 ± 0.6 66.0 ± 0.8 67.4 ± 1.2 64.6 ± 0.8

DefRec Global + PCM 82.1 ± 0.5 50.1± 3.1 75.0 ± 1.3 51.6 ± 1.6 61.1 ± 4.4 76.3 ± 1.0 66.0 ± 2.0

DefRec S/T + PCM 82.6 ± 0.6 53.1 ± 1.0 78.3 ± 1.0 51.5 ± 0.9 72.0 ± 0.5 74.4 ± 0.8 68.7 ± 0.8

DefRec + PCM 83.3 ± 0.1 53.5 ± 1.6 78.5 ± 0.6 53.2 ± 1.8 73.7 ± 0.6 75.5 ± 0.9 69.6 ± 0.9

Table 3: Ablation study & model configurations. Test accuracy on PointDA-10 dataset, averaged over three runs (± SEM).

5.2. Analysis

We now analyze the three deformation types of DefRec.

See Appendix D and E for further analysis of the represen-

tation learned and demonstration of shapes reconstruction.

5.2.1 Accuracy by deformation category

Table 2 shows the test accuracy for the three types of

deformations: Volume-based, Feature-based and Sample-

based. For each type, per adaptation, we selected the best

model among all variants of that family according to source-

validation accuracy. As seen from the table, deforming

based on proximity in the input space yields the highest ac-

curacy on average. In fact, across all adaptations, variants

of the volume-based deformation type also had the high-

est source-validation accuracy. Note that when considering

the three types of deformation separately, namely consid-

ering each type of deformation as a separate method (un-

like the results in Table 1 in which we treated the type as a

hyper-parameter), DefRec has the highest accuracy across

all adaptation tasks.

5.2.2 Volume-based deformations

The effectiveness of volume-based deformation is sensitive

to the size of a deformed region. Small regions may be

too easy for the network to reconstruct, while large regions

may be very hard. To quantify this sensitivity Figure 5a

shows the mean accuracy gain averaged over 6 adaptations

as a function of deformation radius. All values denote the

gain compared with a baseline of deforming the full shape

(r=2.0). Accuracy is maximized with small to mid-sized

regions, with an optimum at r=0.2. This suggest that de-

formations at the scale of object parts are superior to global

deformations, in agreement with the intuition that mid-scale

regions capture the semantic structures of objects.

5.2.3 Feature-based deformations

Figure 5b traces the accuracy as a function of the number of

points when deforming based on proximity in feature space.

As in Section 5.2.2, we find that deforming large regions

degrades the performance, particularly with more than 300

points. Also, layer 4 is dominated by layer 3 by a small

gap. Overall, the model is largely robust to the choice of

layer and the number of points for small enough regions.

5.2.4 SSL vs data augmentation

In this paper we promote the use SSL tasks for bridging

the domain gap. An interesting question arises: could this

gap be bridged using deformations as a data augmenta-

tion mechanism? In this case, we may use only the la-

beled source samples for supervision. As an example, con-

sider a sim-to-real adaptation task. The sampling proce-

dures suggested in this paper can be used for data augmen-

tation. These methods sample some parts of the object more

densely and other parts more sparsely. As a result, the aug-

mented shapes may resemble to shapes from the target data.

To test this idea we use the sample-based deformations

in two fashions: (i) As an SSL task, the method advocated

in this paper and, (ii) as a data augmentation procedure

for source samples. Figure 5c compares these alternatives

on the six adaptations tasks with the three sampling proce-

dures. Most data points (11/18) are below the diagonal line

y = x, five of which are on sim-to-real adaptations tasks.

This result suggests that using the sampling procedures as

an SSL task should be preferred over data augmentation.
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Method FAUST to

MIT

FAUST to

ADOBE

FAUST to

SCAPE

MIT to

FAUST

MIT to

ADOBE

MIT to

SCAPE

ADOBE to

FAUST

ADOBE to

MIT

ADOBE to

SCAPE

SCAPE to

FAUST

SCAPE to

MIT

SCAPE to

ADOBE

Avg.

Supervised-T 84.0 ± 1.8 84.0 ± 1.8 84.0 ± 1.8 81.8 ± 0.3 81.8 ± 0.3 81.8 ± 0.3 80.9 ± 7.2 80.9 ± 7.2 80.9 ± 7.2 82.4 ± 1.2 82.4 ± 1.2 82.4 ± 1.2 82.3 ± 2.6

Unsupervised 78.5 ± 0.4 60.9 ± 0.6 66.5 ± 0.6 26.6 ± 3.5 33.6 ± 1.3 69.9 ± 1.2 38.5 ± 2.2 31.2 ± 1.4 30.0 ± 3.6 74.1 ± 1.0 68.4 ± 2.4 64.5 ± 0.5 53.6 ± 1.6

Adapt-SegMap [44] 70.5 ± 3.4 60.1 ± 0.6 65.3 ± 1.3 49.1 ± 9.7 54.0 ± 0.5 62.8 ± 7.6 44.2 ± 1.7 35.4 ± 0.3 35.1 ± 1.4 70.1 ± 2.5 67.7 ± 1.4 63.8 ± 1.2 56.5 ± 2.6

