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Self-supervised learning for medical image classification: a
systematic review and implementation guidelines
Shih-Cheng Huang 1,2,8✉, Anuj Pareek 1,2,8, Malte Jensen1, Matthew P. Lungren1,2,3, Serena Yeung 1,2,4,5,6,8 and
Akshay S. Chaudhari 1,2,3,7,8

Advancements in deep learning and computer vision provide promising solutions for medical image analysis, potentially improving
healthcare and patient outcomes. However, the prevailing paradigm of training deep learning models requires large quantities of
labeled training data, which is both time-consuming and cost-prohibitive to curate for medical images. Self-supervised learning has
the potential to make significant contributions to the development of robust medical imaging models through its ability to learn
useful insights from copious medical datasets without labels. In this review, we provide consistent descriptions of different self-
supervised learning strategies and compose a systematic review of papers published between 2012 and 2022 on PubMed, Scopus,
and ArXiv that applied self-supervised learning to medical imaging classification. We screened a total of 412 relevant studies and
included 79 papers for data extraction and analysis. With this comprehensive effort, we synthesize the collective knowledge of prior
work and provide implementation guidelines for future researchers interested in applying self-supervised learning to their
development of medical imaging classification models.
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INTRODUCTION
The utilization of medical imaging technologies has become an
essential part of modern medicine, enabling diagnostic decisions
and treatment planning. The importance of medical imaging is
exemplified by the consistent rate of growth in medical imaging
utilization in modern healthcare1,2. However, as the number of
medical images relative to the available radiologists continues to
become more disproportionate, the workload for radiologists
continues to increase. Studies have shown that an average
radiologist now needs to interpret one image every 3–4 s to keep
up with clinical workloads3–5. With such an immense cognitive
burden placed on radiologists, delays in diagnosis and diagnostic
errors are unavoidable6,7. Thus, there is an urgent need to
integrate automated systems into the medical imaging workflow,
which will improve both efficiency and accuracy of diagnosis.
In recent years, deep learning models have demonstrated

diagnostic accuracy comparable to that of human experts in
narrow clinical tasks for several medical domains and imaging
modalities, including chest and extremity X-rays8–10, computed
tomography (CT)11, magnetic resonance imaging (MRI)12, whole
slide images (WSI)13,14, and dermatology images15. While deep
learning provides promising solutions for improving medical
image interpretation, the current success has been largely
dominated by supervised learning frameworks, which typically
require large-scale labeled datasets to achieve high performance.
However, annotating medical imaging datasets requires domain
expertize, making large-scale annotations cost-prohibitive and
time-consuming, which fundamentally limits building effective
medical imaging models across varying clinical use cases.
Besides facing challenges with training data, most medical

imaging models underperform in their ability to generalize to

external institutions or when repurposed for other tasks16. The
inability to generalize can be largely due to the process of
supervised learning, which encourages the model to mainly learn
features heavily correlated with specific labels rather than general
features representative of the whole data distribution. This creates
specialist models that can perform well only on the tasks they
were trained to do17. In a healthcare system where a myriad of
opportunities and possibilities for automation exist, it is practically
impossible to curate labeled datasets for all tasks, modalities, and
outcomes for training supervised models. Therefore, it is
important to develop strategies for training medical artificial
intelligence (AI) models that can be fine-tuned for many down-
stream tasks without curating large-scale labeled datasets.
Self-supervised learning (SSL), the process of training models to

produce meaningful representations using unlabeled data, is a
promising solution to challenges caused by difficulties in curating
large-scale annotations. Unlike supervised learning, SSL can create
generalist models that can be fine-tuned for many downstream
tasks without large-scale labeled datasets. Self-supervised learning
was first popularized in the field of natural language processing
(NLP) when researchers leveraged copious amounts of unlabeled
text scraped from the internet to improve the performance of
their models. These pre-trained large language models18,19 are
capable of achieving state-of-the-art results for a wide range of
NLP tasks, and have shown the ability to perform well on new
tasks with only a fraction of the labeled data that traditional
supervised learning techniques require. Motivated by the initial
success of SSL in NLP, there is great interest in translating similar
techniques of SSL to computer vision tasks. Such work in
computer vision has already demonstrated performance for
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natural images that is superior to that achieved by supervised
models, especially in label-scarce scenarios20.
Reducing the number of manual annotations required to train

medical imaging models will significantly reduce both the cost
and time required for model development, making automated
systems more accessible to different specialties and hospitals,
thereby reducing workload for radiologists and potentially
improving patient care. While there is already a growing trend
in recent medical imaging AI literature to leverage SSL (Fig. 1), as
well as a few narrative reviews21,22, the most suitable strategies
and best practices for medical images have not been sufficiently

investigated. The purpose of this work is to present a comprehen-
sive review of deep learning models that leverage SSL for medical
image classification, define and consolidate relevant terminology,
and summarize the results from state-of-the-art models in relevant
current literature. We focus on medical image classification tasks
because many clinical tasks are based on classification, and thus our
research may be directly applicable to deep learning models for
clinical workflows. This review intends to help inform future
modeling frameworks and serve as a reference for researchers
interested in the application of SSL in medical imaging.

