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ABSTRACT

Social relations are often used to improve recommendation quality

when user-item interaction data is sparse in recommender systems.

Most existing social recommendation models exploit pairwise re-

lations to mine potential user preferences. However, real-life in-

teractions among users are very complicated and user relations

can be high-order. Hypergraph provides a natural way to model

complex high-order relations, while its potentials for improving

social recommendation are under-explored. In this paper, we �ll

this gap and propose a multi-channel hypergraph convolutional net-

work to enhance social recommendation by leveraging high-order

user relations. Technically, each channel in the network encodes

a hypergraph that depicts a common high-order user relation pat-

tern via hypergraph convolution. By aggregating the embeddings

learned through multiple channels, we obtain comprehensive user

representations to generate recommendation results. However, the

aggregation operation might also obscure the inherent characteris-

tics of di�erent types of high-order connectivity information. To

compensate for the aggregating loss, we innovatively integrate

self-supervised learning into the training of the hypergraph con-

volutional network to regain the connectivity information with

hierarchical mutual information maximization. The experimental

results on multiple real-world datasets show that the proposed

model outperforms the SOTA methods, and the ablation study

veri�es the e�ectiveness of the multi-channel setting and the self-

supervised task. The implementation of our model is available via

https://github.com/Coder-Yu/RecQ.
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Figure 1: The common types of high-order user relations in

social recommender systems.

1 INTRODUCTION

Over the past decade, the social media boom has dramatically

changed people’s ways of thinking and behaving. It has been re-

vealed that people may alter their attitudes and behaviors in re-

sponse to what they perceive their friends might do or think, which

is known as the social in�uence [7]. Meanwhile, there are also

studies [25] showing that people tend to build connections with

others who have similar preferences with them, which is called

the homophily. Based on these �ndings, social relations are often

integrated into recommender systems to mitigate the data spar-

sity issue [13, 33]. Generally, in a social recommender system, if

a user has few interactions with items, the system would rely on

her friends’ interactions to infer her preference and generate better

recommendations. Upon this paradigm, a large number of social

recommendation models have been developed [12, 21, 23, 55, 57, 61]

and have shown stronger performance compared with general rec-

ommendation models.

Recently, graph neural networks (GNNs) [43] have achieved

great success in a wide range of areas. Owing to their powerful

capability in modeling relational data, GNNs-based models also

have shown prominent performance in social recommendation

[9, 19, 40–42, 58]. However, a key limitation of these GNNs-based

social recommendation models is that they only exploit the sim-

ple pairwise user relations and ignore the ubiquitous high-order

relations among users. Although the long-range dependencies of
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relations (i.e. transitivity of friendship), which are also considered

high-order, can be captured by using k graph neural layers to in-

corporate features from k-hop social neighbors, these GNNs-based

models are unable to formulate and capture the complex high-order

user relation patterns (as shown in Fig. 1) beyond pairwise relations.

For example, it is natural to think that two users who are socially

connected and also purchased the same item have a stronger rela-

tionship than those who are only socially connected, whereas the

common purchase information in the former is often neglected in

previous social recommendation models.

Hypergraph [4], which generalizes the concept of edge to make

it connect more than two nodes, provides a natural way to model

complex high-order relations among users. Despite the great ad-

vantages over the simple graph in user modeling, the strengths of

hypergraph are under-explored in social recommendation. In this

paper, we �ll this gap by investigating the potentials of fusing hy-

pergraph modeling and graph convolutional networks, and propose

a Multi-channel Hypergraph Convolutional Network (MHCN) to

enhance social recommendation by exploiting high-order user re-

lations. Technically, we construct hypergraphs by unifying nodes

that form speci�c triangular relations, which are instances of a set

of carefully designed triangular motifs with underlying semantics

(shown in Fig. 2). As we de�ne multiple categories of motifs which

concretize di�erent types of high-order relations such as ‘having a

mutual friend’, ‘friends purchasing the same item’, and ‘strangers

but purchasing the same item’ in social recommender systems, each

channel of the proposed hypergraph convolutional network under-

takes the task of encoding a di�erent motif-induced hypergraph.

By aggregating multiple user embeddings learned through multiple

channels, we can obtain the comprehensive user representations

which are considered to contain multiple types of high-order rela-

tion information and have the great potentials to generate better

recommendation results with the item embeddings.

However, despite the bene�ts of themulti-channel setting, the ag-

gregation operation might also obscure the inherent characteristics

of di�erent types of high-order connectivity information [54], as dif-

ferent channels would learn embeddings with varying distributions

on di�erent hypergraphs. To address this issue and fully inherit the

rich information in the hypergraphs, we innovatively integrate a

self-supervised task [15, 37] into the training of the multi-channel

hypergraph convolutional network. Unlike existing studies which

enforce perturbations on graphs to augment the ground-truth [53],

we propose to construct self-supervision signals by exploiting the

hypergraph structures, with the intuition that the comprehensive

user representation should re�ect the user node’s local and global

high-order connectivity patterns in di�erent hypergraphs. Con-

cretely, we leverage the hierarchy in the hypergraph structures

and hierarchically maximizes the mutual information between rep-

resentations of the user, the user-centered sub-hypergraph, and

the global hypergraph. The mutual information here measures the

structural informativeness of the sub- and the whole hypergraph

towards inferring the user features through the reduction in local

and global structure uncertainty. Finally, we unify the recommenda-

tion task and the self-supervised task under a primary & auxiliary

learning framework. By jointly optimizing the two tasks and lever-

aging the interplay of all the components, the performance of the

recommendation task achieves signi�cant gains.

The major contributions of this paper are summarized as follows:

• We investigate the potentials of fusing hypergraph modeling and

graph neural networks in social recommendation by exploiting

multiple types of high-order user relations under a multi-channel

setting.

• We innovatively integrate self-supervised learning into the train-

ing of the hypergraph convolutional network and show that a

self-supervised auxiliary task can signi�cantly improve the social

recommendation task.

