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Abstract

Recent constellations of optical satellites are adopting

multi-image super-resolution (MISR) from bursts of push-

frame images as a way to increase the resolution and reduce

the noise of their products while maintaining a lower cost

of operation. Most MISR techniques are currently based on

the aggregation of samples from registered low resolution

images. A promising research trend aimed at incorporat-

ing natural image priors in MISR consists in using data-

driven neural networks. However, due to the unavailability

of ground truth high resolution data, these networks cannot

be trained on real satellite images. In this paper, we present

a framework for training MISR algorithms from bursts of

satellite images without requiring high resolution ground

truth. This is achieved by adapting the recently proposed

frame-to-frame framework to process bursts of satellite im-

ages. In addition we propose an architecture based on fea-

ture aggregation that allows to fuse a variable number of

frames and is capable of handling degenerate samplings

while also reducing noise. On synthetic datasets, the pro-

posed self-supervision strategy attains results on par with

those obtained with a supervised training. We applied our

framework to real SkySat satellite image bursts leading to

results that are more resolved and less noisy than the L1B

product from Planet.

1. Introduction

High resolution satellite imagery is key for applications
such as monitoring human activity or disaster relief. In re-
cent years, computational super-resolution is being adopted
as a cost-effective solution to increase the spatial resolution
of satellite images [44, 5].

Super-resolution approaches can be broadly classified
into single-image (SISR) and multi-image (MISR). SISR is
a severely ill-posed problem. In fact, during the acquisition
of the low-resolution (LR) images, some high-frequency
components are lost or aliased, hindering their correct re-
construction. As a consequence, SISR methods attempt to
generate plausible reconstructions compatible with the LR

(a) L1A frame (b) L1B (c) Proposed

Figure 1: Super-resolution from a sequence of 15 real low-
resolution SkySat L1A frames. (a) Reference L1A frame, (b)
Planet L1B product (×1.25), (c) Proposed method (×2).

image, rather than to recover the real high resolution (HR)
image. In contrast, MISR aims at exploiting the alias to
retrieve the true details in the super-resolved image (SR)
by combining the non-redundant information from multiple
LR observations.

In this work, we focus on MISR from push-frame satel-
lite sensors such as the SkySat constellation from Planet.
The SkySat satellites [44] contain a full-frame sensor capa-
ble of capturing bursts of overlapping frames. So the same
point on the ground is seen in several consecutive images.
Furthermore, thanks to the design of its optical system, the
images are aliased, which is an ideal setting for MISR.

In the context of satellite imaging, since the sensor is far
from the ground, it is often assumed that the observed scene
lies on a plane at infinity. This allows to consider a sim-
plified1 model [5] for the formation of the low-resolution
images ILR

t

ILR
t = ΠAt(I ∗ k) + nt, (1)

where I denotes the infinite-resolution ideal image, k is
the Point Spread Function (PSF) modeling jointly optical
blur and pixel integration, At is a homographic transfor-
mation (often approximated by an affine one [5]), Π is the
bi-dimensional sampling operator due to the sensor array,

1The model should write (AtI) ∗ k, but in the specific case of rigid
transformations, assuming that k is an isotropic kernel, At and k commute.
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and nt models the image noise. Because of the spectral de-
cay imposed by the pixel integration and optical blur (k),
the image Ibl := I ∗ k is band limited. For SkySat, the
frequency cutoff is at about twice the sampling rate of the
LR images. This implies that there is no usable high fre-
quency information beyond the 2× zoom factor. Our goal
in this work to increase the resolution by a factor of 2, by
estimating IHR, a non-aliased sampling of Ibl from several
discrete observations ILR

t . A sharper super-resolved image
can also be recovered by partially deconvolving k. Aggre-
gating many frames is also interesting as it allows to greatly
reduce the noise.

Lately, deep learning algorithms have proven a success
in super-resolution. Data-driven methods can incorporate
realistic image priors leading to improved restoration us-
ing fewer input images. However, these methods are data-
hungry and they heavily rely on the size and quality of the
training dataset. The importance of training SISR algo-
rithms with realistic data was highlighted in [12], where it
was shown that models trained on synthetic data [2] gener-
alized poorly to a dataset of real pairs of LR/HR images.

