
Self-supervised Obstacle Detection for Humanoid Navigation

Using Monocular Vision and Sparse Laser Data

Daniel Maier Maren Bennewitz Cyrill Stachniss

Abstract— In this paper, we present an approach to obstacle
detection for collision-free, efficient humanoid robot navigation
based on monocular images and sparse laser range data. To
detect arbitrary obstacles in the surroundings of the robot, we
analyze 3D data points obtained from a 2D laser range finder
installed in the robot’s head. Relying only on this laser data,
however, can be problematic. While walking, the floor close to
the robot’s feet is not observable by the laser sensor, which
inherently increases the risk of collisions, especially in non-
static scenes. Furthermore, it is time-consuming to frequently
stop walking and tilting the head to obtain reliable information
about close obstacles. We therefore present a technique to
train obstacle detectors for images obtained from a monocular
camera also located in the robot’s head. The training is done
online based on sparse laser data in a self-supervised fashion.
Our approach projects the obstacles identified from the laser
data into the camera image and learns a classifier that considers
color and texture information. While the robot is walking, it
then applies the learned classifiers to the images to decide which
areas are traversable. As we illustrate in experiments with a
real humanoid, our approach enables the robot to reliably avoid
obstacles during navigation. Furthermore, the results show that
our technique leads to significantly more efficient navigation
compared to extracting obstacles solely based on 3D laser range
data acquired while the robot is standing at certain intervals.

I. INTRODUCTION

Autonomous navigation with humanoid robots is still a

challenging task. First, humanoids have only limited payload

capabilities, which means that compact and light-weight

sensors have to be used. Typically, this directly affects

the possible precision and update rates of their sensors.

While walking, the robot’s observations are typically highly

affected by noise due to the shaking behavior of humanoids.

Second, depending on the placement of the individual sensors

on the robot, the area in front of the robot’s feet may

not be observable while walking which raises the question

of whether the robot can safely continue walking without

colliding with unanticipated objects.

In this paper, we present an approach to obstacle detection

for collision-free and efficient humanoid robot navigation

based on monocular images and sparse laser range data. To

detect arbitrary obstacles, we interpret sparse 3D laser data

obtained from a 2D Hokuyo laser range finder installed in the

robot’s head (see Fig. 1). Obstacles close to the robot’s feet

are out of the laser scanner’s field of view while walking,

which inherently increases the risk of collisions. Thus, the

All authors are with the Department of Computer Science, University
of Freiburg, Germany. This work has been supported by the German
Research Foundation (DFG) under contract number SFB/TR-8 and within
the Research Training Group 1103 as well as by Microsoft Research,
Redmond. Their support is gratefully acknowledged.

Fig. 1. Left: Humanoid robot Nao equipped with a Hokuyo laser scanner
in its head. Middle: Navigating robot. Right: Corresponding image taken
by the robot’s onboard camera together with traversability labels estimated
by our approach (green refers to traversable, red to non-traversable areas).
This image is best viewed in color.

robot regularly needs to stop, adopt a scanning position, and

tilt its head to obtain reliable distance information about

objects in the vicinity. This is time-consuming and leads to

inefficient navigation.

We therefore present a technique to train obstacle detectors

based on the sparse laser data to interpret the images obtained

from a monocular camera installed in the robot’s head. Our

approach projects detected objects from the range scans into

the camera image and learns a classifier that considers color

and texture information in a self-supervised fashion. While

the robot is walking, it then applies the learned classifiers

to the current camera image to decide which areas are

traversable. Using this classification, the robot updates a local

2D occupancy grid map of the environment which it uses

for path planning. Note that our approach does not require

a learning phase before navigating – learning is done online

in a self-supervised fashion. Our approach can be seen as

an extension to the vision-based obstacle detection system

proposed by Dahlkamp et al. [4]. In contrast to our method,

their approach carries out a classification based on color

only, whereas we additionally use texture information and

consider the neighborhood relations between nearby areas in

an image. Furthermore, we integrate the vision information

over time to plan paths for the humanoid.

