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Abstract

We present an information-theoretically motivated con-

straint for self-supervised representation learning from

multiple related domains. In contrast to previous self-

supervised learning methods, our approach learns from

multiple domains, which has the benefit of decreasing the

build-in bias of individual domain, as well as leveraging

information and allowing knowledge transfer across multi-

ple domains. The proposed mutual information constraints

encourage neural network to extract common invariant in-

formation across domains and to preserve peculiar infor-

mation of each domain simultaneously. We adopt tractable

upper and lower bounds of mutual information to make

the proposed constraints solvable. The learned representa-

tion is more unbiased and robust toward the input images.

Extensive experimental results on both multi-domain and

large-scale datasets demonstrate the necessity and advan-

tage of multi-domain self-supervised learning with mutual

information constraints. Representations learned in our

framework on state-of-the-art methods achieve improved

performance than those learned on a single domain.

1. Introduction

Unsupervised visual representation learning algorithms

using deep convolutional neural networks (CNNs) have led

to breakthroughs in relieving the burden of massive manual

annotation [47, 5, 11, 48, 19]. They are capable of learn-

ing high-level semantic image representation transferable

to various downstream tasks without using expensive anno-

tated labels, which greatly expend the scope of applications

for CNNs. Among many unsupervised learning methods,

the recently emerged self-supervised learning (SSL) tech-

niques produce excellent representations, achieving state-

of-the-art performance on standard computer vision bench-

marks [34, 20, 18, 7, 36, 51]. SSL discovers supervisory

signals directly from the input data itself and defines a pre-

text task from this supervision. CNNs trained to accom-

plish such objectives have to understand the input data, for

Figure 1: We propose to perform self-supervised learning using

data from multiple related domains. (Images are selected from the

PACS dataset [26].)

instance salient objects and surrounding backgrounds for

object-oriented images. Intermediate layers of the CNN

will hence gain the ability of extracting high-level seman-

tic representations for this type of data, which are useful for

solving different downstream tasks like image recognition.

Although the efficient training on unlabeled data largely

alleviates the burden of human labeling, the properties of

unlabeled training data themselves are not investigated thor-

oughly for image based SSL. Most of the prior work focuses

on proposing novel pretext tasks to improve the learned rep-

resentation. Few methods investigate what is the influence

of training data used or in which way should training data be

chosen for SSL. In computer vision community, it has long

been recognized that datasets collected for vision tasks are

often individually biased and deviated from the goal of rep-

resenting the visual world [46], if application on such real

world images is our aim. Moreover, total available images

for some domains can also be fundamentally constrained
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like art images and sketches [26]. CNNs trained on one sin-

gle dataset will likely lead to biased representations, pay-

ing excessive attention on unwanted variations in images

induced by sources like viewing angle, illumination condi-

tion and imaging system [46]. SSL algorithms generally

train CNNs on one dataset (ImageNet). As a result, such

restricted training on only one dataset will less likely lead

to good unbiased general-purpose representations of images

we interest.

Training using multiple datasets has achieved great suc-

cess in compensating the training set bias [12, 21, 14].

However, such considerations have not been appreciated

for SSL. Toward the goal of learning unbiased representa-

tions that filter away unwanted variations, we propose to

train SSL models on data from multiple related domains.

Given a dataset on which we want to learn representations,

we can exploit existing datasets from other related domains

that contain semantically overlapping but non-identical in-

formation (See Figure 1 for illustration), and perform multi-

domain learning (MDL) for SSL. This has the benefit of en-

riching the data variety, decreasing the build-in bias of indi-

vidual dataset, leveraging shared information and allowing

knowledge transfer across multiple domains, making dis-

coveries that could not have been obtained from any indi-

vidual domain alone [43]. The learned CNN is expected

to extract superior representations on the images of interest

than training solely on them.

As has been discovered in supervised learning, learning

from multiple domains by just naı̈vely concatenating more

datasets is not the best policy, which can even lead to re-

duced performance on the dataset of interest [46, 21]. We

also observed this phenomenon for SSL. This fact suggests

that the presence of domain difference can impact perfor-

mance when left untreated and cross-domain relationship

has to be considered.

Based on this observation, in this paper we present mu-

tual information (MI) based criteria for SSL from multi-

domain data. MI is used as an indicator of how much inter-

and intra-domain information the model captures. In or-

der to capture semantically shared information across dif-

ferent domains, we minimize the MI between the represen-

tation and the domain label of images. Under this objective,

domain-invariant information that excludes unwanted vari-

ations will be encoded to the high-level representations. On

the other hand, the enforced domain invariance and the ex-

istence of dataset imbalance may let the model overlooks

or overfits some domains and hence lose their information.