MISR datasets with real data are usually small and can
only be used as test sets for benchmarking (for example the
MDSP dataset [1]). An exception is the PROBA-V dataset,
proposed in [39], which allows to train supervised deep-
learning MISR methods on real-world satellite images. This
is a rare case as the PROBA-V satellite is equipped with
two cameras with different resolutions. However, the im-
ages in the PROBA-V datasets are unsuitable for training
MISR methods for image bursts acquired at a high frame
rate, as the LR image sequences are multi-date and present
significant content and illumination changes.

Due to this lack of datasets with real LR/HR images,
most deep learning MISR algorithms are trained on simu-
lated data [61, 40]. Good results in denoising of real im-
ages have been obtained using synthetic datasets [11, 68].
However, this requires a careful modeling of the imaging
systems, which is not straightforward for complex satellite
sensors.

A similar problem affects other video restoration prob-
lems. Recent works [17, 16, 14, 65] have proposed to
train video denoising and demosaicking networks with self-
supervised learning by exploiting the temporal redundancy
in videos. In these works, the network is trained to predict
a frame of a noisy sequence using its neighboring frames,
eliminating the need for ground truth.

Contributions. In this paper, we propose a framework for
self-supervised training of MISR networks without requir-
ing high resolution ground truth images.

Our framework (Sec. 3) can be applied to neural net-
works that include an explicit motion compensation mod-
ule. One of the LR frames is set as reference. During train-

ing, the reference is only viewed by the motion compensa-
tion module (to align the rest of the LR frames) but is with-
held from the rest of the network. The network is tasked to
predict a super-resolved image which, when downsampled,
coincides with the withheld reference frame.

As an additional contribution, we propose a novel MISR
architecture, Deep Shift-and-Add (DSA), consisting of a
shift-and-add fusion of features. Our DSA network accepts
a variable number of input frames and is invariant to their
order. This allows us to use all available LR frames at test
time (including the reference LR frame), which improves
the performance.

Experiments conducted on synthetic data (Sec. 4 and 5)
show that our DSA network trained with the proposed self-
supervision strategy attains state-of-the-art results on par
with those obtained with a supervised training. To the
best of our knowledge, this is the first method that trains
a MISR CNN without supervision. In addition, the pro-
posed method reduces noise, successfully handles degener-
ate samplings and can integrate the final deconvolution step.

Our framework makes it possible to train a network on
datasets of real LR images (Sec. 4). We demonstrate this by
training our DSA network on a novel public dataset of real
image bursts from SkySat satellites. In a qualitative com-
parison, we see that the obtained results are more resolved
and less noisy than the L1B product from Planet (see Fig. 1).

2. Related works

Video and burst super-resolution. There is a long his-
tory of MISR techniques from bursts of images and videos
(see [45, 67] for more comprehensive reviews). Most
MISR methods are based on two steps: subpixel regis-
tration between the LR images and fusion into the super-
resolved image. Several fusion strategies have been pro-
posed: local kernel regression [61, 55], variational for-
mulations [57, 38, 18, 49], and fusion in transformed do-
mains [30, 34, 46, 5].

One of the simplest classical strategies is the shift-and-

add method, in which the pixel values of the low resolution
image are shifted according to an estimated motion with re-
spect to a common reference and accumulated in a high res-
olution image [28]. We incorporate a feature shift-and-add

module inspired from these methods.
Currently, the state of the art in MISR is dominated

by neural networks. Existing approaches can be classified
based on the motion compensation strategy. Approaches
based on explicit motion compensation estimate the motion
field between pairs of LR frames and use it to register them.
Most methods use backward warping (or pullback) to ob-
tain the registered frames, which requires interpolating the
LR frame to be registered [51, 63, 15]. Instead, our DSA
architecture uses forward warping (or push forward), where
the LR pixels are aggregated into the high resolution grid.
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A similar approach is followed in [56], except that the for-
ward warping is applied to the input frames, while we apply
it to a feature representation.

Since the motion estimation might be prone to errors,
especially with optical flow methods for video, some ap-
proaches avoid to explicitly represent motion. Different
strategies have been proposed for implicit motion compen-

sation: dynamic upsampling filters [27], deformable convo-
lutions [60], progressive fusion residual blocks [64]. Other
approaches do not compensate for motion at all and sim-
ply present the data to a network, hoping that the motion
compensation will be learnt through training [20, 24].