• We conduct extensive experiments onmultiple real-world datasets

to demonstrate the superiority of the proposed model and thor-

oughly ablate the model to investigate the e�ectiveness of each

component with an ablation study.

The rest of this paper is organized as follows. Section 2 introduces

the related work. Section 3 details the multi-channel hypergraph

convolutional network and elaborates on how self-supervised learn-

ing further improves the performance. The experimental results

and analysis are illustrated in Section 4. Finally, Section 5 concludes

this paper.

2 RELATED WORK

2.1 Social Recommendation

As suggested by the social science theories [7, 25], users’ prefer-

ences and decisions are often in�uenced by their friends. Based on

this fact, social relations are integrated into recommender systems

to alleviate the issue of data sparsity. Early exploration of social

recommender systems mostly focuses on matrix factorization (MF),

which has a nice probabilistic interpretation with Gaussian prior

and is the most used technique in social recommendation regime.

The extensive use of MF marks a new phase in the research of

recommender systems. A multitude of studies employ MF as their

basic model to exploit social relations since it is very �exible for MF

to incorporate prior knowledge. The common ideas of MF-based

social recommendation algorithms can be categorized into three

groups: co-factorization methods [22, 46], ensemble methods [20],

and regularization methods [23]. Besides, there are also studies

using socially-aware MF to model point-of-interest [48, 51, 52],

preference evolution [39], item ranking [55, 61], and relation gen-

eration [11, 57].

Over the recent years, the boom of deep learning has broadened

the ways to explore social recommendation. Many research e�orts

demonstrate that deep neural models are more capable of capturing

high-level latent preferences [49, 50]. Speci�cally, graph neural net-

works (GNNs) [63] have achieved great success in this area, owing

to their strong capability to model graph data. GraphRec [9] is the

�rst to introduce GNNs to social recommendation by modeling the

user-item and user-user interactions as graph data. Di�Net [41] and

its extension Di�Net++ [40] model the recursive dynamic social

di�usion in social recommendation with a layer-wise propagation

structure. Wu et al. [42] propose a dual graph attention network

to collaboratively learn representations for two-fold social e�ects.

Song et al. develop DGRec [34] to model both users’ session-based

interests as well as dynamic social in�uences. Yu et al. [58] propose

a deep adversarial framework based on GCNs to address the com-

mon issues in social recommendation. In summary, the common
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idea of these works is to model the user-user and user-item inter-

actions as simple graphs with pairwise connections and then use

multiple graph neural layers to capture the node dependencies.

2.2 Hypergraph in Recommender Systems

Hypergraph [4] provides a natural way to model complex high-

order relations and has been extensively employed to tackle various

problems. With the development of deep learning, some studies

combine GNNs and hypergraphs to enhance representation learn-

ing. HGNN [10] is the �rst work that designs a hyperedge convolu-

tion operation to handle complex data correlation in representation

learning from a spectral perspective. Bai et al. [2] introduce hyper-

graph attention to hypergraph convolutional networks to improve

their capacity. However, despite the great capacity in modeling com-

plex data, the potentials of hypergraph for improving recommender

systems have been rarely explored. There are only several studies

focusing on the combination of these two topics. Bu et al. [5] intro-

duce hypergraph learning to music recommender systems, which

is the earliest attempt. The most recent combinations are HyperRec

[38] and DHCF [16], which borrow the strengths of hypergraph

neural networks to model the short-term user preference for next-

item recommendation and the high-order correlations among users

and items for general collaborative �ltering, respectively. As for the

applications in social recommendation, HMF [62] uses hypergraph

topology to describe and analyze the interior relation of social

network in recommender systems, but it does not fully exploit

high-order social relations since HMF is a hybrid recommenda-

tion model. LBSN2Vec [47] is a social-aware POI recommendation

model that builds hyperedges by jointly sampling friendships and

check-ins with random walk, but it focuses on connecting di�erent

types of entities instead of exploiting the high-order social network

structures.

2.3 Self-Supervised Learning

Self-supervised learning [15] is an emerging paradigm to learn

with the ground-truth samples obtained from the raw data. It was

�rstly used in the image domain [1, 59] by rotating, cropping and

colorizing the image to create auxiliary supervision signals. The

latest advances in this area extend self-supervised learning to graph

representation learning [28, 29, 35, 37]. These studies mainly de-

velop self-supervision tasks from the perspective of investigating

graph structure. Node properties such as degree, proximity, and

attributes, which are seen as local structure information, are often

used as the ground truth to fully exploit the unlabeled data [17].

For example, InfoMotif [31] models attribute correlations in mo-

tif structures with mutual information maximization to regularize

graph neural networks. Meanwhile, global structure information

like node pair distance is also harnessed to facilitate representa-

tion learning [35]. Besides, contrasting congruent and incongruent

views of graphs with mutual information maximization [29, 37] is

another way to set up a self-supervised task, which has also shown

promising results.

As the research of self-supervised learning is still in its infancy,

there are only several works combining it with recommender sys-

tems [24, 44, 45, 64]. These e�orts either mine self-supervision

signals from future/surrounding sequential data [24, 45], or mask

attributes of items/users to learn correlations of the raw data [64].

However, these thoughts cannot be easily adopted to social rec-

ommendation where temporal factors and attributes may not be

available. The most relevant work to ours is GroupIM [32], which

maximizes mutual information between representations of groups

and group members to overcome the sparsity problem of group

interactions. As the group can be seen as a special social clique,

this work can be a corroboration of the e�ectiveness of social self-

supervision signals.

3 PROPOSED MODEL

3.1 Preliminaries

Let * = {D1, D2, ..., D<} denote the user set (|* | = <), and � =

{81, 82, ..., 8=} denote the item (|� | = =). I(D) is the set of user

consumption in which items consumed by user D are included.

