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ABSTRACT

3D object representation learning is a fundamental challenge in computer vision
to draw inferences about the 3D world. Recent advances in deep learning have
shown their efficiency in 3D object recognition, among which view-based meth-
ods have performed best so far. However, feature learning of multiple views in
existing methods is mostly trained in a supervised fashion, which often requires a
large amount of data labels with high cost. Hence, it is critical to learn multi-view
feature representations in a self-supervised fashion. To this end, we propose a
novel self-supervised learning paradigm of Multi-View Transformation Equivari-
ant Representations (MV-TER), exploiting the equivariant transformations of a 3D
object and its projected multiple views. Specifically, we perform a 3D transforma-
tion on a 3D object, and obtain multiple views before and after transformation via
projection. Then, we self-train a representation learning module to capture the in-
trinsic 3D object representation by decoding 3D transformation parameters from
the fused feature representations of multiple views before and after transforma-
tion. Experimental results demonstrate that the proposed MV-TER significantly
outperforms the state-of-the-art view-based approaches in 3D object classification
and retrieval tasks.

1 INTRODUCTION

3D object representation has become increasingly prominent for a wide range of applications, such
as 3D object recognition and retrieval (Maturana & Scherer, 2015; Qi et al., 2016; Brock et al., 2016;
Qi et al., 2017a;b; Klokov & Lempitsky, 2017; Su et al., 2015; Feng et al., 2018; Yu et al., 2018;
Yang & Wang, 2019). Recent advances in Convolutional Neural Network (CNN) based methods
have shown their success in 3D object recognition and retrieval (Su et al., 2015; Feng et al., 2018; Yu
et al., 2018; Yang & Wang, 2019). One important family of methods are view-based methods, which
project a 3D object into multiple views and learn compact 3D representation by fusing the feature
maps of these views for downstream tasks. Feature learning of multiple views in existing approaches
are mostly trained in a supervised fashion, hinging on a large amount of data labels that prevents
the wide applicability. Hence, self-supervised learning is in demand to alleviate the dependencies
on labels by exploring unlabeled data for the training of multi-view feature representations in an
unsupervised or (semi-)supervised fashion.

Many attempts have been made to explore self-supervisory signals at various levels of visual struc-
tures for representation learning. The self-supervised learning framework requires only unlabeled
data in order to formulate a pretext learning task (Kolesnikov et al., 2019), where a target objective
can be computed without any supervision. These pretext tasks can be summarized into four cate-
gories (Jing & Tian, 2019): generation-based (Zhang et al., 2016; Pathak et al., 2016; Srivastava
et al., 2015), context-based, free semantic label-based (Faktor & Irani, 2014; Stretcu & Leordeanu,
2015; Ren & Jae Lee, 2018), and cross modal-based (Sayed et al., 2018; Korbar et al., 2018). Among
them, context-based pretext tasks include representation learning from image transformations, which
is well connected with transformation equivariant representations as they transform equivalently as
the transformed images.

Transformation Equivariant Representation learning assumes that representations equivarying to
transformations are able to encode the intrinsic structures of data such that the transformations can
be reconstructed from the representations before and after transformations (Qi, 2019). Learning
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transformation equivariant representations has been advocated in Hinton’s seminal work on learning
transformation capsules (Hinton et al., 2011). Following this, a variety of approaches have been
proposed to learn transformation equivariant representations (Kivinen & Williams, 2011; Sohn &
Lee, 2012; Schmidt & Roth, 2012; Skibbe, 2013; Lenc & Vedaldi, 2015; Gens & Domingos, 2014;
Dieleman et al., 2015; 2016; Zhang et al., 2019; Qi et al., 2019; Gao et al., 2020; Wang et al., 2020).
Nevertheless, these works focus on transformation equivariant representation learning of a single
modality, such as 2D images or 3D point clouds.