Regarding persevering specific information of each domain,

we introduce constraints on the value of the MI between in-

put images and their CNN representations for every domain,

so that the representation will maintain certain level of in-

formation on every domain. To make these two information

theoretic constraints computable, an adversarial approxima-

tion of the variational upper bound and a contrastive lower

bound of MI are applied to approximately optimize the ob-

jectives. Therefore, the learned representation will result in

a controllable trade-off between learning domain-invariant

and domain-specific information.

To demonstrate the effectiveness of our proposed MI

criteria on MDL for SSL, we conduct experiments on the

multi-domain dataset PACS [26], as well as on large-scale

datasets ILSVRC 2012 [42] and Places [55] following the

SSL benchmark. We perform ablation studies to examine

the effectiveness of each component in our model. Experi-

mental results demonstrate the advantages of our approach.

2. Related work

This work relates to several topics in computer vi-

sion and machine learning: self-supervised learning (SSL),

multi-domain learning (MDL), domain generalization (DG)

and mutual information (MI) criterion, which we briefly re-

view here.

Self-supervised learning. SSL constructs pretext tasks

by discovering supervisory signals directly from the input

data itself. CNNs trained to predict this supervisory infor-

mation will encode high-level semantic representations of

the input. Notable types of pre-text tasks for images include

constructing relationship between image patches like patch

position prediction [9, 31], solving jigsaw puzzle [32, 6] and

counting [33], and reconstructing part of the image like im-

age completion [37], colorization [52, 24, 25] and channel

prediction [53].

Some other important aspects beyond the form of pre-

text tasks have also been studied. For example, Ren and

Lee [41] studied the effects of synthetic images for rep-

resentation learning and the influence of the domain gap

between synthetic images and real-world images. It is re-

lied on the free ground truth from synthetic images. Do-

ersch and Zisserman [10] investigated the effect of com-

bining multiple pretext tasks together. They conclude that

deeper networks outperform shallow networks and combin-

ing tasks always improves performance over the tasks alone.

Kolesnikov et al. conducted a thorough large-scale study on

the choice of modern CNNs for self-supervised learning by

revisiting several pretext tasks [22]. They discover many

crucial insights related to the CNNs architecture including

skip-connections and the number of filters. Our work also

focuses beyond designing pretext task. We explore the in-

fluence of using multiple related datasets and propose two

strategies for learning with multi-domain data.

Multi-domain learning and domain generalization.

MDL aims to solve the shortcomings of a single dataset

by using the data from multiple domains [12]. Several

methods in supervised learning setting design specific net-

work to handle domain-related feature, such as encoding

domain descriptor [50] and using domain-specific parame-
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Figure 2: Illustration of the proposed method. We leverage image data from multiple related domains to perform a self-supervised learning

task. MI acts as a proxy for domain-related information and is used as constraints for the main SSL task.

ters [39, 40, 8]. Some other work seek a common feature ex-

tractor, for example discovering domain-related neurons by

domain guided dropout [49] or learning domain-invariant

representation [43]. Since SSL expect the encoder to be

able to extract better representation for certain input images

or similar ones, we do not reply on specific-parameters and

focus on a common feature extractor.

Another line of research that aims to improve the gen-

eralization ability of a supervised learning algorithm is

DG [16, 26, 30, 27, 28, 29]. Note that our approach is essen-

tially different from methods that cope with DG problem,

where they care more about building a domain-agnostic

classifier that is effective when applied in an unseen target

domain. While for SSL, the aim is learning better repre-

sentation for input images, so that they can be used to ex-

tract representations of these images or similar ones. We

argue that it is demanding to require the learned representa-

tion transfer to a dramatically different domain, where the

pre-text task could even be unsuitable (e.g. transferring rep-

resentations learned by RotNet [18] to a rotation-invariant

image domain seems unreasonable). We aim at taking more

related unlabeled datasets into training to boost the perfor-

mance on similar images given one dataset, even though

this dataset exist in small amounts. Most of the DG meth-

ods only conduct experiments on small-scale datasets like

VLCS [14] and PACS [26]. It is unclear whether they

are able to scale to large-scale datasets like ImageNet and

Places. We aim at improving SSL with images from large-

scale datasets. Data from each domain are expected to help

each other, and we mainly evaluate the learned representa-

tion based on the performance on each individual domain.