X ∈ R<×= is a binary matrix that stores user-item interactions. For

each pair (D, 8), AD8 = 1 indicates that user D consumed item 8 while

AD8 = 0 means that item 8 is unexposed to user D, or user D is not

interested in item 8 . In this paper, we focus on top-K recommenda-

tion, and ÂD8 denotes the probability of item 8 to be recommended

to user D. As for the social relations, we use Y ∈ R<×< to de-

note the relation matrix which is asymmetric because we work

on directed social networks. In our model, we have multiple con-

volutional layers, and we use {V (1) , V (2) , · · · , V (;) } ∈ R<×3 and

{W (1) ,W (2) , · · · ,W (;) } ∈ R=×3 to denote the user and item embed-

dings of size 3 learned at each layer, respectively. In this paper,

we use bold capital letters to denote matrices and bold lowercase

letters to denote vectors.

De�nition 1: Let � = (+ , �) denote a hypergraph, where + is

the vertex set containing # unique vertices and � is the edge set

containing" hyperedges. Each hyperedge n ∈ � can contain any

number of vertices and is assigned a positive weight,nn , and all the

weights formulate a diagonal matrix] ∈ R"×" . The hypergraph

can be represented by an incidence matrix N ∈ R#×" where�8n =

1 if the hyperedge n ∈ � contains a vertex E8 ∈ + , otherwise 0. The

vertex and edge degree matrices are diagonal matrices denoted by

J and R, respectively, where �88 =
∑"
n=1,nn�8n ;!nn =

∑#
8=1 �8n .

It should be noted that, in this paper,,nn is uniformly assigned 1

and hence] is an identity matrix.

3.2 Multi-Channel Hypergraph Convolutional
Network for Social Recommendation

In this section, we present our model MHCN, which stands for

Multi-channel Hypergraph Convolutional Network. In Fig. 3, the

schematic overview of our model is illustrated.

3.2.1 Hypergraph Construction. To formulate the high-order infor-

mation among users, we �rst align the social network and user-item

interaction graph in social recommender systems and then build

hypergraphs over this heterogeneous network. Unlike prior models

which construct hyperedges by unifying given types of entities

[5, 47], our model constructs hyperedges according to the graph

structure. As the relations in social networks are often directed, the

connectivity of social networks can be of various types. In this pa-

per, we use a set of carefully designed motifs to depict the common
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M1 M5M3 M6 M7M4 M8 M9 M10
M2

Social Motifs Joint Motifs Purchase MotifFollow Purchase

Figure 2: Triangle motifs used in our work. The green circles denote users and the yellow circles denote items.

types of triangular structures in social networks, which guide the

hypergraph construction.

Motif, as the speci�c local structure involving multiple nodes, is

�rst introduced in [26]. It has been widely used to describe com-

plex structures in a wide range of networks. In this paper, we only

focus on triangular motifs because of the ubiquitous triadic closure

in social networks, but our model can be seamlessly extended to

handle on more complex motifs. Fig. 2 shows all the used trian-

gular motifs. It has been revealed thatM1 − M7 are crucial for

social computing [3], and we further designM8 −M10 to involve

user-item interactions to complement. Given motifsM1 −M10,

we categorize them into three groups according to the underlying

semantics.M1 −M7 summarize all the possible triangular rela-

tions in explicit social networks and describe the high-order social

connectivity like ‘having a mutual friend’. We name this group

‘Social Motifs’.M8 − M9 represent the compound relation, that

is, ‘friends purchasing the same item’. This type of relation can

be seen as a signal of strengthened tie, and we nameM8 − M9

‘Joint Motifs’. Finally, we should also consider users who have no

explicit social connections. So,M10 is non-closed and de�nes the

implicit high-order social relation that users who are not socially

connected but purchased the same item. We nameM10 ‘Purchase

Motif ’. Under the regulation of these three types of motifs, we can

construct three hypergraphs that contain di�erent high-order user

relation patterns. We use the incidence matrices NB , N 9 and N?

to represent these three motif-induced hypergraphs, respectively,

where each column of these matrices denotes a hyperedge. For

example, in Fig. 3, {D1, D2, D3} is an instance ofM4, and we use 41
to denote this hyperedge. Then, according to de�nition 1, we have

�B
D1,41 = �B

D2,41 = �B
D3,41 = 1.

3.2.2 Multi-Channel Hypergraph Convolution. In this paper, we

use a three-channel setting, including ‘Social Channel (s)’, ‘Joint

Channel (j)’, and ‘Purchase Channel (p)’, in response to the three

types of triangular motifs, but the number of channels can be ad-

justed to adapt to more sophisticated situations. Each channel is

responsible for encoding one type of high-order user relation pat-

tern. As di�erent patterns may show di�erent importances to the

�nal recommendation performance, directly feeding the full base

user embeddings V (0) to all the channels is unwise. To control

the information �ow from the base user embeddings V (0) to each

channel, we design a pre-�lter with self-gating units (SGUs), which

is de�ned as:

V
(0)
2 = 5 2gate (V

(0) ) = V (0) ⊙ f (V (0)]2
6 + b

2
6 ), (1)

where ]2
6 ∈ R

3×3 , b26 ∈ R
3 are parameters to be learned, 2 ∈

{B, 9, ?} represents the channel, ⊙ denotes the element-wise prod-

uct and f is the sigmoid nonlinearity. The self-gating mechanism

Table 1: Computation of motif-induced adjacency matrices.

Motif Matrix Computation G"8
=

M1 I = ([[ ) ⊙ [
)

I + I⊤

M2 I = (H[ ) ⊙ [
) + ([H) ⊙ [

) + ([[ ) ⊙ H I + I⊤

M3 I = (HH) ⊙ [ + (H[ ) ⊙ H + ([ · H) ⊙ H I + I⊤

M4 I = (HH) ⊙ H I

M5 I = ([[ ) ⊙ [ + ([[
) ) ⊙ [ + ([)

[ ) ⊙ [ I + I⊤

M6 I = ([H) ⊙ [ + (H[) ) ⊙ [
) + ([)

[ ) ⊙ H I

M7 I = ([)
H) ⊙ [

) + (H[ ) ⊙ [ + ([[
) ) ⊙ H I

M8 I = (XX) ) ⊙ H I

M9 I = (XX) ) ⊙ [ I + I⊤

M10 I = XX
)

I

e�ectively serves as a multiplicative skip-connection [8] that learns

a nonlinear gate to modulate the base user embeddings at a feature-

wise granularity through dimension re-weighting, then we obtain

the channel-speci�c user embeddings V
(0)
2 .