In this paper, we propose to learn Multi-View Transformation Equivariant Representations (MV-
TER) by decoding the 3D transformations from multiple 2D views. This is inspired by the equivari-
ant transformations of a 3D object and its projected multiple 2D views. That is, when we perform
3D transformations on a 3D object, the 2D views projected from the 3D object via fixed view-
points will transform equivariantly. In contrast to previous works where 2D/3D transformations are
decoded from the original single image/point cloud and transformed counterparts, we exploit the
equivariant transformations of a 3D object and the projected 2D views. We propose to decode 3D
transformations from multiple views of a 3D object before and after transformation, which is taken
as self-supervisory regularization to enforce the learning of intrinsic 3D representation. By estimat-
ing 3D transformations from the fused feature representations of multiple original views and those
of the equivariantly transformed counterparts from the same viewpoints, we enable the accurate
learning of 3D object representation even with limited amount of labels.

Specifically, we first perform 3D transformation on a 3D object (e.g., point clouds, meshes), and
render the original and transformed 3D objects into multiple 2D views with fixed camera setup.
Then, we feed these views into a representation learning module to infer representations of the mul-
tiple views before and after transformation respectively. A decoder is set up to predict the applied
3D transformation from the fused representations of multiple views before and after transformation.
We formulate multi-view transformation equivariant representation learning as a regularizer along
with the loss of a specific task (e.g., classification) to train the entire network end-to-end. Exper-
imental results demonstrate that the proposed method significantly outperforms the state-of-the-art
view-based models in 3D object classification and retrieval tasks.

Our main contributions are summarized as follows.

• We propose Multi-View Transformation Equivariant Representations (MV-TER) to learn
3D object representations from multiple 2D views that transform equivariantly with the 3D
transformation in a self-supervised fashion.

• We formalize the MV-TER as a self-supervisory regularizer to learn the 3D object repre-
sentations by decoding 3D transformation from fused features of projected multiple views
before and after the 3D transformation of the object.

• Experiments demonstrate the proposed method outperforms the state-of-the-art view-based
methods in 3D object classification and retrieval tasks in a self-supervised fashion.

2 RELATED WORKS

In this section, we review previous works on transformation equivariant representations and multi-
view based neural networks.

2.1 TRANSFORMATION EQUIVARIANT REPRESENTATIONS

Many approaches have been proposed to learn equivariant representations, including transform-
ing auto-encoders (Hinton et al., 2011), equivariant Boltzmann machines (Kivinen & Williams,
2011; Sohn & Lee, 2012), equivariant descriptors (Schmidt & Roth, 2012), and equivariant filtering
(Skibbe, 2013). Lenc & Vedaldi (2015) prove that the AlexNet (Krizhevsky et al., 2012) trained
on ImageNet learns representations that are equivariant to flip, scaling and rotation transformations.
Gens & Domingos (2014) propose an approximately equivariant convolutional architecture, which
utilizes sparse and high-dimensional feature maps to deal with groups of transformations. Dieleman
et al. (2015) show that rotation symmetry can be exploited in convolutional networks for effectively
learning an equivariant representation. Dieleman et al. (2016) extend this work to evaluate on other
computer vision tasks that have cyclic symmetry. Cohen & Welling (2016) propose group equivari-
ant convolutions that have been developed to equivary to more types of transformations. The idea of
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group equivariance has also been introduced to the capsule nets (Lenssen et al., 2018) by ensuring
the equivariance of output pose vectors to a group of transformations.

To generalize to generic transformations, Zhang et al. (2019) propose to learn unsupervised fea-
ture representations via Auto-Encoding Transformations (AET) by estimating transformations from
the learned feature representations of both the original and transformed images. Qi et al. (2019)
extend AET by introducing a variational transformation decoder, where the AET model is trained
from an information-theoretic perspective by maximizing the lower bound of mutual information.
Gao et al. (2020) extend transformation equivariant representations to graph data that are irregularly
structured, and formalize graph transformation equivariant representation learning by auto-encoding
node-wise transformations in an unsupervised manner. Wang et al. (2020) extend the AET to Gener-
ative Adversarial Networks (GANs) for unsupervised image synthesis and representation learning.