The experiments carried out with our humanoid robot

illustrate that our approach enables the robot to reliably avoid

obstacles while walking in the environment. The field of view

of the robot is increased and it can detect dynamic obstacles

in the scene. We furthermore present results demonstrating

that using our technique, the robot reaches its goals signif-

icantly faster than with an approach that extracts obstacles

solely based on 3D laser data acquired while standing at

certain intervals.

II. RELATED WORK

We first discuss collision-avoidance techniques for hu-

manoid robots. Several approaches only consider static ob-

stacles while choosing actions leading the robot towards the

goal [9], [10] or use an external tracking system to compute

the position of objects blocking the robot’s way [19], [13].

Michel et al. [12] apply a model-based technique to track

individual objects in monocular images during walking. They

have to manually initialize the objects before tracking starts.

Cupec et al. [3] detect objects with given shapes and colors

in monocular images and determine the robot’s pose relative

to these objects to adjust the trajectory accordingly.

Stachniss et al. [17] presented an approach to learn accu-

rate 2D grid maps of large environments with a humanoid

equipped with a laser scanner located in the neck. Such a

map was subsequently used by Faber et al. [6] for humanoid

localization and path planning in 2D. During navigation, the

robot carries out a potential field approach to avoid obstacles

sensed with the laser and ultrasound sensors located at the

height of the robot’s hip. Obstacles smaller than this height

are not detected. Tellez et al. [20] use two laser scanners

mounted on the robot’s feet. The authors use 2D laser data

to construct a 2D occupancy grid map which they use for

path planning.

Chestnutt et al. [2] use 3D laser data acquired with

a constantly sweeping scanner mounted at a pan-tilt unit

on the humanoid’s hip. The authors first extract planes to

identify traversable areas and obstacles. Subsequently, they

plan footstep paths in a height map of the environment. Such

a setup can only be used on robots with a significantly larger

payload than our Nao humanoid. Gutmann et al. [8] construct

a 2.5D height map given stereo data and additionally use a

3D occupancy grid map to plan complex actions for the robot

leading towards the goal.

Li et al. [11] proposed a vision-based obstacle avoidance

approach for the RoboCup domain. The authors assume

known shapes of the obstacle, i.e., the other field players.

They use gradient features learned from training images and,

also, apply a color-based classifier and data from ultrasound

sensors to determine obstacle positions. Their approach relies

on a specific color coding further simplifying the problem.

Plagemann et al. [15] and Michels et al. [14] presented

approaches to estimate depth from monocular images. These

approaches apply regression techniques to learn a mapping

from the feature space (pixel columns and edge-based fea-

tures [15], texture [14]) to distance and yield impressive

results. However, both require a prior learning phase before

the classification can start whereas our approach performs a

self-supervised learning during navigation.

Ulrich and Nourbakhsh et al. [21] proposed to learn color

histograms of pixels corresponding to the floor. The his-

tograms are learned while initially steering a wheeled robot

equipped with a monocular camera through the environment

and learning about the free-space.

Fazl-Ersi and Tsotsos [7] use stereo images to produce

dense information about floor and obstacles in the images.

They classify regions of neighboring pixels with similar

visual properties and consider their distances form the ground

plane using planar homography. Subsequently, they learn

color-based models for the floor and obstacles. There exist

further techniques relying on stereo data to detect moving

obstacles, i.e., walking people, for which special detectors

are trained (e.g., [5]). These approaches are, however, com-

putationally highly demanding.

Our approach is most closely related to the one presented

by Dahlkamp et al. [4]. They also use 3D laser data to learn

a vision-based obstacle classifier. In contrast to their work,

we combine different information, i.e., color and texture, to

distinguish between obstacles and the floor. We then apply

probabilistic relaxation labeling [16], [18] for considering

dependencies between nearby areas in an image. Finally, we

construct a local grid used for path planning in which the

vision-based obstacle information is integrated over time.

III. THE HUMANOID ROBOT NAO

The humanoid robot Nao is 58 cm tall, weighs 4.8 kg and

has 25 degrees of freedom. Aldebaran Robotics developed in

cooperation with our lab a laser head for this type of robot.

Thus, our humanoid is equipped with a Hokuyo URG-04LX

laser range finder mounted in the modified head, in addition

to the default sensors such as cameras. See Fig. 1 for an

illustration. While the measurements of this laser sensor are

relatively noisy, it is small and lightweight and allows a

field of view of 240◦ with a resolution of 0.33◦. In our

implementation, we use the top camera in the robot’s head.