Super-resolution for satellite images. Most MISR meth-
ods for satellite images are still based on classic model-
based techniques [34, 41, 44, 5, 6]. Obtaining realistic
databases with ground truth is the main challenge for train-
ing data-driven MISR methods for satellite imagery, as all
existing approaches rely on supervised training.

In the case of SISR, some methods resort to simulating
realistic data [69] or to combine images acquired from dif-
ferent satellites with different resolutions [48, 52] so as to
avoid the synthetic downsampling.

To the best of our knowledge, the only dataset with real
LR and HR satellite images is the PROBA-V dataset [39].
This dataset and the associated challenge have triggered re-
search in MISR of satellite imagery [13, 53, 42, 43]. In the
PROBA-V dataset, the LR reference (the LR image asso-
ciated to the HR target) is unknown. This last point was
analyzed in [47], where the authors propose PROBA-V-ref,
an alternative version of the PROBA-V challenge where the
identity of the reference image is provided, a setting which
is more relevant to our application.

Learning without ground truth. Lehtinen et al. [36]
showed that an image denoising network can be trained
from pairs of noisy versions N and N ′ of the same image
I with independent noise realizations, by minimizing the
following noise-to-noise (N2N) risk:

RN2N(Net) =
∑

j

ℓ(Net(Nj), N
′

j). (2)

Intuitively, since the noise realizations are independent, the
noise in N ′ cannot be predicted from N . Hence, the loss
is minimized by estimating the clean image. The optimal
estimators for the N2N risk are given by E{N ′|N} for the
MSE loss, and median{N ′|N} for the L1 loss. It can be
shown that if the noise in N ′ preserves the mean, then
E{N ′|N} = E{I|N}, i.e. training with the supervision of
the noisy images is equivalent to the one supervised by the
clean ones. It was also empirically observed that a similar
property holds for the L1 loss if the noise in N ′ preserves
the median.

Noise-to-noise has inspired several works in self-
supervised training of denoising networks. For still im-
ages, [33, 8] train a network to predict noisy pixels from
their surroundings, thus eliminating the need for the sec-
ond noisy observation, albeit with a penalty in the quality
of the results. In the context of video or bursts of images,
the situation is more favorable as a neighboring frame can
be used as noisy target (after proper alignment). The frame-
to-frame method [17] applied this idea to fine-tune a sin-
gle frame denoising (and/or demosaicking [16]) network re-
quiring only a single noisy video or burst. Extensions were
proposed in [14, 65] for multi-frame denoising networks by
withholding the target frame from the inputs to the network.
Our self-supervised training draws inspiration from frame-
to-frame approaches [17, 16, 14].

Other self-supervision strategies were also explored for
SISR. In [54], an algorithm that exploits the internal recur-
rence of information across scales inside a single image is
proposed. The authors of [66, 29] propose to use cycle-
consistency and adversarial losses to train a SISR neural
network without supervision using unpaired LR and HR im-
ages. In [37], an extension of the Deep Image Prior [58] is
applied to fine-tune a SISR network on a single image.

3. Self-supervised multi-image SR

We first present an overview of our proposed Deep Shift-

and-Add in Sec. 3.1. Then we describe our framework for
self-supervised MISR training in Sec. 3.2, and in Sec. 3.3
we provide details about the training.

3.1. Architecture

Our neural network (illustrated in Fig. 2a) takes as in-
put a sequence of LR images {ILR

t }Tt=0 and produces one
super-resolved image ÎSR

0 . The architecture draws inspi-
ration from the traditional shift-and-add MISR algorithms,
especially those that perform a weighted average of the
aligned LR image samples depending on their subpixel po-
sitions [19, 41, 22, 3, 26].