2.2 MULTI-VIEW LEARNING

Recently, many view-based approaches have been proposed for 3D object learning. These methods
project 3D objects (e.g., point clouds, meshes) into multiple views and extract view-wise features
receptively via CNNs, and then fuse these features as the descriptor of 3D objects. Su et al. (2015)
first propose a multi-view convolutional neural network (MVCNN) to learn a compact descriptor of
an object from multiple views, which fuses view-wise features via a max pooling layer. Qi et al.
(2016) introduce a new multi-resolution component into MVCNNs, and improve the classification
performance. However, max pooling only retains the maximum elements from views, which leads
to information loss. In order to address this problem, many subsequent works have been proposed
to fuse multiple view-wise features into an informative descriptor for 3D objects. Feng et al. (2018)
propose a group-view convolutional neural network (GVCNN) framework, which produces a com-
pact descriptor from multiple views using a grouping strategy. Yu et al. (2018) propose a multi-view
harmonized bilinear network (MHBN), which learns 3D object representation by aggregating local
convolutional features through the proposed bilinear pooling. To take advantage of the spatial re-
lationship among views, Han et al. (2018) and Han et al. (2019) propose to aggregate the global
features of sequential views via attention-based RNN and CNN, respectively. Kanezaki et al. (2018)
propose to learn global features by treating pose labels as latent variables which are optimized to
self-align in an unsupervised manner. Yang & Wang (2019) propose a relation network to connect
corresponding regions from different viewpoints, and reinforce the information of individual view.
Jiang et al. (2019) propose a Multi-Loop-View Convolutional Neural Network (MLVCNN) for 3D
object retrieval by introducing a novel loop normalization to generate loop-level features. Wei et al.
(2020) design a view-based GCN framework to aggregate multi-view features by investigating rela-
tions of views.

3 MV-TER: THE PROPOSED METHOD

In this section, we first define multi-view equivariant transformation in Section 3.1. Then we for-
mulate the MV-TER model and introduce the MV-TER framework in Section 3.2 and Section 3.4,
respectively.

3.1 MULTI-VIEW EQUIVARIANT TRANSFORMATION

2D views are projections of a 3D object from various viewpoints, which transform in an equivariant
manner as the 3D object transforms. Formally, given a 3D object M ∈ R

n×3 consisting of n points
and a 3D transformation distribution T , we sample a transformation t ∼ T and apply it to M:

M̃ = t(M). (1)

We project M onto 2D views from m viewpoints, denoted as V = {V1, ...,Vm}, i.e.,

Vi = pi(M), (2)

where pi : R
3 7→ R

2 is a projection function for the ith view. Subsequent to the transformation on

M, the m views transform equivariantly, leading to Ṽ = {Ṽ1, ..., Ṽm}. We have

Ṽi = pi

(
M̃

)
= pi (t(M)) = fi,t (Vi) , i = 1, ...,m, (3)
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where fi,t’s are 2D transformations that are equivariant under the same 3D transformation t. Though

Vi and Ṽi are projected along the same viewpoint i (i.e., the same camera setup), they are projec-
tions of the original 3D object and its transformed counterpart, thus demonstrating different per-
spectives of the same 3D object. Our goal is to learn the representations of 3D objects from their
multiple 2D views by estimating the 3D transformation t as a pretext task from sampled multiple

views before and after the transformation, i.e., V and Ṽ .

3.2 THE FORMULATION

Considering the ith views {Vi, Ṽi} before and after a transformation t, a function E(·) is transfor-
mation equivariant if it satisfies

E(Ṽi) = E(fi,t(Vi)) = ρ(t)E(Vi), (4)

where ρ(t) is a homomorphism of transformation t in the representation space.

We aim to train a shared representation module E(·) that learns equivariant representations of mul-
tiple views. In the setting of self-supervised learning, we formulate MV-TER as a regularizer along
with the (semi-)supervised loss of a specific task to train the entire network. Given a neural network
with learnable parameters Θ, the network is trained end-to-end by minimizing the weighted sum of
two loss functions: 1) the loss of a specific task ℓtask (e.g., a cross-entropy loss in 3D object clas-

sification); and 2) the MV-TER loss that is the expectation of estimation error ℓM(t, t̂) over each
sample M given a distribution of 3D objects M and each transformation t ∼ T :

min
Θ

ℓtask + λ E
t∼T

E
M∼M

ℓM(t, t̂). (5)

ℓM(t, t̂) is the mean squared error (MSE) between the estimated transformation t̂ and the ground
truth t. λ is a weighting parameter to strike a balance between the loss of a specific task and the
MV-TER loss. Here, the loss ℓtask can be taken over all the data labels (fully-supervised) or partial

labels (semi-supervised). In (5), t̂ is decoded as a function of V and Ṽ in multiple views as defined

in (2) and (3), and we will present two schemes to decode t̂ in the next subsection.