The camera’s diagonal field of view is 58◦.

IV. OBSTACLE DETECTION

USING VISION AND SPARSE LASER DATA

For collision-free navigation, it is important that the robot

can sense its surroundings and distinguish traversable from

non-traversable areas. In this section, we describe our ap-

proach to obstacle detection using monocular images and

sparse laser data which is the main contribution of this paper.

The robot continuously receives 2D range data from the laser

sensor in its head with a frequency of approx. 10 Hz. In

order to obtain 3D data, the robot has to stop walking and

to slowly tilt its head. In this way, a sweeping laser line is

obtained and the robot’s surroundings are scanned. The goal

is now to use the continuous flow of image data together

with the rather seldom obtained 3D range data to navigate

without collisions. This is done by learning classifiers using

the laser data to automatically generate training data. Fig. 2

illustrates an overview of our system.

A. Classification of Laser Data

The first task is to identify obstacles in the laser range

data. To achieve that we analyze the traversability of the

area around the robot in a two-step procedure: (i) identify

the ground plane and (ii) label areas as obstacles which show

a significant difference in height to the ground plane.

For the first step, we insert the 3D end points measured

by the laser scanner into a 2D grid structure (xy plane) and

laser
sensor

camera

laser-based
classifier

image-
based

classifier

mapper

planner robot
motion
commands

laser
readings

laser
readings images

traversable
area

labeled image

map

Fig. 2. Overview of the proposed system.

compute the mean elevation for each cell. Under the assump-

tion that the robot stands on the ground plane, we perform a

region growing. This procedure expands a region by adding

neighboring grid cells to the region if they show similar

elevation than the current cell under consideration. After

convergence, the ground plane can be obtained by means of

principal component analysis based on the 3D laser points

that fall into the grid cells belonging to the ground plane

according to the region growing procedure. By ignoring

the Eigenvector that corresponds to the smallest Eigenvalue

(which should have a value close to zero), we obtain the

ground plane. Subsequently, we perform a further assignment

of the grid cells in the elevation map to the parametric

representation of the ground plane. This is important since

the region growing algorithm will not reach all cells due to

gaps in the map resulting from the sparse laser data. All

areas that show a deviation from the ground plane that is

not compatible with the walking capabilities of the robot,

are labeled as not traversable and all others as traversable.

In case the robot would be able to constantly obtain full

3D range scans while walking, it would be sufficient to

navigate solely based on the this representation. However,

since obtaining an 3D scan requires the robot to stop and

is therefore time-consuming, 3D data can only be acquired

seldom during navigation. Therefore, we use the camera of

the humanoid as the main sensor to estimate the traversability

while walking.

B. Classification of Image Data

The goal is to estimate from the camera images which

parts of the robot’s surrounding are traversable so that

obtaining time-consuming 3D scans can be avoided as much

as possible. We achieve that by relating the image data to

an initial 3D scan of the environment and learn classifiers to

estimate the traversability in a self-supervised fashion.

1) Training Data: For training our classifiers, we need

camera images together with the information which pixels

in the image correspond to traversable and which ones to

not traversable parts of the environment. The idea of our ap-

proach is to use the laser data whenever it is available to train

the image-based classifiers. This is done in a self-supervised

approach by assigning to each pixel a traversability label

C1

C2

C3

C4

C5

C6

C7

C8

C9

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

C0

Fig. 3. Left: Basis functions of the 2D DCT for a 8 × 8 image.
Right: Scheme for texture feature extraction using DCT coefficients. The
illustration shows the matrix D from DCT coefficients for an 8× 8 image.

based on the projection of the classified laser data into the

image.

2) Traversability Estimation based on Color Information:

In most indoor environments in which humanoid robots are

operating, color information provides a good estimate about

traversability. To be less sensitive to illumination changes,

we operate only in the HSV color space, i.e., we use the hue

and saturation values.

Based on the training data, which provides for every pixel

of an image the corresponding traversability information, we

learn a distribution of color values for each traversability

class. A natural way of modeling such distributions from

digital images are histograms. Each bin corresponds to a

color and, thus, such a histogram is obtained by simply

considering the individual pixels and updating the bins

accordingly. After counting the color occurrences, we smooth

the bins with a Gaussian kernel and normalize the histogram.