Terminology and strategies in self-supervised learning
Here we provide definitions for different categorizations of self-
supervision strategies, namely innate relationship, generative,
contrastive, and self-prediction (Fig. 2)23.
Innate relationship SSL is the process of pre-training a model

on a hand-crafted task, which can leverage the internal structure
of the data, without acquiring additional labels. In the most
general sense, innate relationship models perform classification or
regression based on the hand-crafted task instead of optimizing
based on the model’s ability to reconstruct (generative and self-
prediction) or represent the original image (contrastive). Specifi-
cally, these methods are optimized using classification or
regression loss derived from the given task. Pre-training the
model on such a hand-crafted task makes the model learn visual
features as a starting point. However, innate relationship SSL can
lead to visual features that are effective only for the hand-crafted
task but have limited benefits for the downstream task. Examples
of innate relationship for visual inputs include predicting image
rotation angle24, solving jigsaw puzzles of an image25, or
determining the relative positions of image patches26.
Generative models, popularized through the advent of

traditional autoencoders27, variational autoencoders28 and gen-
erative adversarial networks (GANs)29, are able to learn the

Fig. 1 Timeline showing the number of publications on deep
learning for medical image classification per year, found by using
the same search criteria on PubMed, Scopus and, ArXiv. The figure
shows that self-supervised learning is a rapidly growing subset of
deep learning for medical imaging literature.

Fig. 2 Illustration of different self-supervised learning and fine-tuning strategies. During Stage 1 a model is pre-trained using one or more
of the following self-supervised learning strategies: (a) Innate relationship SSL pre-trains a model on a hand-crafted task by leveraging the
internal structure of the data, (b) Generative SSL learns the distribution of training data, enabling reconstruction of the original input (c)
Contrastive SSL forms positive pairs between different augmentations of the same image and minimizes representational distances of positive
samples (d) Self-prediction augments or masks out random portions of an image, and reconstructs the original image based on the unaltered
parts of the original image. During Stage 2, the pre-trained model can be fine-tuned using one of the following strategies: (e) end-to-end fine-
tuning of the pre-trained model and classifier, or (f) train a classifier that uses extracted features from the SSL pre-trained model.
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distribution of training data, and thereby reconstruct the original
input or create new synthetic data instances. By using readily
available data as the target, generative models can be trained to
automatically learn useful latent representations without the need
for explicit labels, and they thus constitute a form of self-
supervision. Early work that leverages generative models for self-
supervised learning rely on autoencoders, where an encoder
converts inputs into latent representations and a decoder
reconstructs the representation back to the original image30.
Subsequently, these models are optimized based on how closely
the reconstructed images resemble the original image. More
recent work has explored utilizing GANs for generative self-
supervised learning, with improvement in performance over prior
work31,32.
Contrastive self-supervised methods are based on the assump-

tion that variations caused by transforming an image do not alter
the image’s semantic meaning. Therefore, different augmenta-
tions of the same image constitute a so-called positive pair, while
the other images and their augmentations are defined to be
negative pairs in relation to the current instance. Subsequently a
model is optimized to minimize distance in latent space between
the positive pairs and push apart negative samples. Separating
representations for positive and negative pairs can be based on
arbitrary distance metrics incorporated into the contrastive loss
function. One pioneering contrastive-based method is SimCLR20,
which outperformed supervised models on ImageNet benchmark
using 100 times fewer labels. However, SimCLR requires a very
large batch size to perform well, which can be computationally
prohibitive for most researchers. To reduce the large batch size
required by SimCLR to ensure enough informative negative
samples, Momentum Contrast (MoCo) introduced a momentum
encoded queue to keep negative samples33. More recently, a
subtype of contrastive self-supervised learning called instance
discrimination, which includes methods such as DINO34, BYOL35