Referring to the spectral hypergraph convolution proposed in

[10], we de�ne our hypergraph convolution as:

V
(;+1)
2 = J−12 N2R

−1
2 N⊤2 V

(;)
2 . (2)

The di�erence is that we follow the suggestion in [6, 14] to remove

the learnable matrix for linear transformation and the nonlinear

activation function (e.g. leaky ReLU). By replacing N2 with any of

NB , N 9 and N? , we can borrow the strengths of hypergraph convo-

lutional networks to learn user representations encoded high-order

information in the corresponding channel. As J2 and R2 are diago-

nal matrices which only re-scale embeddings, we skip them in the

following discussion. The hypergraph convolution can be viewed

as a two-stage re�nement performing ‘node-hyperedge-node’ fea-

ture transformation upon hypergraph structure. The multiplication

operation N⊤2 V
(;)
2 de�nes the message passing from nodes to hy-

peredges and then premultiplying N2 is viewed to aggregate infor-

mation from hyperedges to nodes. However, despite the bene�ts of

hypergraph convolution, there are a huge number of motif-induced

hyperedges (e.g. there are 19,385 social triangles in the used dataset,

LastFM), which would cause a high cost to build the incidence ma-

trix N2 . But as we only exploit triangular motifs, we show that this

problem can be solved in a �exible and e�cient way by leveraging

the associative property of matrix multiplication.

Following [60], we let H = Y ⊙ Y) and [ = Y−H be the adjacency

matrices of the bidirectional and unidirectional social networks

respectively. We use G":
to represent the motif-induced adjacency

matrix and (G":
)8, 9 = 1 means that vertex 8 and vertex 9 appear

in one instance of M: . As two vertices can appear in multiple
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Figure 3: An overview of the proposed model (1-layer). Each triangle in the left graph is a hyperedge and also an instance of

de�ned motifs. �B , � 9 and �? denote the three motif-induced hypergraphs constructed based on social, joint, and purchase

motifs, respectively. BB , B 9 , and B? in the three dotted ellipses denote three ego-networks with D2 as the center, which are

subgraphs of �B , � 9 and �? , respectively.

instances ofM: , (G":
)8, 9 is computed by:

(G":
)8, 9 = #(8, 9 occur in the same instance ofM: ) . (3)

Table 1 shows how to calculate G":
in the form of matrix multipli-

cation. As all the involved matrices in Table 1 are sparse matrices,

G":
can be e�ciently calculated. Speci�cally, the basic unit in Table

1 is in a general form of ^_ ⊙` , which meansG"1
toG"9

may be

sparser than ` (i.e. H or [ ) or as sparse as ` . G"10
could be a little

denser, but we can �lter out the popular items (we think consuming

popular items might not re�ect the users’ personalized preferences)

when calculatingG"10
and remove the entries less than a threshold

(e.g. 5) in G"10
to keep e�cient calculation. For symmetric motifs,

G" = I , and for the asymmetric ones G" = I + I) . Obviously,

without considering self-connection, the summation ofG"1
toG"7

is equal to NBNB⊤, as each entry of NBNB⊤ ∈ R<×< also indicates

how many social triangles contain the node pair represented by the

row and column index of the entry. Analogously, the summation of

G"8
to G"9

is equal to N 9N 9⊤ without self-connection and G"10

is equal to N?N?⊤. Taking the calculation of G"1
as an example,

it is evident that [[ constructs a unidirectional path connecting

three vertices, and the operation ⊙[ makes the path a closed-loop,

which is an instance ofG"1
. AsG"10

also contains the triangles in

G"8
and G"9

. So, we remove the redundance from G"10
. Finally,

we useGB =
∑7
:=1

G":
,G 9 = G"8

+G"9
, andG? = G"10

−G 9 to

replace NBNB⊤, N 9N 9⊤, and N?N?⊤ in Eq. (2), respectively. Then

we have a transformed hypergraph convolution, de�ned as:

V
(;+1)
2 = Ĵ−12 G2V

(;)
2 , (4)

where Ĵ2 ∈ R
<×< is the degree matrix of G2 . Obviously, Eq (2)

is equivalent to Eq (4), and can be a simpli�ed substitution of the

hypergraph convolution. Since we follow the design of LightGCN

which has subsumed the e�ect of self-connection, and thus skipping

self-connection in adjacency matrix does not matter too much. In

this way, we bypass the individual hyperedge construction and

computation, and greatly reduce the computational cost.

3.2.3 Learning Comprehensive User Representations. After propa-

gating the user embeddings through ! layers, we average the embed-

dings obtained at each layer to form the �nal channel-speci�c user

representation: V∗2 =
1

!+1

∑!
;=0

V
(;)
2 to avoid the over-smoothing

problem [14]. Then we use the attention mechanism [36] to selec-

tively aggregate information from di�erent channel-speci�c user

embeddings to form the comprehensive user embeddings. For each

user D, a triplet (UB , U 9 , U? ) is learned to measure the di�erent

contributions of the three channel-speci�c embeddings to the �-

nal recommendation performance. The attention function 5att is

de�ned as:

U2 = 5att (?
∗
2 ) =

exp(a⊤ ·]0CCp
∗
2 )

∑

2′∈{B,9,? } exp(a
⊤ ·]0CCp

∗
2′
)
, (5)

where a ∈ R3 and]0CC ∈ R
3×3 are trainable parameters, and the

comprehensive user representation p∗ =
∑

2∈{B,9,? } U2p
∗
2 ,.