Once the histograms are generated, we can determine the

likelihood that an intensity value of a pixel is generated

by the individual classes. Let t be the variable indicating

traversability, and ih and is the intensity values of the hue-

and saturation-channels, respectively. If we assume a uniform

distribution of P (t), P (ih), and P (is) and independence of

ih and is, we can evaluate the likelihood of traversability for

each pixel as

P (t | ih, is) = P (ih | t, is)P (t | is)P (ih | is)
−1 (1)

= P (ih | t, is)P (is | t)P (t)

·P (ih)
−1P (is)

−1 (2)

∝ P (ih | t)P (is | t). (3)

3) Texture-based Classification: Besides color informa-

tion, texture is also a source of information that can be used

for the classification of the image data. Therefore, we use the

same training data as before and seek to exploit also texture

information for determining the traversability label.

One feature for describing texture is the discrete cosine

transformation (DCT) [1]. For an input image, the DCT

computes a set of coefficients which can be regarded as

weights of a set of two-dimensional basis functions. Each ba-

sis function is an image constructed from a two-dimensional

cosine function with a different frequency. As an illustration,

the basis functions for a 8 × 8 image are shown in the left

image of Fig. 3. The DCT transforms an input image into

an image of the same size where every pixel corresponds

to a DCT coefficient representing the amount of presence

of a certain frequency in the original image. The frequencies

increase horizontally to the right and vertically to the bottom.

Therefore, the lower-right part of the transformed image

contains information about the high frequency content of

the image. One can observe that by considering only a

small subset of the coefficients, mainly the low to mid

frequency parts, an input image can already be reconstructed

surprisingly well.

In the following, we describe how to use the DCT to learn

a traversability classification based on texture information.

Since texture information is not available per pixel, we divide

the input image’s hue-channel into overlapping patches of

size 16 × 16 computed at the fixed distance of 8 pixels

in vertical and horizontal direction. Each patch is assigned

a traversability label t, based on the percentage of labeled

pixels inside the patch using the classified laser data. If more

than a certain percentage θP (which we chose as 90%) of the

pixels in that image patch are labeled as traversable, we label

it as example for traversable texture. Analogously, if more

than θP percent of the pixels in the patch are labeled non-

traversable, we assign the label non-traversable to the patch.

If neither condition holds, for example at the boundaries of

obstacles, the patch is not used for self-supervised learning.

From the labeled image patches, we compute a feature vector

fDCT based on the DCT transform of the patch.

The feature vector fDCT is computed as follows. Let P

be such a patch of size 16 × 16 and D be the DCT of P .

Let Ci represent the set of all the DCT coefficients in the

corresponding marked region of D, according to Fig. 3. For

example C0 is the DCT coefficient located at D1,1 and C4 is

the set of the DCT coefficients located at D1,3, D1,4, D2,3,

and D2,4, etc. Further, let Mi and Vi be the average and the

variance over all coefficients in Ci, respectively. We then

define fDCT as

fDCT = (M0,M1,M2,M3, V4, V5, . . . , V12). (4)

Using this form of feature computation, we represent the

visually significant low frequency coefficients directly and

accumulate the less significant high frequency components

by their variance. From these feature vectors, together with

the corresponding traversability label for the patches, we

train a support vector machine (SVM). The SVM learns a

function pT : R12 7→ [0, 1], where pT (fDCT) is the likelihood

that the feature vector fDCT represents traversable area.

To predict the traversability of regions in an image, we

first extract image patches with their corresponding feature

vectors. Then we evaluate pT for all these patches. As the

patches overlap, we assign to all pixels (x, y) of the image

the average over all pT (x, y) obtained from the patches

containing (x, y).

C. Smoothing via Relaxation Labeling

A classification based on the individual classifiers above

is not perfect. Often small spurious classification errors exist

which can actually prevent the robot from collision-free

navigation using the techniques presented above. In both

approaches above, we ignored the dependencies between

nearby areas. One way of taking neighborhood information

into account and to combine both classifiers is probabilistic

relaxation labeling as proposed by [16].