3.3 TWO TRANSFORMATION DECODING SCHEMES

Fusion Scheme. We propose two schemes to decode the transformation t in (5) from the feature

representations of multiple views E(Vi) and E(Ṽi), i = 1, ...,m. The first scheme is to decode
from fused representations of multiple views (before and after transformations). Suppose the neural

network extracts features of Vi and Ṽi from a representation learning module E(·), and estimates
the 3D transformation from both features via a transformation decoding module D(·), then we have

t̂ = D
[
F (E(V1), ..., E(Vm)) , F

(
E(Ṽ1), ..., E(Ṽm)

)]
, (6)

where F (·) is a function of feature fusion.

Average Scheme. In the second decoding scheme, we estimate the transformation t̂ from each
view before and after transformation and then take the average of the estimates. The idea is each
view captures the projected 3D structures under a transformation. This essentially models a 3D
object from different perspectives from which the underlying 3D transformation can be revealed.
By averaging the estimated transformations across multiple views, a reasonable estimation of 3D
transformation can be made.

This actually pushes the model to learn a good 3D representation from individual 2D views and

leads to an estimation t̂i from the ith view:

t̂i = D
(
E(Vi), E(Ṽi)

)
, i = 1, ...,m. (7)

The final decoded 3D transformation is taken as the expectation of t̂i’s:

t̂ =
1

m

m∑

i=1

t̂i. (8)
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Figure 1: The architecture of the proposed MV-TER in the fusion decoding scheme. E and D
represent the feature representation module and transformation decoding module respectively, and
T is a specific task, e.g., 3D object classification or retrieval.

Hence, we update the parameters Θ in the representation learning module E(·) and the transforma-
tion decoding module D(·) iteratively by backward propagation of the regularized loss in (5).

Interestingly, the second decoding scheme can reach an even better performance than the first
scheme in experiments. This should not be surprising since our ultimate goal is to enable multi-
view learning by fusing the representations of individual 2D views to reveal the target 3D objects.
The second scheme follows this motivation by pushing each view to encode as much information as
possible about the 3D transformation, as implied by the multi-view learning.

3.4 THE ALGORITHM

Given a 3D object M, we randomly draw a transformation t ∼ T and apply it to M to obtain

a transformed M̃. Then we have m views V = {V1, ...,Vm} by projecting M to 2D views.

Accordingly, the views after the 3D transformation are Ṽ = {Ṽ1, ..., Ṽm}.

To learn the applied 3D transformation t, we design an end-to-end architecture as illustrated in
Figure 1 for the fusion decoding scheme, while the architecture of the average decoding scheme
will be presented in Appendix A. We choose existing CNN models as the representation learning
module E(·) (e.g., AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015)), which
extract the representation of each view separately. The learned feature representations will be fed
into a fusion module and a transformation decoding module D(·) respectively. The fusion module
is to fuse the features of multiple views as the overall 3D object representation, e.g., by a view-wise
max-pooling layer (Su et al., 2015) or group pooling layer (Feng et al., 2018). The fused feature
will serve as the general descriptor of the 3D object for the subsequent downstream learning tasks
(e.g., classification and retrieval). The transformation decoding module D(·) is to estimate the 3D
transformation parameters from the feature representations of multiple views. Next, we will discuss
the representation learning module and transformation decoding module in detail.

3.4.1 REPRESENTATION LEARNING MODULE

The representation learning module E(·) takes the original 2D views V and their transformed coun-

terparts Ṽ as the input. E(·) learns feature representations of V and Ṽ through a Siamese encoder
network with shared weights. Specifically, we employ the feature learning layers of a pre-trained
CNN model as the backbone. Then, we obtain the features of each view before and after transfor-
mation.

3.4.2 TRANSFORMATION DECODING MODULE

To estimate the 3D transformation t, we concatenate extracted features of multiple views before
and after transformation at feature channel, which are then fed into the transformation decoder.
The decoder consists of several linear layers to aggregate the representations of multiple views for
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Table 1: 3D object classification and retrieval results on ModelNet40 dataset.