and SimSiam36, further eliminates the need for negative samples.
Instead of contrastive augmented pairs from the same image,
several studies have explored contrasting clustering assignments
of augmented versions of the same image37–39.
Self-prediction SSL is the process of masking or augmenting

portions of the input and using the unaltered portions to
reconstruct the original input. The idea of self-prediction SSL
originated from the field of NLP, where state-of-the-art models
were pre-trained using the Masked Language Modeling approach
by predicting missing words in a sentence18,19. Motivated by the
success in NLP, early work in the field of computer vision made
similar attempts by masking out or augmenting random patches
of an image and training Convolutional Neural Networks (CNNs) to
reconstruct the missing regions as a pre-training strategy40 but
only with moderate success. Recently, the introduction of Vision
Transformers (ViT) allowed computer vision models to also have
the same transformer-based architecture. Studies such as BERT
Pre-Training of Image Transformers (BEiT) and Masked Auto-
encoders (MAE), which combine ViT with self-prediction pre-
training objective, achieve state-of-the-art results when fine-tuned
across several natural image benchmarks41,42. Similar to gen-
erative SSL, self-prediction models are optimized using the
reconstruction loss. The key difference between self-prediction
and generative SSL methods is that self-prediction applies
masking or augmentations only to portions of the input image,
and uses the remaining, unaltered portions to inform reconstruc-
tion. On the other hand, generative based SSL applies augmenta-
tions on the whole image and subsequently reconstruct the
whole image.
There are two main strategies for fine-tuning models that have

been pre-trained using SSL (Fig. 2). If we consider any imaging
model to be composed of an encoder part and a classifier part,
then these two strategies are (1) end-to-end fine-tuning vs. (2)
extract features from the encoder first and subsequently train an

additional classifier. In end-to-end fine-tuning, all the weights of
the encoder and classifier are unfrozen and can be adjusted
through optimization using supervised learning in the fine-tuning
phase. In the feature-extraction strategy, the weights of the
encoder are kept frozen to extract features as inputs to the
downstream classifier. While much previous work uses linear
classifiers with trainable weights (also known as linear probing),
any type of classifier or architecture can be used, including
Support Vector Machines (SVMs) and k-nearest neighbor43. It is
worth emphasizing that SSL is task agnostic, and the same SSL
pre-trained model can be fine-tuned for different types of
downstream tasks, including classification, segmentation, and
object detection.

RESULTS
A total of 412 unique studies were identified through our
systematic search. After removing duplicates and excluding
studies based on title and abstract using our study selection
criteria (see Methods), 148 studies remained for full-text screening.
A total of 79 studies fulfilled our eligibility criteria and were
included for systematic review and data extraction. Figure 3
presents a flowchart of the study screening and selection process.
Table 1 displays the included studies and extracted data while
Fig. 4 summarizes the statistics of extracted data.

Innate relationship
Innate relationship was used in 15 out of 79 studies (Table 1). Nine
of these studies designed their innate relationship pre-text task
based on different image transformations, including rotation
prediction44–47, horizontal flip prediction48, reordering shuffled
slices49, and patch order prediction46,50–52. Notably, Jiao et al. pre-
trained their models simultaneously with two innate relationship
pre-text tasks (slice order prediction and geometric transformation
prediction), and showed that a weight-sharing Siamese network
out-performs a single disentanged model for combining the two
pre-training objectives53. The remaining six studies designed
clinically relevant pre-text tasks by exploiting the unique proper-
ties of medical images. For instance, Droste et al. utilized a gaze
tracking dataset and pre-trained a model to predict sonographers’
gazes on ultrasound video frames with gaze-point regression54.
Dezaki et al. employed temporal and spatial consistency to
produce features for echocardiograms that are strongly correlated
with the heart’s inherent cyclic pattern55. Out of all innate
relationship based studies, ten compared performance to those of
supervised pre-trained models and eight of them showed
improvement in performance. On average, clinically relevant
pre-text tasks achieved greater improvements in performance
over transformation-based pre-text tasks, when compared to
purely supervised methods (13.7% vs. 5.03%).