Probabilistic relaxation labeling works as follows. Let G =
(V, E) be a graph consisting of nodes V = {v1, . . . , vN} and

edges E between pairs of nodes. In our setting, the nodes

correspond to the small rectangular image patches and the

edges describe their neighborhood relations.

Let furthermore T be the set of possible labels, in our case

traversable and non-traversable. We assume that each node

vi stores a probability distribution about its label, represented

by a histogram Pi. Each bin pi(t) of that histogram stores the

probability that the node vi has the label t. For two classes,

Pi can efficiently be represented by a binary random variable.

For each node vi, the neighborhood N (vi) ⊂ V refers to

the nodes vj that are connected to vi via an edge. In our

case, we assume an eight-connected graph of neighborhood

relations. That means that each local area only influences

its 8 neighbors. Each neighborhood relation is represented

by two values. One describes the compatibility between

the labels of both nodes and the other one represents the

influence between the nodes. The term R = {rij(t, t
′) |

vj ∈ N (vi)} defines the compatibility coefficients between

the label t of node vi and the label t′ of vj . Finally,

C = {cij | vj ∈ N (vi)} is the set of weights indicating

the influence of node vj on node vi.

Given an initial estimation for the probability distribution

over traversability labels p
(0)
i (t) for the node vi, the prob-

abilistic relaxation method iteratively computes estimates

p
(k)
i (t), k = 1, 2, . . . , based on the initial p

(0)
i (t), the

compatibility coefficients R, and the weights C in the form

p
(k+1)
i (t) =

p
(k)
i (t)

[

1 + q
(k)
i (t)

]

∑

t′∈T p
(k)
i (t′)

[

1 + q
(k)
i (t′)

] , (5)

where

q
(k)
i (t) =

8
∑

j=1

cij

[

∑

t′∈T

rij(t, t
′)p

(k)
j (t′)

]

. (6)

The compatibility coefficients rij(t, t
′) take values be-

tween −1 and 1. A value rij(t, t
′) close to −1 indicates

that the label t′ is unlikely at the node vj given that the

node vi has label t. Values close to 1 indicate the opposite.

Probabilistic relaxation provides a framework for smooth-

ing but does not specify how the compatibility coefficients

are computed. In our work, we apply the coefficients as

defined by Yamamoto [22]

rij(t, t
′) =







1
1−pi(t)

(

1− pi(t)
pij(t|t′)

)

if pi(t) < pij(t | t
′)

pij(t|t
′)

pi(t)
− 1 otherwise,

where pij(t | t
′) is the conditional probability that node vi

has label t given that node vj ∈ N (vi) has label t′ (which

Fig. 4. Left: scene from the robot’s view, 2nd left: top view, 3rd left: scene changed while navigating, right: labeled image from the robot’s camera.

Fig. 5. Maps and planned trajectories of the robot while navigating. Left: initially built map (corresponds to the 1st and 2nd image in Fig. 4), 2nd left:
map after new obstacle has been detected (corresponds to the 3rd and 4th image in Fig. 4), 3rd and 4th: updated map while approaching the goal.

we determined by counting given the training data). The

initial probabilities p
(0)
(x,y)(t) are obtained by averaging over

the outputs from the individual classifiers described above.

Each of the weights cij is initialized with the value 1
8 ,

indicating that all the eight neighbors vj of node vi are

equally important. After termination, we obtain the final

classification as an image Ip, where Ip(x, y) represents the

probability that pixel (x, y) is traversable.

D. Re-training the Classifiers

Obviously, the learned classifiers need to be re-trained

whenever the appearance of the scene changes. Such a

change can be detected by monitoring the color/texture fea-

ture distributions over time. In our current implementation,

we follow a heuristic approach that triggers the re-learning

in case the histogram correlation between the current color

histogram computed over the whole image and the one

obtained during the previous learning step shows a value

lower than 0.5. This is clearly a heuristic but appears to

work well in our experiments.

E. Map Update and Motion Planning

For locally planning the motion of the robot, we use a

2D occupancy grid map to combine the laser data as well as

traversability information from the classified camera data.