To this aim, the motion fields between all the LR frames
in the burst and a reference one ILR

0 are first estimated with
a trainable motion estimation module. Then, the frames
are upscaled and aligned by compensating the motion us-
ing a Subpixel Motion Compensation [56] layer (SPMC).
The SPMC layer was originally proposed to feed motion
compensated frames into a video SR network. However,
in our case, we apply it to convolutional features JLR

t ex-
tracted from the frames ILR

t as it has been shown that deep
feature representations encode at each pixel a rich descrip-
tion of the local neighborhood [9, 13, 62]. The upscaled
and aligned features JHR

t are then averaged in a high res-
olution feature map JHR. The SR image is then obtained
by decoding JHR. In summary, the action of the network
can be described in three steps: encoding, temporal feature
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(a) Overview of our architecture and framework (b) Illustration of the SPMC layer

Figure 2: (a) Overview of our proposed self-supervised MISR framework at training time. The depicted loss represents the self-supervision
term ℓself , for simplicity the losses concerning the motion estimation module are not illustrated. Note that at inference time the frame ILR

0

is also encoded and fed to the FS&A block. (b) SPMC ×2 layer [56]: Splatting LR features onto the HR domain using the flow Ft→0.

aggregation, and decoding. The temporal aggregation is
done simply by feature averaging, via a feature shift-and-

add block. This schema allows to aggregate an arbitrary
number of frames and is permutation invariant. We will ex-
ploit these properties later in Sec. 3.2.

The trainable modules of the proposed architecture
(shown in red in Fig. 2a) include the Motion Estimator, the
Encoder and the Decoder.

Motion Estimator. We follow the work of [51] to build
the network ME used to estimate the optical flows between
each LR frame {ILR

t }Tt=1 and the reference frame ILR
0

Ft→0 = ME(ILR
t , ILR

0 ; ΘME) ∈ [−R,R]H×W×2. (3)

The parameters of the Motion Estimator are denoted ΘME.
A small Gaussian filter (σ = 1) is applied to the input im-
ages to reduce the alias [59]. This network will be trained
with a maximum range of motions [−R,R]2 (in this work,
R = 5 pixels).

The ME network follows a simple hourglass style archi-
tecture (4 scales with 32, 64, 128 and 256 features, 2 con-
volutions blocks per scale [51]). More complex methods
can be adopted, but since in our application, the apparent
motion is mainly caused by the motion of the satellite, a
smooth motion estimate suffices.

Encoder. The Encoder module generates relevant features
(JLR

t )Tt=1 for each LR image in the sequence

JLR
t = Encoder(ILR

t ; ΘE) ∈ R
H×W×N , (4)

where ΘE is the set of parameters of the encoder and N =
64 is the number of produced features. The network com-
prises 2 convolutional layers at the two ends of a series of 4
residual blocks with 64 features per layer.

Feature Shift-and-Add. A shift-and-add process is used
to map and aggregate feature pixels to their positions in the
HR grid using the corresponding optical flows. We sepa-
rate the process in two: first the features of each frame are
upscaled by introducing zeros between samples and motion
compensated with the SPMC module [56], then a weighted
average is computed.

The SPMC module uses the flow Ft→0 to compute the
positions of the samples from JLR

t in the HR grid

JHR
t = SPMC(JLR

t , {Ft→0}) ∈ R
rH×rW×N , (5)

where r is the upscaling factor (r = 2 in our case). As
in [56], every LR pixel is “splatted” on a neighborhood
of the computed HR position using bilinear weights (see
Fig. 2b). In this way, the operation is differentiable with
respect to both the intensities and the optical flows. We per-
form a weighted aggregation of JHR

t

JHR = (
∑

t J
HR
t )(

∑
t W

HR
t )−1, (6)

where WHR
t = SPMC(1, {Ft→0}) are the sum of the bi-

linear weights affecting every pixel. Note that the feature
shift-and-add does not have any trainable parameters.

Decoder. The Decoder network reconstructs the SR im-
age ÎSR

0 from the fused features

ÎSR
0 = Decoder(JHR; ΘD) ∈ R

rH×rW , (7)

where ΘD denotes the set of parameters of the decoder. Our
decoder comprises 2 convolutional layers at the two ends of
a series of 10 residual blocks with 64 features.

3.2. Self­supervised learning

The proposed self-supervised training relies on the min-
imization of a reconstruction loss in the LR domain plus a

4



motion estimation loss to ensure accurate alignment. Each
loss is detailed in the following paragraphs.

Self-supervised SR loss. From the formation model
in (1), we see that the LR images ILR

t and the target high
resolution image IHR capture the same underlying image
Ibl, only the sampling and noise differs.