Generative
Generative SSL was used in 3 out of 79 studies (Table 1). Gamper
et al. extracted histopathology images from textbooks and
published papers along with the figure captions and devised an
image captioning task for self-supervised pre-training, where a
ResNet-18 was used for encoding images, and the representation
was fed to transformers for image-captioning56. They were
subsequently able to use the learned representations for a
number of downstream histopathology tasks, including breast
cancer classification. Osin et al.57 leveraged the chronology of
sequential images in brain fMRI for self-supervised pre-training.
Brain fMRI scans are typically acquired with subjects alternating
between a passive and an active phase, where the subject is
instructed to perform some task or receives some external
stimulus. During the self-supervision phase, Osin et al. trained
two networks: an autoencoder to generate the active fMRI image
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given the passive image, and an LSTM to predict the next active
image. The representations learned during the self-supervision
were then used to train a classifier to predict psychiatric traits such
as post-traumatic stress disorder (PTSD). Finally, Zhao et al. use a
generative approach with an autoencoder with an additional
constraint that explicitly associates brain age to the latent
representations for longitudinally acquired brain MRIs58. Of the
three studies, two reported comparisons with purely supervised
models and showed relative improvements of 16.6%58 and
24.5%56 with self-supervised learning.

Contrastive
The majority of the studies that remained after our full-text
screening (44/79) used contrastive learning as their self-
supervised pre-training strategy (Table 1). SimCLR, MoCo and
BYOL were the three most used frameworks, applied in 13, 8,
and 3 papers, respectively. Some papers leveraged medical
domain priors to create specialized strategies for creating
positive pairs. For pathology slices, Li et al. exploited that the
neighborhood around a patch is likely to be similar, and used
pre-clustering to find dissimilar patches59. In radiology, Ji et al.
used multimodal contrastive learning by matching X-rays with
corresponding radiology reports60. They extracted and fused the
representations of the image and text modalities through both
global image-sentence matching and local attention-based
region-phrase matching. Wang et al. utilized both radiomic
features and deep features from the same image to form
positive pairs61. They also utilized the spatial information of the
patches, by mining positive pairs from proximate tumor areas
and negative pairs from distant tumor areas. Dufumier et al.
(2021) used patient meta-data from MRI to form positive pairs62.
Thirty-six studies compared contrastive SSL pre-training to
supervised pre-training and reported an average improvement
in performance of 6.35%.

Self-prediction
Self-prediction was used in six out of all included studies (Table 1).
We consider studies that applied local-pixel shuffling as self-
prediction since the augmentation operation, which shuffles the
order of pixels, is applied only to a random patch of an image. Liu
et al. used a U-net model to restore ultrasound images augmented
with local-pixel shuffling, and they subsequently concatenated the
outputs of the U-net encoder with featurized clinical variables
(age, gender, tumor size) for the downstream prediction task63.
Similarly, Zhong et al. designed three image restoration tasks on
cine-MRI videos and used a U-net-like encoder-decoder architec-
ture including skip connections to perform the image restora-
tion64. Three different image restoration tasks were set up using
local-pixel shuffling, within-frame pixel shuffling, and covering an
entire video frame with random pixels. Jana et al. used an
encoder-decoder architecture for image restoration of CT scans
that were corrupted by swapping several small patches within a
single CT slice65. Jung et al. created a functional connectivity
matrix between pairs of region-of-interest in rs-fMRI for each
subject, and created a masked auto-encoder task by randomly
masking out different rows and columns of the matrix for
restoration66. Two of the five studies compared their approach
to models without self-supervised pre-training and reported slight
relative improvements in performance of 1.12%67 and 0.690%63.

Combined approaches
Eleven studies found creative ways to combine different self-
supervised learning strategies to pre-train their medical imaging
models (Table 1). Over half of these studies (6/11) combined
contrastive with generative approaches. With the exception of Ke
et al.’s work68, which uses a CycleGAN for histopathology slide
stain normalization, all studies utilized an autoencoder as their
generative model when combined with contrastive strategies. A
combination of contrastive and innate relationships was used in
three studies. The innate relationship tasks range from augmenta-
tion prediction and patch positioning prediction69, rotation

Fig. 3 The PRISMA diagram for this review. The authors independently screened all records for eligibility. Out of 412 studies identified from
PubMed, Scopus, and ArXiv, 79 studies were included in the systematic review.
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Fig. 4 Summary of extracted data from studies in our system review. a Prevalence of different medical specialties split by self-supervised
learning strategy. b Prevalence of different medical imaging modalities split by self-supervised learning strategy. c Relative performance
difference between different types of self-supervised learning strategies on the same task. d Performance comparison between end-to-end
fine-tuning vs. training a classifier using extracted features from pre-trained self-supervised models. e Relative difference in downstream task
performance between self-supervised and non-self-supervised models.
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prediction70, and ultrasound video to speech correspondence
prediction53. For the remaining two studies, Cornelissen et al. used
a conditional GAN, and trained the generator network on
endoscopic images of the esophagus to recolorize, inpaint and
generate super-resolution images71. Because their tasks consisted
of both inpainting (self-prediction) and super-resolution (gen-
erative), their approach was considered combined. Haghighi et al.
combined three different SSL strategies (generative, innate
relationship, self-prediction) by first training an auto-encoder
and group instances with similar appearances based on the latent
representations from the auto-encoder72. Then, the authors
randomly cropped image patches at a fixed coordinate for all
instances in the same group and assigned a pseudo label to the
cropped patches at each coordinate. Finally, the cropped patches
were randomly perturbed and a restoration autoencoder was
trained simultaneously with a pseudo label classification objective.
Eight of the studies that combined different strategies compared
self-supervised pre-training with purely supervised approaches, all
of which reported performance improvement (0.140–8.29%).