To integrate the traversability information from the camera

images, we first compute a homography H induced by the

floor plane between the camera’s image plane and a virtual

camera’s image plane which is looking perpendicular at the

floor plane from a far distance. This allows us to construct a

bird’s eye view from the robot’s camera image. By applying

the homography H to the labeled image Ip and by using

bilinear interpolation, the traversability information from the

image Ip is mapped to the coordinate frame of the occupancy

map. The rest of the occupancy grid update is straight-

forward. An example of such a map is shown in Fig 5.

For planning the robot’s motion, we apply the A∗-

algorithm based on this 2D map. To drag the robot away from

obstacles, we efficiently compute for each cell the distance to

the closest obstacle using the Euclidean distance transform. If

the distance for a cell is larger than one robot’s radius plus a

safety margin, the cell is not considered as traversable during

planning. The optimal collision-free path to a goal location

leads through the remaining cells and is computed by A∗.

V. EXPERIMENTS

The experimental evaluation of our approach is designed

to show that our robot can detect obstacles using its self-

supervised image classifiers and thereby reduce the number

of 3D range scans that need to be acquired. We evaluate the

accuracy of our system and show that our approach allows

the robot to navigate faster to the desired goal location.

A. Obstacle Avoidance

The first experiment illustrates the functionality of our

visual obstacle avoidance system. We placed obstacles on the

floor in our lab and let the robot navigate through the scene.

The robot first took a 3D range scan to train its classifiers,

and then started navigating and updating its map based on

the visual input. In the example shown in Figs. 4 and 5,

we placed an obstacle in front of the robot after it started to

navigate. The left image of Fig. 4 shows the initial scene, the

target location was close to the second (red) humanoid robot.

The second image shows a top view of the partial scene at

the time when the robot was taking the 3D scan. The third

image shows the same scene after placing the ball in the way

of the robot. The right image of Fig. 4 shows a corresponding

labeled image recorded by the robot. In addition to that,

Fig. 5 illustrates the updated grid map and the trajectories

planned by the Nao robot at the different points in time.

B. Classification Accuracy

Fig. 1 and Fig. 6 show qualitative classification results

achieved in different environments. To evaluate the accuracy

of the image-based classifiers, we set up two different

Fig. 6. Two examples of obtained classification. Left: external camera view
for reference, right: classified onboard camera image (best viewed in color).

scenarios on two different floor surfaces and placed various

obstacles on the ground. The robot’s task was to navigate

through the scene. First, the robot took one 3D range scan,

trained its classifiers, and then used only the camera to map

its surroundings and to plan a trajectory to the given goal

location. We repeated the experiments 12 times. In case the

robot detected substantial changes in the appearance of the

scene, re-training was triggered automatically based on the

histogram correlation as explained in Sec. IV-D. The images

in Fig. 7 illustrate an example in which the re-training is

carried out.

For the evaluation, we saved an image every 10 seconds

while the robot was navigating and manually labeled each

pixel in these images. Whenever the probability for a pixel

corresponding to an obstacle was bigger than 0.5, we counted

it as obstacle and as free space otherwise. We then compared

these results to the manual labels. The obtained accuracy in

terms of confusion matrices is shown in Table I. As can be

seen, the probability that a pixel corresponding to an obstacle

was classified as free space lies between 1% and 4%.

We also tested the influence of noise, induced by shaking

movements of the robot, on the classification rates. To better

control the noise, we applied a motion blur filter to a set of

images. We observed that the classification rates for obstacles

decreased from approximatively 0.98 to 0.91, compared to

the original data set without blur, while the floor detection

rates remained unchanged. During this experiment, we chose

the parameters of the blur filter to add stronger blur than the

worst case we observed in practice with our humanoid robot.

C. Improved Robot Navigation

Three claims for using the approach presented in this paper

are made: First, the robot can better observe the area in front

of its feet which is the most important part during navigation.

Second, the robot can move faster overall since it needs

to stop less often to acquire a 3D range scan to check for

obstacles. Third, it can instantly react to dynamic obstacles

in the scene.