Note that, since the explicit social relations are noisy and isolated

relations are not a strong signal of close friendship [55, 56], we dis-

card those relations which are not part of any instance of de�ned

motifs. So, we do not have a convolution operation directly working

on the explicit social network Y . Besides, in our setting, the hyper-

graph convolution cannot directly aggregate information from the

items (we do not incorporate the items into G 9 and G? ). To tackle

this problem, we additionally perform simple graph convolution on

the user-item interaction graph to encode the purchase information

and complement the multi-channel hypergraph convolution. The

simple graph convolution is de�ned as:

V
(;+1)
A = J−1D XW (;) , V

(0)
A = 5 Agate (V

(0) ),

W (;+1) = J−18 X⊤V
(;)
< , V

(;)
< =

∑

2∈{B,9,? }

U2p
(;)
2 +

1

2
V
(;)
A ,

(6)

where V
(;)
A is the gated user embeddings for simple graph convolu-

tion, V
(;)
< is the combination of the comprehensive user embeddings

and V
(;)
A , and JD ∈ R

<×< and J8 ∈ R
=×= are degree matrices of

X and X⊤, respectively. Finally, we obtain the �nal user and item

embeddings V and W de�ned as:

V = V∗ +
1

! + 1

!
∑

;=0

V
(;)
A , W =

1

! + 1

!
∑

;=0

W (;) , (7)

where V (0) and W (0) are randomly initialized.
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3.2.4 Model Optimization. To learn the parameters of MHCN, we

employ the Bayesian Personalized Ranking (BPR) loss [30], which

is a pairwise loss that promotes an observed entry to be ranked

higher than its unobserved counterparts:

LA =

∑

8∈I(D), 9∉I(D)

− log f
(

ÂD,8 (Φ) − ÂD,9 (Φ)
)

+ _∥Φ∥22, (8)

where Φ denotes the parameters of MHCN, ÂD,8 = p⊤D q8 is the

predicted score of D on 8 , and f (·) here is the sigmoid function.

Each time a triplet including the current user D, the positive item 8

purchased by D, and the randomly sampled negative item 9 which

is disliked by D or unknown to D, is fed to MHCN. The model is

optimized towards ranking 8 higher than 9 in the recommendation

list for D. In addition, !2 regularization with the hyper-parameter

_ is imposed to reduce generalized errors.

3.3 Enhancing MHCN with Self-Supervised
Learning

Owing to the exploitation of high-order relations, MHCN shows

great performance (reported in Table 3 and 4). However, a shortcom-

ing of MHCN is that the aggregation operations (Eq. 5 and 6) might

lead to a loss of high-order information, as di�erent channels would

learn embeddings with varying distributions on di�erent hyper-

graphs [54]. Concatenating the embeddings from di�erent channels

could be the alternative, but it uniformly weighs the contributions

of di�erent types of high-order information in recommendation

generation, which is not in line with the reality and leads to inferior

performance in our trials. To address this issue and fully inherit

the rich information in the hypergraphs, we innovatively integrate

self-supervised learning into the training of MHCN.

In the scenarios of representation learning, self-supervised task

usually either serves as a pretraining strategy or an auxiliary task to

improve the primary task [17]. In this paper, we follow the primary

& auxiliary paradigm, and set up a self-supervised auxiliary task to

enhance the recommendation task (primary task). The recent work

Deep Graph Infomax (DGI) [37] is a general and popular approach

for learning node representations within graph-structured data in a

self-supervised manner. It relies on maximizing mutual information

(MI) between node representations and corresponding high-level

summaries of graphs. However, we consider that the graph-node MI

maximization stays at a coarse level and there is no guarantee that

the encoder in DGI can distill su�cient information from the input

data. Therefore, with the increase of the graph scale, the bene�ts

brought by MI maximization might diminish. For a better learning

methodwhich �ts our scenariomore, we inherit themerits of DGI to

consider mutual information and further extend the graph-node MI

maximization to a �ne-grained level by exploiting the hierarchical

structure in hypergraphs.

Recall that, for each channel of MHCN, we build the adjacency

matrixG2 to capture the high-order connectivity information. Each

row in G2 represents a subgraph of the corresponding hypergraph

centering around the user denoted by the row index. Then we can

induce a hierarchy: ‘user node← user-centered sub-hypergraph←

hypergraph’ and create self-supervision signals from this structure.

Our intuition of the self-supervised task is that the comprehensive

user representation should re�ect the user node’s local and global

User Embedding

Readout 1

Readout 2

User Embeddings

in Sub-HG
User Embeddings

in HG 

Corrupted User 

Embeddings in Sub-HG

f D(𝒑𝑢, 𝒛𝑢)

𝒛𝑢
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f D(𝒛𝑢, 𝒉𝑢) f D(෤𝒛𝑢, 𝒉𝑢)> >
Figure 4: Hierarchicalmutual informationmaximization on

hypergraphs.

high-order connectivity patterns in di�erent hypergraphs, and this

goal can be achieved by hierarchically maximizing the mutual in-

formation between representations of the user, the user-centered

sub-hypergraph, and the hypergraph in each channel. The mutual

information measures the structural informativeness of the sub-

and the whole hypergraph towards inferring the user preference

through the reduction in local and global structure uncertainty.

To get the sub-hypergraph representation, instead of averaging

the embeddings of the users in the sub-hypergraph, we design

a readout function 5out1 : R:×3 → R
3 , which is permutation-

invariant and formulated as:

z2D = 5>DC1 (V2 , a
2
D ) =

V2a
2
D

BD<(a2D )
, (9)

where V2 = 5 2
gate
(V ) is to control the participatedmagnitude of V to

avoid over�tting andmitigate gradient con�ict between the primary

and auxiliary tasks, a2D is the row vector ofG2 corresponding to the

center user D, and BD<(a2D ) denotes how many connections in the

sub-hypergraph. In this way, the weight (importance) of each user

in the sub-hypergraph is considered to form the sub-hypergraph

embedding zD . Analogously, we de�ne the other readout function

5out2 : R<×3 → R
3 , which is actually an average pooling to

summarize the obtained sub-hypergraph embeddings into a graph-

level representation:

h2 = 5>DC2 (`2 ) = AveragePooling(`2 ). (10)

We follow DGI and use InfoNCE [27] as our learning objective

to maximize the hierarchical mutual information. But we �nd that,

compared with the binary cross-entropy loss, the pairwise ranking

loss, which has also been proved to be e�ective in mutual informa-

tion estimation [18], is more compatible with the recommendation

task. We then de�ne the objective function of the self-supervised

task as follows:

LB = −
∑

2∈{B,9,? }

{
∑

D∈*

log f (5� (p
2
D , z

2
D ) − 5� (p

2
D , z̃

2
D ))

+
∑

D∈*

log f (5� (z
2
D ,h

2 ) − 5� (z̃
2
D ,h

2 ))
}

.