During self-supervised training, LR sequences are ran-
domly selected and for every sequence one frame is set apart
as the reference ILR

0 . Then, all other LR images in each se-
quence are registered against ILR

0 . Assuming that the reg-
istration is perfect, the registered LR images correspond to
noisy samples of Ibl. Thus, ignoring the noise, ILR

0 could
be used as target for the fraction of pixels it contains. More
specifically, the proposed self-supervised loss writes

ℓself (Î
SR
0 , ILR

0 ) = ‖D2(Î
SR
0 )− ILR

0 ‖1, (8)

where ÎSR
0 = Net({ILR

t , }Tt=1, I
LR
0 ) is the network output

and D2 is the subsampling operator that takes one pixel over
two in each direction. That is, the proposed self-supervised
loss aims at training the network to produce an image such
that when subsampled, it coincides with the target ILR

0 . Fol-
lowing noise-to-noise [36], if the noise in the LR frames is
independent, the network is unable to predict the noise in
ILR
0 and it learns to output a noise-free image. The use of

the L1 norm in the loss is adapted for frame-independent
median preserving noise, as shown in the noise-to-noise
framework [36, 17].

Note that in the proposed architecture, the image ILR
0 is

also an input of Net as the super-resolved image ÎSR
0 has to

be aligned with ILR
0 . Usually in self-supervised learning,

the target is excluded from the network inputs during train-
ing in order to avoid trivial solutions [8, 14]. In our case, the
network could achieve zero loss by learning to copy the ref-
erence LR frame ILR

0 in the subsampled pixels of the super-
resolved image D2(Î

SR
0 ). However, this is not a problem in

our framework since the reference ILR
0 is only used to es-

timate the flows and does not enter the encoder path, thus
the encoder and the decoder must learn to reproduce ILR

0

without having access to it. At test time, since the network
has been trained to handle a variable number of input LR
frames, the reference frame can be added to the inputs to-
gether with the rest of the LR frames.

In conclusion, as long as the network architecture con-
tains an explicit motion estimation module that is decou-
pled from the fusion module, our framework can be applied
to provide self-supervised training.

Motion estimation loss. To ensure a good alignment of
the LR frames, we use a motion estimation loss con-
sisting in a photo-consistency term and a regularization
term, as the ones used for unsupervised training of opti-
cal flow [25]. The loss is computed for each flow Ft→0 =

ME(ILR
0 , ILR

t ,ΘME) estimated by the ME module:

ℓme({Ft→0}
T
t=1) =

∑
t ‖I

LR
t −Pullback(ILR

0 , Ft→0)‖1

+ λ1TV (Ft→0), (9)

where Pullback computes a bicubic warping of ILR
0 ac-

cording to a flow, TV is the finite difference discretiza-
tion classic Total Variation [50] regularizer, and λ1 is a
hyperparameter controlling the regularization strength. A
small Gaussian filter (σ = 1) is also applied to the images
ILR
0 , ILR

t to reduce the alias.

3.3. Training details

We first pre-train the motion estimator on our dataset,
and then train the whole system end-to-end. While this is
not strictly necessary, it stabilizes the training and acceler-
ates the convergence [56].

To pre-train the motion estimation network we use the
motion estimation loss (9). We initialize the weights of the
motion estimator with Xavier’s initialization [21]. In our
experiments, we set λ1 to 0.01 and batch size to 64, then
use Adam [31] with the default Pytorch parameters and a
learning rate of 10−4 to optimize the loss. The pre-training
converges after 20k iterations and takes about 5 hours on
one NVIDIA V100 GPU.

We then train the entire system end-to-end using the
complete loss:

loss = ℓself + λ2ℓme. (10)

We set λ2 = 10 in our experiments. The initial weights
are set using He initialization [23], except for the motion
estimator whose initial weights are the pre-trained ones.

For our experiments with simulated data, we also train
a supervised model which is used as a reference (see
Sec. 4.2). In that case, we replace ℓself in (10) by

ℓsupervised(Î
SR
0 , IHR) = ‖ÎSR

0 − IHR‖1, (11)

which uses supervision from the high resolution target IHR.
We train both supervised and self-supervised models on

LR crops of size 64× 64 pixels and validate on LR images
of size 256×256 pixels. During training, our network is fed
with a random number of LR input images (from 5 to 30)
in each sequence. We set the batch size to 16 and optimize
the loss using the Adam optimizer with default parameters.
Our learning rates are initialized to 10−4 and scaled by a
factor of 0.3 when the validation loss plateaus for more than
30 epochs. The training converges after 300 epochs and it
takes about 18 hours on one NVIDIA V100 GPU.