Methods
Training Configuration

Modality
Classification

(Accuracy)

Retrieval

(mAP)Pre-train Fine tune

VoxNet (Maturana & Scherer, 2015) - ModelNet40 voxels 83.0 -

SubvolumeSup (Qi et al., 2016) - ModelNet40 voxels 89.2 -

Voxception-ResNet (Brock et al., 2016) - ModelNet40 voxels 91.3 -

PointNet (Qi et al., 2017a) - ModelNet40 points 89.2 -

PointNet++ (Qi et al., 2017b) - ModelNet40 points 91.9 -

KD-Networks (Klokov & Lempitsky, 2017) - ModelNet40 points 91.8 -

MVCNN (Su et al., 2015) ImageNet1K ModelNet40 12 views 89.9 70.1

MVCNN, metric (Su et al., 2015) ImageNet1K ModelNet40 12 views 89.5 80.2

MVCNN, multi-resolution (Qi et al., 2016) ImageNet1K ModelNet40 20 views 93.8 -

RotationNet (Kanezaki et al., 2018) ImageNet1K ModelNet40 12 views 90.7 -

MHBN (Yu et al., 2018) ImageNet1K ModelNet40 12 views 93.4 -

SeqViews2SeqLabels (Han et al., 2018) ImageNet1K ModelNet40 12 views 93.4 89.1

3D2SeqViews (Han et al., 2019) ImageNet1K ModelNet40 12 views 93.4 90.8

Relation Network (Yang & Wang, 2019) ImageNet1K ModelNet40 12 views 94.3 86.7

MLVCNN, Center Loss (Jiang et al., 2019) ImageNet1K ModelNet40 36 views 94.2 92.8

View-GCN (Wei et al., 2020) ImageNet1K ModelNet40 12 views 96.2 -

MVCNN (GoogLeNet) (Feng et al., 2018) ImageNet1K ModelNet40 12 views 92.2 74.1

MVCNN (GoogLeNet), metric (Feng et al., 2018) ImageNet1K ModelNet40 12 views 92.2 83.0

MV-TER (MVCNN), average ImageNet1K ModelNet40 12 views 95.5 83.0

MV-TER (MVCNN), fusion ImageNet1K ModelNet40 12 views 93.1 84.9

MV-TER (MVCNN), average, Center Loss ImageNet1K ModelNet40 12 views 95.1 86.6

MV-TER (MVCNN), fusion, Center Loss ImageNet1K ModelNet40 12 views 93.2 89.0

GVCNN (GoogLeNet) (Feng et al., 2018) ImageNet1K ModelNet40 12 views 92.6 81.3

GVCNN (GoogLeNet), metric (Feng et al., 2018) ImageNet1K ModelNet40 12 views 92.6 85.7

MV-TER (GVCNN), average ImageNet1K ModelNet40 12 views 97.0 88.8

MV-TER (GVCNN), fusion ImageNet1K ModelNet40 12 views 96.4 88.3

MV-TER (GVCNN), average, Center Loss ImageNet1K ModelNet40 12 views 95.7 91.5

MV-TER (GVCNN), fusion, Center Loss ImageNet1K ModelNet40 12 views 96.3 91.1

the prediction of the 3D transformation. As discussed in Section 3.2, we have two strategies for
decoding the transformation parameters. We can decode from the fused representations of multiple
views before and after transformation as in (6), or from each pair of original and equivariantly

transformed views {Vi, Ṽi} to take average for final estimation as in (8). Based on the loss in (5),
t is decoded by minimizing the mean squared error (MSE) between the ground truth and estimated
transformation parameters. We will show the estimated 3D transformations of the two decoding
schemes in Appendix C.

4 EXPERIMENTS

In this section, we evaluate the proposed MV-TER model on two representative downstream tasks:
3D object classification and retrieval.