TABLE I

EVALUATION OF THE IMAGE CLASSIFIERS. CONFUSION MATRICES FOR

ALL CLASSIFIERS DURING TWO EXPERIMENTS.

experiment 1 experiment 2

TEXTURE CLASSIFIER
estimated as estimated as

true class obstacle floor obstacle floor

obstacle 0.84 0.16 0.99 0.01
floor 0.12 0.88 0.10 0.89

COLOR CLASSIFIER
estimated as estimated as

true class obstacle floor obstacle floor

obstacle 0.97 0.03 0.99 0.01
floor 0.20 0.80 0.04 0.96

COMBINED APPROACH
estimated as estimated as

true class obstacle floor obstacle floor

obstacle 0.96 0.04 0.99 0.01
floor 0.07 0.93 0.07 0.93

Fig. 7. Left: scene during training (robot outside the cameras field of view).
Middle: new but similar-looking objects do not trigger re-training. Right:
Adding the carpet is interpreted as a substantial change and re-training is
triggered.

The first claim does not require experimental support.

Based on the geometry of the robot and its sensors, the

closest sweep line of the laser is 0.84 m away from the

robot’s feet while walking. Using the camera in the robot’s

head, this distance reduces to 0.45 m.

To support the second claim, we compared the overall

travel time for our Nao robot using only laser data with the

proposed method. Without vision, the robot has to record

a 3D laser scan every 1.3 m to 1.4 m since this is the

distance in which the floor can be observed in sufficient

detail with the Hokuyo scanner1. Note that such 3D scans

are needed for navigation if no vision-based classifiers are

used. Constructing a consistent 3D model while walking and

continuously nodding, however, is challenging and was not

possible in our setup. The reason is the minimal overlap in

consecutive 2D laser scans while nodding in combination

with the shaking movement of the robot.

In this set of experiments, the task of the robot was to

travel through an initially empty corridor. We first uniformly

1For larger distances, typical floors (wood or PVC) provide poor mea-
surements with the Hokuyo due to the inclination angle. A travel distance
of 1.3 m between 3D scans was used in our navigation system before
implementing the approach presented here.

TABLE II

TRAVEL TIME WITH AND WITHOUT OUR VISION-BASED SYSTEM.

technique travel time (5 runs) avg.

3D laser only 219s 136s 208s 135s 135s 167s

laser & vision 136s 94s 120s 96s 87s 107s

sampled the robot’s goal location, the number of obstacles

(from 1 to 3) and their positions. After placing the obstacles

in the scene, we measured the time it took the robot to

navigate through the corridor with and without our vision-

based system. The experiment was repeated five times. The

timings for each experiment are depicted in Table II and,

as can be seen, our approach requires on average 107 s

compared to 167 s. We also carried out a paired two sample

t-test with a 0.999 confidence level. The test shows that

this result is statistically significant (tvalue = 5.692 >

t-table(conf=0.999;DoF=8) = 4.501).

Using the camera data, the robot can furthermore react

more quickly to dynamic changes in the scene (third claim).

Our current implementation runs with a frequency of 4 Hz

and thus the robot can react every 250 ms based on new

camera data. Using solely the 3D laser data, the robot only

updates its model after traveling for 1.3 m. Obviously, one

can increase the frequency in which 3D scans are recorded.

This, however, leads to significantly higher travel times.

D. Limitation of our Approach

Finally, we discuss limitation of our approach. Obstacles

looking identical or very similar (same color and same

texture) to the ground will prevent the system from learning

robust classifiers to distinguish ground from obstacles. One

way to detect this, is to classify the labeled training images

directly after learning the classifiers. In case of large errors

on the training data, the robot can switch back to the strategy

of using only 3D range scans.

Furthermore, moving obstacles in the environment during

the acquisition of the 3D range scan impose a problem to

the training of the image classifiers. In this case, the training

image and the classified range data do not correspond. How-

ever, this situation would also cause problems if navigation

was based solely on 3D laser data. In future work, we want

to investigate how these effects can be reduced, e.g., by

identifying areas where obstacles have moved and discard

them as training data. Note that dynamic obstacles during

navigation are not problematic to the approach.

VI. CONCLUSIONS

In this paper, we presented an approach to combine sparse

laser data and visual information for obstacle avoidance on

a humanoid robot. Our method allows the robot to train

classifiers for detecting obstacles in the camera images in

a self-supervised fashion. Based on this information, the

robot can navigate more efficiently and avoid obstacles. Our

approach provides the humanoid with a better field of view,

leads to a reduced travel time, and allows to deal with

changes in the scene.