4. Experiments

In our experiments, we use real push-frame images ac-
quired by satellites from the SkySat constellation [44].
These images are also used to create a simulated dataset
used for a quantitative evaluation.
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4.1. Datasets

SkySat imagery. The SkySat satellites contain a full-
frame sensor capable of capturing 40 frames per second and
is mainly operated in a push-frame mode with significant
overlap between the frames. As a result, the same point on
the ground is seen in at least 15 consecutive images. The
individual low-resolution frames are called L1A products.
Planet also provides a super-resolved product (called L1B)
that corresponds to a ×1.25 zoom of the L1A images and
has a resolution between 50 to 70 cm/pixel at nadir. It is im-
portant to note that the L1B product has also undergone an
unknown sharpening, so it is not easily comparable to the
L1A images.

Simulated dataset. A part of our experiments will be
conducted on a simulated dataset generated from a set of
crops of L1B products. For a given crop B, the ground
truth HR image IHR is computed by filtering B with a small
Gaussian kernel with σ = 0.3 so as to simulate a small op-
tical blur. Random shifts (sampled uniformly on a disk) and
a ×2 subsampling are then applied to IHR to obtain the set
of LR images

ILR
0 = D2(I

HR) + n0,

ILR
t = D2(Shift∆t

(IHR)) + nt, t = 1, . . . , T,
(12)

where D2 is the subsampling operator, Shift∆t
applies

a subpixel translation of ∆t with Fourier interpolation
(‖∆t‖1 ≤ 2) to the image and nt models the noise.

Our simulated data was generated from 370 L1B images
of size 3200 × 1350 pixels. We use 320 images for train-
ing and 50 for validation. From each image, random crops
are extracted to generate bursts of 30 noisy LR frames with
additive white Gaussian noise of standard deviation 3/255.
The size of the crops in the training set is 64×64 pixels and
in the validation set is 256× 256 pixels.

The relative position of the samples of the set of LR im-
ages is a critical aspect of the MISR problem. When the
random shifts are drawn uniformly the restoration problem
is usually well-posed. But, due to the motion of the satel-
lite, real sampling configuration can be degenerate, i.e. with
all the shifts aligned along the same direction. This is a
critical situation for many traditional MISR algorithms that
require additional regularization as the problem becomes
ill-posed. Ignoring these degenerate configurations during
training can result in poor performance in similar cases.
Thus, in our main simulated dataset, we simulate a mixture
of 80% uniform sampled sequences and 20% degenerate
sampled sequences, in which the samples are allocated in a
narrow ellipse as shown in Fig. 3. We also generate datasets
with 100% uniform and 100% degenerate samplings. We
refer to them as mixed, uniform, and degenerate.

(a) Uniform sampling (b) Degenerate sampling

Figure 3: Uniform and degenerate sampling. The vectors represent
the global shifts between the LR frames in a simulated sequence.
(a) In the uniform sampling these shifts are uniformly distributed
in a disk. (b) In the degenerate sampling these shifts are distributed
in a narrow ellipse.

Shift-and-Add HighRes-net ACT-Spline DSA-Self DSA

44

46

48
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P
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N
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Figure 4: PSNR of different methods over our main validation set
with 16 input frames per sequence.

Table 1: Average PSNR (dB) over the validation dataset for differ-
ent methods with different number of input images per sequence.
Our solutions are highlighted in bold.

Method
Shift-a

nd-Add

HighRes-net

ACT-Spline

DSA-Self-n
oref

DSA-Self

DSA

T = 5 42.99 45.63 45.54 45.70 45.75 45.82

T = 16 47.72 48.17 48.38 49.18 49.27 49.33

T = 30 49.95 49.05 50.15 50.38 50.45 50.50

Dataset of real images. For our experiments on real
data, we selected 48 reference SkySat L1A images, and 15
frames overlapping each reference. The stacks of L1A im-
ages are pre-aligned to each reference with a discrete trans-
lation avoiding any resampling. From each reference image,
we randomly crop 20 blocks of size 256×256 pixels, yield-
ing 960 stacks of 15 frames in total, including 60 stacks for
the validation set.2 For each stack, the L1B product from
Planet is also extracted, which will only be used for visual
comparison as we do not know which sharpening was used.