4.1 DATASET

We conduct experiments on the ModelNet40 dataset (Wu et al., 2015). This dataset contains 12, 311
CAD models from 40 categories. We follow the standard training and testing split settings, i.e.,
9, 843 models are used for training and 2, 468 models are for testing. To acquire projected 2D
views, we follow the experimental settings of MVCNN (Su et al., 2015) to render multiple views of
each 3D object. Here, 12 virtual cameras are employed to capture views with an interval angle of
30 degree. Next, we employ rotation as our 3D transformations on objects and perform a random
rotation with three parameters all in range [−180◦, 180◦] on the entire 3D object. We also render the
views of the transformed 3D object using the same settings as the original 3D object. The rendered
multiple views before and after 3D transformations are taken as the input to our method.

4.2 3D OBJECT CLASSIFICATION

In this task, we employ the MV-TER as a self-supervisory regularizer to two competitive multi-view
based 3D object classification methods: MVCNN (Su et al., 2015) and GVCNN (Feng et al., 2018),
which are referred to as MV-TER (MVCNN) and MV-TER (GVCNN). Further, we implement
with two transformation decoding schemes as discussed in Section 3.3, including the fusion scheme
and average scheme. Then our model has four variants as presented in Table 1.

Implementation Details: We deploy GoogLeNet (Szegedy et al., 2015) as our backbone CNN as
in GVCNN (Feng et al., 2018). The backbone GoogLeNet is pre-trained on ImageNet1K dataset.
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We remove the last linear layer as the Siamese representation learning module to extract features
for each view. Subsequent to the representation learning module, we employ one linear layer as the
transformation decoding module. The output feature representations of the Siamese network first go
through a channel-wise concatenation, which are then fed into the transformation decoding module
to estimate the transformation parameters. The entire network is trained via the SGD optimizer with
a batch size of 24. The momentum and weight decay rate are set to 0.9 and 10−4, respectively.
The initial learning rate is 0.001, which then decays by a factor of 0.5 for every 10 epochs. The
weighting parameter λ in (5) is set to 1.0. Also note that, MVCNN in Table 1 has two variants
with different backbones: MVCNN (Su et al., 2015) and MVCNN (GoogLeNet) (Feng et al., 2018).
MVCNN (Su et al., 2015) uses the VGG-M (Chatfield et al., 2014) as the backbone, while MVCNN
(GoogLeNet) implemented in (Feng et al., 2018) employs the GoogLeNet (Szegedy et al., 2015). In
addition, RotationNet (Kanezaki et al., 2018) and View-GCN (Wei et al., 2020) are set up with 12
views taken by the default camera system for fair comparison.

Experimental Results: As listed in Table 1, the MV-TER (MVCNN), average and MV-TER
(GVCNN), average achieve classification accuracy of 95.5% and 97.0% respectively, which out-
perform the state-of-the-art View-GCN (Wei et al., 2020). Also, the MV-TER (MVCNN), average
outperforms its baseline MVCNN (GoogLeNet) by 3.3%, while MV-TER (GVCNN), average out-
performs the baseline GVCNN (GoogLeNet) by 4.4%, which demonstrates the effectiveness of our
proposed MV-TER as a self-supervisory regularizer.

4.3 3D OBJECT RETRIEVAL

In this task, we directly employ the fused feature representations of MV-TER (MVCNN) and MV-
TER (GVCNN) as the 3D object descriptor for retrieval. We denote FX and FY as the 3D object
descriptor of two 3D objects X and Y respectively, and use the Euclidean distance between them
for retrieval. The distance metric is defined as

dist(X,Y) = ‖FX − FY ‖2. (9)

We take the mean average precision (mAP) on retrieval as the evaluation metric, and present the com-
parison results in the last column of Table 1. For MVCNN and GVCNN, a low-rank Mahalanobis
metric learning (Su et al., 2015) is applied to boost the retrieval performance. In comparison, we
train our MV-TER model without the low-rank Mahalanobis metric learning, but still achieve better
retrieval performance, which validates the superiority of our feature representation learning for 3D
objects. Further, we apply Triplet Center Loss (He et al., 2018) to our MV-TER. With Center Loss,
our model further achieves an average gain of 3.3% in mAP. As presented in the last column of Table
1, the MV-TER (GVCNN), average and MV-TER (GVCNN), fusion achieve mAP of 91.5% and
91.1% respectively, which is comparable to MLVCNN with Center Loss (Jiang et al., 2019) while
we only take 12 views as input instead of 36 views. We will demonstrate some visual results of 3D
object retrieval in Appendix B.