(11)

5� (·) : R
3 × R3 ↦−→ R is the discriminator function that takes two

vectors as the input and then scores the agreement between them.

We simply implement the discriminator as the dot product between

two representations. Since there is a bijective mapping between

V2 and `2 , they can be the ground truth of each other. We corrupt
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`c by both row-wise and column-wise shu�ing to create negative

examples ˜̀
2 . We consider that, the user should have a stronger

connection with the sub-hypergraph centered with her (local struc-

ture), so we directly maximize the mutual information between

their representations. By contrast, the user would not care all the

other users too much (global structure), so we indirectly maximize

the mutual information between the representations of the user

and the complete hypergraph by regarding the sub-hypergraph

as the mediator. Compared with DGI which only maximizes the

mutual information between node and graph representations, our

hierarchical design can preserve more structural information of the

hypergraph into the user representations (comparison is shown in

Section 4.3). Figure 4 illustrates the hierarchical mutual information

maximization.

Finally, we unify the objectives of the recommendation task (pri-

mary) and the task of maximizing hierarchical mutual information

(auxiliary) for joint learning. The overall objective is de�ned as:

L = LA + VLB , (12)

where V is a hyper-parameter used to control the e�ect of the auxil-

iary task andLB can be seen as a regularizer leveraging hierarchical

structural information of the hypergraphs to enrich the user repre-

sentations in the recommendation task for a better performance.

3.4 Complexity Analysis

In this section, we discuss the complexity of our model.

Model size. The trainable parameters of our model consist of

three parts: user and item embeddings, gate parameters, and at-

tention parameters. For the �rst term, we only need to learn the

0Cℎ layer user embeddings V (0) ∈ R<×3 and item embeddings

W (0) ∈ R=×3 . As for the second term, we employ seven gates, four

for MHCN and three for the self-supervised task. Each of the gate

has parameters of size (3 + 1) × 3 , while the attention parame-

ters are of the same size. To sum up, the model size approximates

(< + = + 83)3 in total. As min(<,=) ≫ 3 , our model is fairly light.

Time complexity. The computational cost mainly derives from

four parts: hypergraph/graph convolution, attention, self-gating,

andmutual informationmaximization. For the multi-channel hyper-

graph convolution through ! layers, the propagation consumption

is less than O(|G+ |3!), where |G+ | denotes the number of nonzero

elements inG, and here |G+ | = max( |G+B |, |G
+
9 |, |G

+
? |). Analogously,

the time complexity of the graph convolution is O(|X+ |3!). As

for the attention and self gating mechanism, they both contribute

O(<32) time complexity. The cost of mutual information maxi-

mization is mainly from 5>DC1 , which is O(|G+ |3). Since we follow

the setting in [14] to remove the learnable matrix for linear transfor-

mation and the nonlinear activation function, the time complexity

of our model is much lower than that of previous GNNs-based

social recommendation models.

4 EXPERIMENTS AND RESULTS

In this section, we conduct extensive experiments to validate our

model. The experiments are unfolded by answering the following

three questions: (1) Does MHCN outperform the state-of-the-art

baselines? (2) Does each component in MHCN contribute? (3) How

Table 2: Dataset Statistics

Dataset #User #Item #Feedback #Relation Density

LastFM 1,892 17,632 92,834 25,434 0.28%

Douban 2,848 39,586 894,887 35,770 0.79%

Yelp 19,539 21,266 450,884 363,672 0.11%

do the hyper-parameters (V and the depth of MHCN) in�uence the

performance of MHCN?

4.1 Experimental Protocol

Datasets. Three real-world datasets: LastFM1, Douban2, and Yelp

[49] are used in our experiments. As our aim is to generate Top-K

recommendation, for Douban which is based on explicit ratings, we

leave out ratings less than 4 and assign 1 to the rest. The statistics of

the datasets is shown in Table 2. We perform 5-fold cross-validation

on the three datasets and report the average results.

Baselines.We compare MHCNwith a set of strong and commonly-

used baselines including MF-based and GNN-based models:

• BPR [30] is a popular recommendation model based on Bayesian

personalized ranking. It models the order of candidate items by

a pairwise ranking loss.

• SBPR [61] is a MF based social recommendation model which ex-

tends BPR and leverages social connections to model the relative

order of candidate items.

• LightGCN [14] is a GCN-based general recommendation model

that leverages the user-item proximity to learn node representa-

tions and generate recommendations, which is reported as the

state-of-the-art method.

• GraphRec [9] is the �rst GNN-based social recommendation

model that models both user-item and user-user interactions.

• Di�Net++ [40] is the latest GCN-based social recommendation

method that models the recursive dynamic social di�usion in

both the user and item spaces.

• DHCF [16] is a recent hypergraph convolutional network-based

method that models the high-order correlations among users and

items for general recommendation.

Two versions of the proposed multi-channel hypergraph convolu-

tional network are investigated in the experiments.MHCN denotes

the vanilla version and Y2-MHCN denotes the self-supervised ver-

sion.

Metrics.To evaluate the performance of all methods, two relevancy-

based metrics Precision@10 and Recall@10 and one ranking-based

metric NDCG@10 are used. We perform item ranking on all the

candidate items instead of the sampled item sets to calculate the

values of these three metrics, which guarantees that the evaluation

process is unbiased.