RS [38] 78.7 ± 0.5 60.7 ± 0.4 66.9 ± 0.4 59.6 ± 5.0 38.4 ± 2.1 70.4 ± 1.0 44.0 ± 0.6 30.4 ± 0.5 36.6 ± 0.8 70.7 ± 0.8 73.0 ± 1.5 65.3 ± 0.1 57.9 ± 1.1

DefRec (ours) 79.7 ± 0.3 61.8 ± 0.1 67.4 ± 1.0 67.1 ± 1.0 40.1 ± 1.4 72.6 ± 0.5 42.5 ± 0.3 28.9 ± 1.5 32.2 ± 1.2 66.4 ± 0.9 72.2 ± 1.2 66.2 ± 0.9 58.1 ± 0.9

DefRec + PCM (Ours) 78.8 ± 0.2 60.9 ± 0.8 63.6 ± 0.1 48.1 ± 0.4 48.6 ± 2.4 70.1 ± 0.8 46.9 ± 1.0 33.2 ± 0.3 37.6 ± 0.1 66.3 ± 1.7 66.5 ± 1.0 62.6 ± 0.2 56.9 ± 0.7

Table 4: Test mean IoU on PointSegDA dataset, averaged over three runs (± SEM).

(a) Volume-based def. (b) Feature-based def. (c) Sample-based def.

Figure 5: Analysis of the deformation approaches. (a) Clas-

sification accuracy as a function of the deformation radius.

Shown is the average (± SEM) gain in accuracy compared

with the accuracy for radius 2.0. (b) Classification accuracy

as a function of the deformation size and shared feature en-

coder layer. Each curve corresponds to the accuracy aver-

aged across six adaptation tasks of a different layer from the

shared feature encoder. (c) Self-supervised learning vs data

augmentation. Each marker is the average accuracy (across

three seeds) for a specific combination of adaptation (out of

6) and deformation (out of 3). Total of 18 points.

5.3. Ablation and additional experiments

To gain insight into the relative contribution of model

components, we evaluate variants of our approach where we

isolate the individual contribution of different components.

We do so for the method in which we split the space to 3×
3×3 voxels from the volume-based type. Table 3 compares

the following models: (1) DefRec-only, applying DefRec

to target data, no PCM. (2) PCM only, applying PCM to

source data, no DefRec. (3) DefRec Global + PCM our

method when reconstructing from a global feature vector,

following [1, 18]. (4) DefRec-S/T + PCM applying PCM to

source data and DefRec to both source and target data and;

(5) DefRec + PCM, our proposed method of applying PCM

to source data and DefRec to target data.

The results suggest: (a) When DefRec and PCM are con-

sidered independently, no module consistently outperforms

the other, yet when using both modules there is a signifi-

cant boost in most adaptation setups and in the overall per-

formance. (b) Applying DefRec on both source and tar-

get samples degrades performance. (c) Performance often

drops when reconstructing from the global feature vector.

5.4. DefRec for segmentation

To examine how DefRec generalizes beyond classi-

fication tasks, we tested it in segmentation tasks using

PointSegDA dataset. It is easy to extend DefRec to this task.

Similarly to classification, the network is trained jointly

with two losses: one to segment labeled source objects and

the second to reconstruct deformed target objects. Since la-

bels are now provided per point, not per object, we adapted

PCM to segmentation in the following way. Similarly to

PCM for classification, we generate a new point cloud from

a random split of two point clouds in the batch. Here, how-

ever, each point from the original shape migrates with its

associated label. The overall loss is the mean cross-entropy

calculated for all points in the new mixed shape.

Table 4 compares the mean Intersection over Union

(IoU) of DefRec with the unsupervised baseline, RS [38],

and Adapt-SegMap [44], a strong DA baseline for semantic

segmentation of images which applies adversarial training

in the output space. The experiment shows that: (i) Adding

auxiliary SSL tasks helps to bridge the domain gap for seg-

mentation and, (ii) DefRec (either with or without PCM)

achieves the highest results on most adaptations, validating

the applicability of DefRec to segmentation tasks.

6. Conclusions

We tackled the problem of domain adaptation on 3D

point clouds. We designed DefRec, a novel family of self-

supervised pretext tasks inspired by the kind of deforma-

tions encountered in real 3D point cloud data. In addition,

we designed PCM, a new training procedure for 3D point

clouds based on the Mixup method that can be applied to

any classification or segmentation task. PCM is comple-

mentary to DefRec, and when combined they form a strong

model with relatively simple architecture. We demonstrated

the benefit of our method on several adaptation setups,

reaching a new state of the art results.
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Vinacua, and Timo Ropinski. Monte carlo convolution for

learning on non-uniformly sampled point clouds. ACM

Transactions on Graphics, 37(6):1–12, 2018.

[20] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-

wise convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 984–993, 2018.

[21] Maximilian Jaritz, Tuan-Hung Vu, Raoul de Charette, Emilie
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