4.4 ABLATION STUDIES

4.4.1 ON THE NUMBER OF VIEWS

We quantitatively evaluate the influence of number of views on the classification task. Specifically,
we randomly choose {8, 12} views from all the views as the input to train MV-TER (GVCNN),
average respectively, leading to two learned networks. Then, we randomly select {2, 4, 8, 12} views
from all the testing views to evaluate the classification accuracy of the two networks respectively, as
reported in Table 2. We see that we constantly outperform GVCNN with different number of training
views and testing views. In particular, when the number of testing views reaches the extreme of two
views for multi-view learning, our MV-TER model is still able to achieve the classification accuracy
of 91.9% and 91.2%, which outperforms GVCNN by a large margin.

4.4.2 ON DIFFERENT LABELING RATES

We adopt six different label rates in the set {0.01, 0.02, 0.03, 0.04, 0.05, 0.10} to train four models
for comparison: MVCNN (AlexNet), GVCNN (AlexNet), MV-TER (MVCNN), average and MV-
TER (GVCNN), average. When training MVCNN (AlexNet) and GVCNN (AlexNet), we only use
a small amount of labeled data to minimize the cross entropy loss for training, and then employ all
the test data for evaluation. When training MV-TER (MVCNN), average and MV-TER (GVCNN),
average, we adopt all the data (labeled and unlabeled) to predict the 3D transformations without the
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Table 2: Comparison between GVCNN and our MV-TER (GVCNN), average with different num-
ber of input views for 3D object classification on ModelNet40 dataset. MV-TER is used for brevity.

Training

Views

Testing

Views

Accuracy (%) Training

Views

Testing

Views

Accuracy (%)

GVCNN MV-TER GVCNN MV-TER

8

2 71.2 91.9

12

2 76.8 91.2

4 91.1 94.6 4 90.3 94.3

8 93.1 95.4 8 92.1 96.1

12 91.5 96.0 12 92.6 97.0

use of labels, and then adopt only labeled data to acquire classification scores. That is, we minimize
(5) with a small amount of labels taken for the classification loss ℓtask. In all the four models, a
pre-trained AlexNet on ImageNet1K dataset is employed as the backbone CNN.
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Figure 2: Classification accuracy with different la-
bel rates.

Figure 2 presents the classification accuracy un-
der the six label rates on ModelNet40 dataset.
When the label rate is 0.10, we see that the
four models achieve comparable results, which
benefits from the pre-training of the backbone
AlexNet. When the label rate keeps decreasing,
the performance of both MVCNN and GVCNN
drop quickly, while the MV-TER models are
much more robust. Even at the extremely low
label rate 0.01, MV-TER (MVCNN), average
and MV-TER (GVCNN), average achieve the
classification accuracy of 58.6% and 55.2% re-
spectively, thus demonstrating the robustness of
the proposed MV-TER model.

4.4.3 TRANSFER LEARNING

We further show the generalization perfor-
mance of the proposed MV-TER under average and fusion schemes. We take the same network
architecture and parameter settings as in Sec. 4.2, except that we set λ = 0.5 in (5). In particular, we
train the feature extractor on the ShapeNetCore55 dataset, and test on the ModelNet40 dataset by a
linear SVM classifier using the feature representations of dimension 2048 obtained from the second
last fully-connected layer of MV-TER. Table 3 reports the classification comparison of MV-TER and
two baseline methods on ModelNet40 dataset under the ShapeNetCore55 pre-training strategies. As
we can see, the proposed MV-TER with two decoding schemes improves the average classification
accuracy by 2.85% and 2.95% respectively under the ShapeNetCore55 pre-training strategy com-
pared with the two baseline methods MVCNN and GVCNN, thus validating the generalizability.

Table 3: Classification comparison of MV-TER and two baseline methods on ModelNet40 dataset
under the ShapeNetCore55 pre-training strategies.