Settings. For a fair comparison, we refer to the best parameter

settings reported in the original papers of the baselines and then

use grid search to �ne tune all the hyperparameters of the baselines

to ensure the best performance of them. For the general settings

of all the models, the dimension of latent factors (embeddings) is

1http://�les.grouplens.org/datasets/hetrec2011/
2https://pan.baidu.com/s/1hrJP6rq
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Table 3: General recommendation performance comparison.

Dataset Metric GraphRec BPR SBPR Di�Net++ DHCF LightGCN MHCN Y2-MHCN Improv. Y2-Improv.

LastFM

P@10 17.385% 15.606% 16.491% 18.485% 16.877% 19.205% 19.625% 20.052% 4.410% 2.175%

R@10 18.020% 15.821% 16.703% 18.737% 17.131% 19.480% 19.945% 20.375% 4.594% 2.155%

N@10 0.21173 0.18953 0.20216 0.22310 0.20744 0.23392 0.23834 0.24395 4.287% 2.156%

Douban

P@10 17.021% 15.673% 15.993% 17.532% 16.871% 17.780% 18.283% 18.506% 4.083% 1.220%

R@10 5.916% 5.160% 5.322% 6.205% 5.755% 6.247% 6.556% 6.681% 6.947% 1.906%

N@10 0.19051 0.17476 0.17821 0.19701 0.18655 0.19881 0.20694 0.21038 5.819% 1.662%

Yelp

P@10 2.323% 2.002% 2.192% 2.480% 2.298% 2.586% 2.751% 3.003% 16.125% 9.160%

R@10 6.075% 5.173% 5.468% 6.354% 5.986% 6.525% 6.862% 7.885% 17.247% 14.908%

N@10 0.04653 0.03840 0.04314 0.04833 0.04700 0.04998 0.05356 0.06061 21.268% 13.162%

Table 4: Cold-start recommendation performance comparison.

Dataset Metric GraphRec BPR SBPR Di�Net++ DHCF LightGCN MHCN Y2-MHCN Improv. Y2-Improv.

LastFM

P@10 4.662% 3.784% 4.573% 5.102% 3.974% 4.809% 5.466% 5.759% 12.877% 5.360%

R@10 18.033% 15.240% 18.417% 21.365% 16.395% 20.361% 23.354% 24.431% 14.350% 4.611%

N@10 0.14675 0.12460 0.15141 0.16031 0.14285 0.15044 0.17218 0.19138 19.381% 11.151%

Douban

P@10 2.007% 1.722% 1.935% 2.230% 1.921% 2.134% 2.343% 2.393% 7.309% 2.133%

R@10 8.215% 7.178% 8.084% 8.705% 7.977% 8.317% 9.646% 10.632% 22.136% 10.227%

N@10 0.05887 0.04784 0.05716 0.06767 0.05533 0.06037 0.06771 0.07113 5.113% 5.052%

Yelp

P@10 1.355% 1.232% 1.286% 1.475% 1.314% 1.504% 1.545% 1.747% 14.108% 13.074%

R@10 5.901% 5.468% 5.720% 6.635% 5.876% 6.753% 6.838% 7.881% 12.264% 15.253%

N@10 0.03896 0.03448 0.03671 0.04237 0.03826 0.04273 0.04354 0.05143 15.703% 18.121%

empirically set to 50, the regularization coe�cient _ = 0.001, and

the batch size is set to 2000. We use Adam to optimize all these

models. Section 4.4 reports the in�uence of di�erent parameters (i.e.

V and the depth) of MHCN, and we use the best parameter settings

in Section 4.2, and 4.3.

4.2 Recommendation Performance

In this part, we validate if MHCN outperforms existing social rec-

ommendation baselines. Since the primary goal of social recommen-

dation is to mitigate data sparsity issue and improve the recommen-

dation performance for cold-start users. Therefore, we respectively

conduct experiments on the complete test set and the cold-start

test set in which only the cold-start users with less than 20 interac-

tions are contained. The experimental results are shown in Table

3 and Table 4. The improvement is calculated by subtracting the

best performance value of the baselines from that of (2-MHCN

and then using the di�erence to divide the former. Analogously,

(2-improvement is calculated by comparing the values of the per-

formance of MHCN and and Y2-MHCN. According to the results,

we can draw the following conclusions:

• MHCN shows great performance in both the general and cold-

start recommendation tasks. Even without self-supervised learn-

ing, it beats all the baselines by a fair margin. Meanwhile, self-

supervised learning has great ability to further improve MHCN.

Compared with the vanilla version, the self-supervised version

shows decent improvements in all the cases. Particularly, in the

cold-start recommendation task, self-supervised learning brings

signi�cant gains. On average, Y2-MHCN achieves about 5.389%

improvement in the general recommendation task and 9.442%

improvement in the cold-start recommendation task compared

with MHCN. Besides, it seems that, the sparser the dataset, the

more improvements self-supervised learning brings.

• GNN-based recommendation models signi�cantly outperform

the MF-based recommendation models. Even the general rec-

ommendation models based on GNNs show much better perfor-

mance than MF-based social recommendation models. However,

when comparedwith the counterparts based on the same building

block (i.e. MF-based vs. MF-based, GNNs-based vs. GNNs-based),

social recommendation models are still competitive and by and

large outperform the corresponding general recommendation

models except LightGCN.

• LightGCN is a very strong baseline. Without considering the two

variants of MHCN, LightGCN shows the best or the second best

performance in most cases. This can be owed to the removal

of the redundant operations including the nonlinear activation

function and transformation matrices. The other baselines such

as GraphRec might be limited by these useless operations, and

fail to outperform LightGCN, though the social information is

incorporated.

• Although DHCF is also based on hypergraph convolution, it does

not show any competence in all the cases. We are unable to repro-

duce its superiority reported in the original paper [16]. There are
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Figure 5: Contributions of each channel on di�erent

datasets.
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Figure 6: The distributions of the attention weights on dif-

ferent datasets.

two possible causes which might lead to its failure. Firstly, it only

exploits the user-item high-order relations. Secondly, the way to

construct hyperedges is very impractical in this model, which

leads to a very dense incidence matrix. The model would then

encounter the over-smoothing problem and heavy computation.