4.2. Super­resolution on simulated data

We evaluate the performance of our super-resolution
network on the simulated dataset described in Sec. 4.1

2This dataset can be downloaded from the project webpage.
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and compare against three methods from the literature:
Shift-and-Add, ACT-Spline and HighRes-net. The classi-
cal Shift-and-Add with bilinear splatting will serve as base-
line [41, 22, 3, 26]. ACT-Spline is a state-of-the-art method
based on spline fitting [5]. In Shift-and-Add and ACT-
Spline, the LR images are aligned using the inverse com-
positional method [7, 10]. HighRes-net is a MISR CNN
with implicit motion estimation trained originally for the
PROBA-V challenge [13]. Here we use a variant that was
shown in [47] to have a better performance on the PROBA-
V-ref dataset. We retrained HighRes-net with supervision
on our simulated dataset, following the procedure of [47]
but doubling the number of epochs to ensure convergence.
As a reference for comparison with SISR methods, we also
retrained SRGAN [35] on our dataset. As one could expect
from a SISR method, many details are lost. The results are
reported in the supplementary material.

Table 1 shows the results of the three methods plus our
DSA network (with both supervised and self-supervised
training) on the simulated validation set using 5, 16 and 30
input frames. Fig. 4 breaks down the performance of the
different methods over the mixed validation dataset for the
case with 16 input frames. Our supervised network ranks
first, with a significant 0.95dB gain (T = 16) over ACT-
Spline which was hand-tuned [5] on a dataset of SkySat im-
ages. HighRes-net performs 0.23dB worse than ACT-Spline
and this gap grows to 1.1dB for T = 30. The outputs of
HighRes-net are noiseless but tend to be over-smoothed. It
seems that for longer bursts, HighRes-net has problems fus-
ing the complementary information of the LR frames. Note
that HighRes-net was also trained by varying the number of
LR frames. The DSA-Self-noref column shows the perfor-
mance of our self-supervised network when the reference
LR image ILR

0 is excluded from the fusion step at test time.
In this case, we add an additional LR image to maintain
the total number of LR images for a fair comparison. This
shows that a small gain can be obtained by including ILR

0 .

Fig. 5 presents a qualitative comparison between Shift-
and-Add, HighRes-net, ACT-Spline and the proposed DSA-
Self on a sequence of 16 frames from the validation set with
uniform sampling of the shifts. The output of our super-
vised DSA (49.93dB) was not included as it was indistin-
guishable to the DSA-Self result. In this example, DSA-
Self outperforms the other methods by more than 1dB. On
the zoomed area, we can see that our method recovers faith-
fully the details on the ground. We remark that our network
has never seen any ground truth HR image during train-
ing. It is optimized only by penalizing the loss between the
downsampled version of the output and the noisy LR refer-
ence frame over a training dataset. On the other hand, the
outputs of Shift-and-Add and ACT-Spline are noisy while
the one produced by HighRes-net is too blurry and the black
spots are barely distinguishable on the field.

LR frame Shift&Add (48.17dB) HighRes-net (48.36dB)

ACT-Spline (48.81dB) DSA-Self (49.86dB) Ground truth

Figure 5: Comparison with other methods in the case of a uniform
sequence with 16 LR frames.

(a) HighRes-net (b) DSA-Self (c) Ground truth

Figure 6: HighRes-net reconstruction from a degenerate sequence
of 16 frames presents strong aliasing artifacts.

(a) L1A frame (b) Planet L1B (×1.25) (c) DSA-Self (×2)

Figure 7: Super-resolution from a sequence of 15 SkySat L1A
frames. (c) was obtained using Eq. (13) as reconstruction loss with
deconvolution.

Reproducing the same experiment but with the degener-
ate samplings, we observe that HighRes-net fails to remove
aliasing artifacts of the LR frames (see Fig. 6), despite being
trained with such configurations. We argue that the network
was not able to exploit the alias in the images failing at in-
creasing the resolution.