Method Accuracy (%) Method Accuracy (%)

MVCNN 85.9 GVCNN 87.9

MV-TER, average 88.7 MV-TER, average 91.2

MV-TER, fusion 89.0 MV-TER, fusion 90.3

5 CONCLUSION

In this paper, we propose a novel self-supervised learning paradigm of Multi-View Transforma-
tion Equivariant Representations (MV-TER) via auto-encoding 3D transformations, exploiting the
equivariant transformations of a 3D object and its projected multiple views. We perform a 3D trans-
formation on a 3D object, which leads to equivariant transformations in projected multiple views.
By decoding the 3D transformation from the fused feature representations of multiple views be-
fore and after transformation, the MV-TER enforces the representation learning module to learn
intrinsic 3D object representations. Experimental results demonstrate that the proposed MV-TER
significantly outperforms the state-of-the-art view-based approaches in 3D object classification and
retrieval tasks.
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A ARCHITECTURE OF AVERAGE DECODING SCHEME
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Figure 3: The architecture of the proposed MV-TER in the average decoding scheme. E and D
represent the feature representation module and transformation decoding module respectively, and
T is a specific task, e.g., 3D object classification and retrieval.

We demonstrate the architecture of the proposed MV-TER with the average decoding scheme in
Figure 3.

B VISUALIZATION OF 3D OBJECT RETRIEVAL

Query Top 10 retrieved 3D objects

Figure 4: 3D object retrieval examples on ModelNet40 dataset. Top 10 matches are shown for
each query, with mistakes highlighted in red.

We demonstrate some visual results of 3D object retrieval in Figure 4.

12



Under review as a conference paper at ICLR 2021

C EVALUATION OF THE 3D TRANSFORMATION ESTIMATION

Further, to intuitively interpret the estimated 3D transformations from the proposed fusion and av-
erage decoding schemes, we visualize the multiple views projected from 3D objects Car and Bowl
with the estimated 3D transformations applied. In Figure 5(a) and Figure 5(b), the first, second and
fourth rows demonstrate the projected views from the 3D object with the same 3D transformation:
the ground truth, the estimation from the fusion scheme and the estimation from the average scheme.

In the third row, each view is the result of each individually estimated 3D transformation t̂i as in (7),
i.e., view-wise transformations. Note that each column is rendered under the same viewpoint. We
see that our MV-TER model estimates more accurate 3D transformations via the average scheme,
which is consistent with the objective results.
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Figure 5: Illustration of multiple views projected from 3D objects in the same posture: (a) Car
and (b) Bowl. The four rows of (a) and (b) demonstrate multiple views projected from the 3D object
with the following 3D transformations applied respectively: 1) the ground-truth 3D transformation;
2) the estimated 3D transformation of the fusion decoding scheme; 3) the individually estimated 3D

transformations t̂i’s from each view during the average decoding scheme (with t̂i applied to the ith
view); and 4) the finally averaged 3D transformation of the average decoding scheme.

Moreover, Figure 6 shows the transformation estimation error on the ModelNet40 dataset under
the average scheme. The horizontal axis is the index of the training epoch, while the vertical axis
refers to the mean squared error. We observe that the MV-TER loss decreases rapidly in the first 40
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Figure 6: Transformation estimation error from the average scheme.

epochs. Until the 60th epoch, the mean squared error basically converges to a very small number,
thus validating the effectiveness of our model in the transformation estimation.

D VISUALIZATION OF FEATURE MAPS

We visualize the feature maps of multiple views projected from 3D objects before and after transfor-
mation in Figure 7 for the same category and 8 for different categories. We see that the feature maps
of projected multiple views transform equivariantly with the input views. In Figure 7, the feature
maps from the same category are similar. In contrast, in Figure 8, although the 3D objects from two
different categories are similar, their feature maps are discriminative. This shows the robustness and
effectiveness of the learned descriptor.

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 7: Illustration of feature maps of multiple views projected from 3D objects before and
after transformation in the same category Airplane. (a) and (b) demonstrate multiple views
projected from the 3D object before and after transformations, respectively; (c) and (d) show the
feature maps of the corresponding views above.
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(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

tv stand

Figure 8: Illustration of feature maps of multiple views projected from 3D objects before and
after transformation in different categories Sofa (left) and TV Stand (right). (a) and (b) demon-
strate multiple views projected from the 3D object before and after transformations, respectively;
(c) and (d) show the feature maps of the corresponding views above.
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