4.3 Ablation Study

In this section, we conduct an ablation study to investigate the

interplay of the components in (2-MHCN and validate if each

component positively contributes to the �nal recommendation

performance.

4.3.1 Investigation of Multi-Channel Se�ing. We �rst investigate

the multi-channel setting by removing any of the three channels

from (2-MHCN and leaving the other two to observe the changes

of performance. Each bar in the plots (except complete) represents

the case that the corresponding channel is removed, while complete

means no module has been removed. From Fig. 5, we can observe

that removing any channel would cause performance degradation.

But it is obvious that purchase channel contributes the most to the

�nal performance. Without this channel, (2-MHCN falls to the

level of LightGCN shown in Table 3. By contrast, removing Social

channel or Joint channel would not have such a large impact on the

�nal performance. Comparing Social channel with Joint channel, we

can observe that the former contributes slightly more on LastFM
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Figure 7: Investigation of Hierarchical Mutual Information

Maximization on di�erent datasets.

and Yelp, while the latter, in terms of the performance contribution,

is more important on Douban.

To further investigate the contribution of each channel when

they are all employed, we visualize the attention scores learned

along with other model parameters, and draw a box plot to display

the distributions of the attention weights. According to Fig. 6, we

can observe that, for the large majority of users in LastFM, Social

channel has limited in�uence on the comprehensive user represen-

tations. In line with the conclusions from Fig. 5, Purchase channel

plays the most important role in shaping the comprehensive user

representations. The importance of Joint channel falls between the

other two. The possible reason could be that, social relations are

usually noisy and the users who are only socially connected might

not always share similar preferences.

4.3.2 Investigation of Self-supervised Task. To investigate the ef-

fectiveness of the hierarchical mutual information maximization

(MIM), we break this procedure into two parts: local MIM between

the user and user-centered sub-hypergraph, and global MIM be-

tween the user-centered sub-hypergraph and hypergraph. We then

run MHCN with either of these two to observe the performance

changes. We also compare hierarchical MIM with the node-graph

MIM used in DGI to validate the rationality of our design. We im-

plement DGI by referring to the original paper [37]. The results

are illustrated in Fig. 7, and we use Disabled to denote the vanilla

MHCN. Unlike the bars in Fig. 6, each bar in Fig. 7 represents the

case where only the corresponding module is used. As can be seen,

hierarchical MIM shows the best performance while local MIM

achieves the second best performance. By contrast, global MIM

contributes less but it still shows better performance on Douban

Yelp when compared with DGI. Actually, DGI almost rarely con-

tributes on the latter two datasets and we can hardly �nd a proper

parameter that can make it compatible with our task. On some

metrics, training MHCN with DGI even lowers the performance.

According to these results, we can draw a conclusion that the self-

supervised task is e�ective and our intuition for hierarchical mutual

information maximization is more reasonable compared with the

node-graph MIM in DGI.
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Figure 8: In�uence of the magnitude of hierarchical MIM.
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Figure 9: In�uence of the depth of MHCN.

4.4 Parameter Sensitivity Analysis

In this section, we investigate the sensitivity of V and !.

As we adopt the primary & auxiliary paradigm, to avoid the neg-

ative interference from the auxiliary task in gradient propagating,

we can only choose small values for V . We search the proper value in

a small interval and empirically set it from 0.001 to 0.5.We then start

our attempts from 0.001, and proceed by gradually increasing the

step size. Here we report the performance of (2-MHCN with eight

representative V values {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.5}. As

can be seen in Fig. 8, with the increase of the value of V , the per-

formance of (2-MHCN on all the datasets rises. After reaching the

peak when V is 0.01 on all the datasets, it steadily declines. Ac-

cording to Fig. 8, we can draw a conclusion that even a very small

V can promote the recommendation task, while a larger V would

mislead it. The bene�ts brought by the self-supervised task could

be easily neutralized and the recommendation task is sensitive to

the magnitude of self-supervised task. So, choosing a small value is

more likely to facilitate the primary task when there is little prior

knowledge about the data distribution.

Finally, we investigate the in�uence of ! to �nd the optimal depth

for (2-MHCN. We stack hypergraph convolutional layers from 1-

layer to 5-layer setting. According to Fig. 9, the best performance

of (2-MHCN is achieved when the depth of (2-MHCN is 2. With

the continuing increase of the number of layer, the performance

of (2-MHCN declines on all the datasets. Obviously, a shallow

structure �ts (2-MHCN more. A possible reason is that (2-MHCN

aggregates high-order information from distant neighbors. As a

result, it is more prone to encounter the over-smoothing problem

with the increase of depth. This problem is also found in DHCF

[16], which is based on hypergraph modeling as well. Considering

the over-smoothed representations could be a pervasive problem

in hypergraph convolutional network based models, we will work

against it in the future.

5 CONCLUSION

Recently, GNN-based recommendation models have achieved great

success in social recommendation. However, these methods sim-

ply model the user relations in social recommender systems as

pairwise interactions, and neglect that real-world user interactions

can be high-order. Hypergraph provides a natural way to model

high-order user relations, and its potential for social recommenda-

tion has not been fully exploited. In this paper,we fuse hypergraph

modeling and graph neural networks and then propose a multi-

channel hypergraph convolutional network (MHCN) which works

on multiple motif-induced hypergraphs to improve social recom-

mendation. To compensate for the aggregating loss in MHCN, we

innovatively integrate self-supervised learning into the training of

MHCN. The self-supervised task serves as the auxiliary task to im-

prove the recommendation task by maximizing hierarchical mutual

information between the user, user-centered sub-hypergraph, and

hypergraph representations. The extensive experiments conducted

on three public datasets verify the e�ectiveness of each component

of MHCN, and also demonstrate its state-of-the-art performance.
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