ACKNOWLEDGMENTS

The authors would like to acknowledge Armin Hornung

and Christoph Sprunk for their help in the context of

humanoid robot navigation and Andreas Ess for fruitful

discussions on the topic.

REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transfom.
IEEE Transactions on Computers, 23(1):90–93, 1974.

[2] J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, and
S. Kagami. Biped navigation in rough environments using on-board
sensing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), 2009.
[3] R. Cupec, G. Schmidt, and O. Lorch. Experiments in vision-guided

robot walking in a structured scenario. In Proc. of the IEEE Int. Symp.

on Industrial Electronics, 2005.
[4] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-

supervised monocular road detection in desert terrain. In Proc. of

Robotics: Science and Systems (RSS), 2006.
[5] A. Ess, B. Leibe, K. Schindler, and L. van Gool. Moving obstacle

detection in highly dynamic scenes. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2009.
[6] F. Faber, M. Bennewitz, C. Eppner, A. Goeroeg, A. Gonsior, D. Joho,

M. Schreiber, and S. Behnke. The humanoid museum tour guide
Robotinho. In Proc. of the 18th IEEE Int. Symposium on Robot and

Human Interactive Communication (RO-MAN), 2009.
[7] E. Fazl-Ersi and J.K. Tsotsos. Region classification for robust floor

detection in indoor environments. In Proc. of the Int. Conf. on Image

Analysis and Recognition (ICIAR), 2009.
[8] J.-S. Gutmann, M. Fukuchi, and M. Fujita. 3D perception and envi-

ronment map generation for humanoid robot navigation. Int. Journal

of Robotics Research (IJRR), 27(10):1117–1134, 2008.
[9] A. Hornung, M. Bennewitz, and H. Strasdat. Efficient vision-based

navigation – Learning about the influence of motion blur. Autonomous

Robots, 29(2), 2010.
[10] J. Ido, Y. Shimizu, Y. Matsumoto, and T. Ogasawara. Indoor navigation

for a humanoid robot using a view sequence. Int. Journal of Robotics

Research (IJRR), 28(2):315–325, 2009.
[11] X. Li, S. Zhang, and M. Sridharan. Vision-based safe local motion on

a humanoid robot. In Workshop on Humanoid Soccer Robots, 2009.
[12] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and

T. Kanade. GPU-accelerated real-time 3D tracking for humanoid
locomotion and stair climbing. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2007.
[13] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade. Vision-guided

humanoid footstep planning for dynamic environments. In Proc. of

the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2005.
[14] J. Michels, A. Saxena, and A.Y. Ng. High speed obstacle avoidance

using monocular vision and reinforcement learning. In Proc. of the

Int. Conf. on Machine Learning (ICML), 2005.
[15] C. Plagemann, C. Stachniss, J. Hess, F. Endres, and N. Franklin. A

nonparametric learning approach to range sensing from omnidirec-
tional vision. Robotics & Autonomous Systems, 58:762–772, 2010.

[16] A. Rosenfel, R.A. Hummel, and S.W. Zucker. Scene labeling by
relaxation operations. IEEE Trans. Systems. Man. Cybernet, 6(6):420–
433, 1976.

[17] C. Stachniss, M. Bennewitz, G. Grisetti, S. Behnke, and W. Burgard.
How to learn accurate grid maps with a humanoid. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2008.
[18] C. Stachniss, O. Martı́nez-Mozos, A. Rottmann, and W. Burgard.

Semantic labeling of places. In Proc. of the Int. Symp. of Robotics

Research (ISRR), San Francisco, CA, USA, 2005.
[19] M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner. Planning

and executing navigation among movable obstacles. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2006.
[20] R. Tellez, F. Ferro, D. Mora, D. Pinyol, and D. Faconti. Autonomous

humanoid navigation using laser and odometry data. In Proc. of the

IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2008.
[21] I. Ulrich and I. Nourbakhsh. Appearance-based obstacle detection with

monocular color vision. In Proc. of the National Conf. on Artificial

Intelligence (AAAI), 2006.
[22] H. Yamamoto. A method of deriving compatibility coefficents for

relaxation operators. Compt. Graph. Image Processing, 10, 1979.