DISCUSSION
This review aims to aggregate the collective knowledge of prior
works that applied SSL to medical classification tasks. By
synthesizing the relevant literature, we provide consistent
definitions for SSL techniques, categorize prior work by their
pre-training strategies, and provide implementation guidelines
based on lessons learned from prior work. While five studies
reported a slight decrease in performance (0.980–4.51%), the
majority of self-supervised pre-trained models led to a relative
increased performances of 0.216–32.6% AUROC, 0.440–29.2%
accuracy, and 0.137–14.3% F1 score over the same model
architecture without SSL pre-training, including both ImageNet
and random initialization (Fig. 4e). In Fig. 4c we show a
comparison of different SSL strategies on the same downstream
task, which suggests that a combined strategy tends to outper-
form other self-supervised categories. However, it is important to
note that combined strategies are typically the proposed method
in the manuscripts, and thus publication bias might have resulted
in this trend. In Fig. 4d we additionally plot the performance of the
two main types of fine-tuning strategies on the same task, and the
graph tends to indicate that end-to-end fine-tuning leads to better
performance regardless of the dataset size. In the presence of
relevant data, we recommend implementing self-supervised
learning strategies for training medical image classification
models since our literature review indicated that self-supervised
pre-training generally results in better model performance,
especially when annotations are limited (Table 1).
The types of medical images utilized for model development as

well as the downstream classification task encompassed a wide
range of medical domains and applications (Fig. 4a, b). The vast
majority of the studies explored the clinical domain of radiology
(47/79), of which 27 were focused on investigating abnormalities
on chest imaging such as pneumonia, COVID-19, pleural effusion
and pulmonary embolism (see Table 1). The choice of this domain
is likely a combination of the availability of large-scale public chest
datasets such as CheXpert73, RSPECT74, RadFusion75 and MIMIC-
CXR76, as well as the motivation to solve acute or emerging
healthcare threats, which was the case during the coronavirus
pandemic45,46,48,67,77–83. The second most prevalent clinical
domain was pathology (12/79). Similar to radiology, this field is
centered around medical imaging in the form of whole slide
images. The tasks were focused on histopathological classification,
where the majority focused on colorectal cancer classifica-
tion68,84–87. The remaining studies explored multiple other tasks
and many focused on classification of malignant disorders such as
breast cancer56,61,88, skin cancer89, and lung cancer59. A particu-
larly interesting medical task that was explored was classification

of psychiatric diseases or psychiatric traits using fMRI57,62,90.
Current limited knowledge and understanding of possible
imaging features arising in psychiatric diseases constitutes a
major clinical challenge to making local annotations such as
bounding boxes or segmentations on brain scans. In this case
both Osin et al. and Hashimoto demonstrated that training a self-
supervised framework could be beneficial to generate represen-
tative latent features of brain fMRIs before fine-tuning on image-
level class labels57,90.
A majority of the included studies lacked strong baselines and

ablation experiments. Even though 60 out of 79 studies compared
their results with purely supervised baselines, only 33 studies
reported comparisons with another self-supervised learning
strategy. Of the 33 studies, 26 compared with a self-supervised
category that differs from their best performing model. Among
the SSL baselines, SimCLR was most frequently compared (16/26),
followed by autoencoders (11/26) and MoCo (9/26). Furthermore,
only 18 out of 79 studies indicated use of natural image pre-
trained weights, either supervised or self-supervised, to initiate
their model for subsequent in-domain self-supervised pre-training.
Lastly, merely 13 studies compared performance between
classification on extracted features to end-to-end fine-tuning,
two of which did not report numerical results. Of the 11 studies
that quantitatively reported performance, eight found end-to-end
fine-tuning to outperform training a new classifier on extracted
features (Fig. 4d). Since self-supervised learning for medical
images is a promising yet nascent research area and the optimal
strategies for training these models are still to be explored,
researchers should systematically investigate different categories
of self-supervised learning for their medical image datasets, in
addition to fine-tuning strategy and pre-trained weights.
Researchers should also test their newly developed strategies on
multiple datasets, ideally on different modalities and medical
imaging domains.