4.3. Super­resolution trained on real data

We applied our framework to train our DSA-Self net-
work on the dataset of real SkySat L1A bursts. Since there
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Table 2: Evaluation of the impact of training the proposed DSA network with a variable number of input images (rows variable or a fixed

(16) number of inputs) and considering degenerate sampling configurations or not (rows mixed or uniform datasets).

Training Testing on mixed dataset Testing on uniform dataset Testing on degenerate dataset

Number Training Number of images Number of images Number of images

of images dataset 5 16 30 5 16 30 5 16 30

Variable Mixed 45.82 49.33 50.50 45.77 49.26 50.41 45.40 48.75 49.81
Variable Uniform 45.78 49.27 50.43 45.79 49.31 50.39 45.34 48.68 49.74
Fixed (16) Mixed 45.55 49.29 50.52 45.52 49.23 50.43 45.15 48.71 49.83

Fixed (16) Uniform 45.32 49.16 50.52 45.37 49.20 50.49 44.94 48.59 49.81

is no ground truth we conduct a qualitative evaluation com-
paring with the L1B product from Planet. We recall that
our method estimates a high-resolution (but blurry) image
sampled from Ibl := I ∗ k, while the L1B product has un-
dergone an unknown sharpening step.

As we do not know the optical characteristics of the
SkySat satellites, following [5] we consider a blur kernel
k′ such that when inverted, the reconstruction is visually
well-contrasted. We model our blur kernel in the frequency
domain as k̂′(ω) = (5|ω| + 1)−1. The sharp image could
then be obtained by solving a variational non-blind decon-
volution problem [4, 32] as in [5]. Instead, we opt for in-
corporating the deconvolution in the self-supervision loss

ℓself (Î
SR
0 , ILR

0 ) = ‖D2(Î
SR
0 ∗ k′)− ILR

0 ‖1. (13)

By embedding a deconvolution into the training, the net-
work produces directly a sharp SR image without introduc-
ing unwanted high-frequency artifacts (see the supplemen-
tary material for a comparison of both techniques).

Fig. 1 and 7 show side-by-side comparisons of results
obtained on the validation dataset. As we can see, L1B
products present strong stair-casing artifacts. The fine de-
tails like the vehicle in the Fig. 1 and the vertical bars in the
Fig. 7 are much sharper in the proposed method.

At inference time, our proposed method takes 0.6 sec-
onds to produce a ×2 super-resolved image from a sequence
of 15 L1A images (256× 256 pixels).

5. Ablation Study

To analyze the importance of the different elements of
the proposed architecture, we perform experiments in a su-
pervised setting. First, we re-trained our DSA with different
number of features produced by the encoder (4, 16 and 64)
and evaluated on the 50 validation sequences comprising
16 images. The obtained PSNRs were respectively 48.81,
49.06 and 49.33dB. Thus, 64 features yields the best re-
sults. We observed that more features led to diminishing
returns. We also tested an architecture without encoder that
directly aggregates pixels, but it under-performed with few
input images (see the supplementary material for details).

Lastly, we studied the impact of training with a variable
number of input images and considering degenerate sam-
pling configurations. The four rows in Table 2 correspond to
networks trained: 1. with a variable or a fixed (16) number
of input images; 2. using the mixed or the uniform dataset.
We evaluated the networks on the uniform, degenerate, and
mixed test datasets using different number of input images
(5, 16, 30). The results show that training with a variable
number of input images and with a mixed dataset leads to
a network that is more resilient to having less input frames
and that can cope with degenerate sampling configurations.

6. Conclusion

We presented a framework for the self-supervised train-
ing of multi-image super-resolution networks without re-
quiring ground truth. For our framework to be applicable,
the networks need an explicit motion compensation mod-
ule. In addition, we proposed DSA, a novel MISR architec-
ture consisting of a shift-and-add fusion of features. Our
experiments on simulated data showed that the proposed
self-supervision strategy attains state-of-the-art results, on
par with those obtained with a supervised training. As our
framework makes it possible to train a network solely from
datasets of real LR images, we trained DSA on real SkySat
satellite image bursts, leading to results that are more re-
solved and less noisy than the L1B product from Planet.
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