Implementation guidelines
Definitive conclusions on the optimal strategy for medical images
cannot be made since only a subset of studies made comparisons
between different types of self-supervised learning strategies.
Furthermore, the optimal strategy may be dependent on a
number of factors including the specific medical imaging domain,
the size and complexity of the dataset, and the type of
classification task91,92. Due to this heterogeneity, we encourage
researchers to compare multiple self-supervised learning strate-
gies for developing medical image classification models, especially
in limited data regimes. Although self-supervised pre-training can
be computationally demanding, many models pre-trained in a
self-supervised manner on large-scale natural image datasets are
publicly available and should be utilized. Azizi et al. have shown
that SSL pre-trained models using natural images tend to
outperform purely supervised pre-trained models93 for medical
image classification, and continuing self-supervised pre-training
with in-domain medical images leads to the best results. More
recently, Azizi et al. found that using generic and large-scale
supervised pre-trained models, such as BigTransfer94, can also
benefit subsequent domain-specific self-supervised pre-training,
and ultimately improve model performance and robustness for
different medical imaging modalities95. Truong et al. have
demonstrated the effectiveness of combining representations
from multiple self-supervised methods to improve performance
for three different medical imaging modalities96.
It is worth noting that representations learned using certain SSL

strategies can be relatively more linearly separable, while
representations from other strategies can achieve better perfor-
mance when more layers or the entire model are fine-tuned. For
instance, for natural image datasets, MoCo outperforms MAE by
training a linear model on extracted features (linear probing),

S.-C. Huang et al.

10

npj Digital Medicine (2023)    74 Published in partnership with Seoul National University Bundang Hospital



while MAE achieves better performance than MoCo as the number
of fine-tune layers increases41. Likewise, Cornelissen et al.
demonstrated that using representations from earlier layers can
improve downstream classification of neoplasia in Barrett’s
Esophagus71. Factors such as the degree of domain shift between
SSL pre-training data and downstream task data could also affect
the linear separability of the representations. Based on our
aggregated results, we found that end-to-end fine-tuning
generally leads to better performance for medical images (Fig.
4c). However, due to the lack of ablation studies from current
work, we cannot determine whether fine-tuning only later layers
of the model could lead to better performance relative to end-to-
end fine-tuning. Furthermore, even though self-supervised learn-
ing strategies generate label-efficient representations, the learning
process typically requires a relatively large amount of unlabeled
data. For instance, reducing the number of pre-training images
from 250k to 50k typically leads to a more than 10.0% drop in
accuracy for downstream tasks, while reducing from 1M to 250k
leads to a 2.00–4.00% decrease92. Curating large-scale medical
image datasets from multiple institutions is often challenged by
the difficulty of sharing patient data while preserving patient
privacy. Nevertheless, using federated learning, Yan et al. have
demonstrated the possibility of training self-supervised models
with data from multiple healthcare centers without the need for
explicitly sharing data, and have shown improvement in robust-
ness and performance over models trained using data from only
one institution97.
The field of self-supervised learning for computer vision is

constantly and rapidly evolving. While many self-supervised
methods have led to state-of-the-art results when fine-tuned on
natural image datasets, how translatable these results are to
medical datasets is unclear, mainly due to the unique properties of
medical images. For instance, many contrastive-based strategies
have been developed based on the assumption that the class-

defining object is the main focus of an image, and thus variations
caused by image transformations should not alter the image’s
semantic meanings (Fig. 5). Therefore, these methods typically
apply strong transformations to the original image and encourage
the model to learn similar global representations for images with
similar semantic meanings. However, the assumption made for
natural images is not necessarily valid for medical images for two
reasons. First, medical images have high inter-class visual
similarities due to the standardized protocols for medical image
acquisition and the homogeneous nature of human anatomy.
Second, within the medical imaging domain, the semantic
meaning of interest is rarely an object such as the anatomical
organ, but is rather the presence or absence of pathological
abnormalities within that organ or tissue. Many abnormalities are
characterized by very subtle and localized visual cues, which can
become ambiguous or obscured by augmentations (Fig. 5c). The
random masking operation often utilized by self-prediction self-
supervised learning methods may also alter a medical image’s
semantic meaning by removing image regions with diseases or
abnormalities (Fig. 5b). Recent work has demonstrated the benefit
of using learned visual word masks98,99 or spatially constrained
crops100,101 to encourage representational invariance with seman-
tically more similar regions of an image. In a similar vein, we
believe that augmentation strategies tailored for the nature of
medical images during self-supervised learning is a research area
that warrants further exploration.
The unique properties of medical images can be leveraged to

design self-supervised learning methods more suitable for specific
downstream tasks. For instance, instead of forming positive pairs
with different augmented versions of the same image during
contrastive learning, one can improve positive sampling according
to the similarity between a patient’s clinical information. In fact,
several studies have shown performance improvement when
constructing positive pairs with slices from the same CT series102,

Fig. 5 Examples of augmentations and transformations that alter the semantic meaning of medical images144 but not natural images145.
a The image shows a T2-weighted brain MRI with a cavernoma in the right parietal lobe (bounded in red). b and c Masking and cropping
operations can obscure the cavernoma and alter the semantic meaning of the image, as the MRI-scan no longer exhibits any abnormality.
d Image of a dog (bounded in red), (e) and (f) Masking and cropping operations do not obscure the dog nor alter the semantic meaning of
the image.
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images from the same imaging study103, images from the same
patient93 and images from patients with similar age62. Future
research should explore other strategies for defining positive pairs,
such as leveraging patient demographics or medical history
information. The unique attributes of medical images can also be
utilized for creating relevant pre-text tasks. Rivail et al. proposed a
self-supervised approach to model disease progression by
estimating the time interval between pairs of optical coherence
tomography (OCT) scans from the same patient104. Involving
additional modalities during self-supervised learning has also
been shown to improve a model’s performance when fine-tuned
for downstream tasks. For example, Taleb et al. proposed a
multimodal contrastive learning strategy between retinal fundus
images and genetics data and showed improvement in perfor-
mance over single modality pre-training105. Jiao et al. cleverly
leveraged the correlation between fetal ultrasonography and the
narrative speech of the sonographer to create a pre-text task for
self-supervision, and subsequently used the learned representa-
tions for downstream standard plane classification on sono-
grams53. Furthermore, many medical imaging modalities have
corresponding radiology reports that contain detailed descriptions
of the medical conditions observed by radiologists. Several studies
have utilized these medical reports to provide supervision signals
during self-supervised learning and shown label efficiency for
downstream tasks60,106. By leveraging radiology reports, Huang
et al. demonstrated the model’s ability to localize chest
abnormalities on chest x-rays without segmentation labels and
revealed the possibility of zero-shot learning by converting the
classification classes into textual captions and framing the image
classification task as measuring the image-text similarity107.
However, currently there are very few publicly available medical
image datasets with corresponding radiology reports, largely due
to the difficulties in preserving patient privacy. Therefore, these
multi-modal self-supervised learning strategies are limited to
implementation within a healthcare system until more datasets
with medical image and report pairs are publicly released. Overall,
the flexibility in creating self-supervised methods as well as the
adaptability and transferability to multiple medical domains
highlights the importance and utility of self-supervised techniques
in clinical applications.

Limitations
For this review paper, publication bias can be a considerable
limitation due to disproportionately reported positive results in
the literature, which can lead to overestimation of the benefits of
self-supervised learning. We also limited our search to only
consider papers published after 2012, which excluded papers that
applied self-supervised learning prior to the era of deep learning
for computer vision108. Furthermore, we are unable to aggregate
or statistically compare the effects of each self-supervised learning
strategy on performance gain, since the included studies use
different imaging modalities, report different performance metrics,
and investigate different objectives. In addition, subjectivity may
have been introduced when categorizing the self-supervised
learning strategy in each paper, especially for studies that
implemented novel, unconventional, or a mixture of methods.
Lastly, our study selection criteria only included literature for the
task of medical image classification, which limits the scope of this
review paper, since we recognize that self-supervised pre-trained
models can also be fine-tuned for other important medical tasks,
including segmentation, regression, and registration.

Future research
Results from this systematic review have revealed that SSL for
medical image classification is a growing and promising field of
research across multiple medical disciplines and imaging mod-
alities. We found that self-supervised pre-training generally

improves performance for medical imaging classification tasks
over purely supervised methods. We categorized the SSL
approaches used in medical imaging tasks as a framework for
methodologic communication and synthesized benefits and
limitations from literature to provide recommendations for future
research. Future studies should include direct comparisons of
different self-supervised learning strategies using shared termi-
nology and metrics whenever applicable to facilitate the discovery
of additional insights and optimal approaches.

METHODS
This systematic review was conducted based on the PRISMA
guidelines109.

Search strategy
A systematic literature search was implemented in three literature
databases: PubMed, Scopus and ArXiv. The key search terms were
based on a combination of two major themes: “self-supervised
learning” and “medical imaging”. Search terms for medical
imaging were not limited to radiological imaging but were also
broadly defined to include imaging from all medical fields, i.e.,
fundus photography, whole slide imaging, endoscopy, echocar-
diography, etc. Since we specifically wanted to review literature on
the task of medical image classification, terms for other computer
vision tasks such as segmentation, image reconstruction, denois-
ing and object detection were used as exclusion criteria in the
search. The search encompassed papers published between
January 2012 and May 2021. The start date was considered
appropriate due to the rising popularity of deep learning for
computer vision since the 2012 ImageNet challenge. The
complete search string for all three databases is provided in
Supplementary Methods.
We included all research papers in English that used self-

supervision techniques to develop deep learning models for
medical image classification tasks. The research papers had to be
original research in the form of journal articles, conference
proceedings or extended abstracts. We excluded any publications
that were not peer-reviewed. Applicable self-supervision techni-
ques were defined according to the different types presented in
the “terminology and strategies in self-supervised learning”
section. We included only studies that applied the deep learning
models to a downstream medical image classification task, i.e, it
was not sufficient for the study to have developed a self-
supervision model on medical images. In addition, the medical
image classification task had to be a clinical task or clinically
relevant task. For example, the downstream task of classifying the
frame number in a temporal sequence of frames from echocar-
diography110 was not considered a clinically relevant task.
We excluded studies that used semi-supervised learning or any

amount of manually curated labels during the self-supervision
step. We also excluded studies that investigated only regression or
segmentation in their downstream tasks. Furthermore, we
excluded any studies where the self-supervised pre-trained model
was not directly fine-tuned for classification after pre-training.
Studies that used non-human medical imaging data (i.e.,
veterinarian medical images) were also excluded.

Study selection
The Covidence software (www.covidence.org) was used for
screening and study selection. After the removal of duplicates,
studies were screened based on title and abstract, and then full
texts were obtained and assessed for inclusion. Study selection
was performed by three independent researchers (S.-C.H., A.P.,
and M.J.), and disagreements were resolved through discussion. In
cases where consensus could not be achieved a fourth arbitrating
researcher was consulted (A.S.C.).

S.-C. Huang et al.

12

npj Digital Medicine (2023)    74 Published in partnership with Seoul National University Bundang Hospital

http://www.covidence.org/


Data extraction
For benchmarking the existing approaches we extracted the
following data from each of the selected articles: (a) self-
supervised learning strategy, (b) year of publication, (c) first
author, (d) imaging modality, (e) clinical domain, (f) outcome/task,
(g) combined method, (h) self-supervised framework, (i) strategy
for fine-tuning, (j) performance metrics, (k) SSL performance, (l)
supervised performance, and (m) difference in SSL and supervised
performance (Table 1). We also computed the relative difference
in performance between the supervised and self-supervised
model on the p) full dataset and q) subset. We classified the
specific self-supervised learning strategy based on the definitions
in the section “Terminology and strategies in self-supervised
learning”. We extracted AUROC whenever this metric was
reported, otherwise we prioritize accuracy over F1 score and
sensitivity. When the article contained results from multiple
models (i.e., ResNet and DenseNet), metrics from the experiment
with the best average performing self-supervised model were
extracted. When the authors presented results from several clinical
tasks, we chose tasks that best corresponded to the title and
objective of the manuscript. If the tasks were deemed equal, we
picked the task where the chosen SSL model had the highest
performance. We picked supervised baseline with the same model
architecture and pre-training dataset for performance comparison.
If the author did not report performance from a supervised model
that used the same pre-training dataset, preference was given to
the ImageNet pre-trained model over a randomly initialized one.
The pre-training dataset used by the self-supervised and
supervised model are recorded in the Supplementary Table 1.
When papers report results on many percentages of fine-tuning
(i.e., 1%, 10%, 100%), we pick the lowest and highest to study the
label-efficiency of self-supervised learning methods. We also
provide in Supplementary Table 1 additional technical details
including model architecture, dataset details, number of training
samples, comparison to selected baselines and performance on
subsets of data. These items were extracted to enable researchers
to find and compare current self-supervised studies in their
medical field or input modalities of interest.
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