Mutual information criterion. MI criterion has been

explored before to model the relationship of data from dif-

ferent domains. Shi and Sha [44] examined the objec-

tives in the form of both MI between all data and their

binary domain labels and MI between the target data and

estimated class labels for unsupervised domain adaptation.

However, their model and the corresponding computation

of MI build upon discriminative clustering and metric for-

mulation, which can not be scaled to deep neural networks.

Gholami et al. [17] use MI for multi-target domain adap-

tation with labeled source domain data. Its optimization of

MI objective is based on Barber & Agakov lower bound [3]

of MI. MI has achieved wide applications and successes

in deep learning [2, 1, 4]. It has also been used to estab-

lish connections between structure in data [36, 19]. We use

tractable bounds of MI in this paper to establish connections

between multiple domains.

3. Multi-domain learning

In this section, we first introduce the problem setting

and present the proposed information-theoretic constraints.

Then we describe in detail of the tractable approximation of

MI minimization and maximization. Our model is summa-

rized in Figure 2.

Our goal is to transform each image example x ∈ X
from a certain domain, where X denotes an input space for

images, into a high-level semantic representation z ∈ Z
that is transferable to a variety of downstream tasks in an

unsupervised way. To achieve this goal, we employ a para-

metric encoder function E(·;θe) : X → Z with parameters

θe (e.g. a neural network).

We are interested in learning with data from multiple do-

mains. Assume the number of related domains available

at hand is M . For i = 1, . . . ,M , the i-th domain has Ni
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training images: Si = {(x
(j)
i , d

(j)
i )}Ni

j=1, where d is the

discrete domain label. We denote the empirical probabil-

ity distribution of xi on the i-th domain by pi(x). The

representation z for an image x are obtained by sampling

from a conditional probability distribution pθe
(z|x) param-

eterized by θe. There are several possible choices for the

encoder distribution pθe
(z|x). In this paper we assume

that pθe
(z|x) is defined by the deterministic function of x,

which is E(·;θe). The marginal distribution of z on each

domain is then

pi,θe
(z) =

∑

x∈Si

pθe
(z|x)pi(x). (1)

First of all, we want to encode the representation z with

semantic information by training under an SSL objective.

Let F (·;θf ) denotes the head network for SSL that takes z

as input. The loss function for an SSL method is defined

as l(F (E(x;θe);θf )) for simplicity. Many state-of-the-

art SSL methods can be used here to learn representations.

For example, if we choose Rotation [18] as the SSL task,

then l(·, ·) is the cross-entropy loss for rotation classifica-

tion. Given data from all domains available, the objective

for multi-domain SSL is

min
θe,θf

Lf =
1

M

M
∑

i=1

1

Ni

Ni
∑

j=1

l(F (E(x
(j)
i ;θe);θf )). (2)

Learning under this objective alone is equal to naı̈vely

combining datasets. Our experimental results reveal that the

performance of MDL is sometimes no better than learning

on the single domain, which shows that naı̈vely adding ad-

ditional training examples is not always beneficial. we next

introduce MI based constraints to address this issue.

3.1. Mutual information constraints

As previously discussed, we have to explicitly model

cross-domain relationship so that the resulting representa-

tion could learn cross-domain semantic knowledge. We

now discuss in detail of our desiderata.

3.1.1 Domain-invariant information

Regarding leveraging information across domains, our de-

sired properties of the representation are that they capture

the common semantic knowledge in the input data across

different domains, although they may appear differently.

Variations in appearance of images may include viewing

angle, illumination condition, image style, imaging system,

place where datasets are collected and even preference of

dataset collectors [14, 43]. For some downstream tasks

(e.g. object-oriented image recognition), these variations

are harmful for representation learning since they are un-

related to the decision of the task most of the time. Hence,

we hope the z of images with similar objects from differ-

ent domains will be similar as much as possible and reveal

the information of their specific form of variation as less as

possible.

Let p(x) and pθe
(z) denote the empirical mixture distri-

butions derived from the collection of distributions from ev-

ery domain, and x ∼ p(x) and z ∼ pθe
(z) are random vari-

ables. We express our desideratum for learning similar con-

cepts from related domains as limiting the maximum value

of MI I(z, d) between the image representation z from all

domains and the corresponding domain label d of the orig-

inal image. Conceptually, this objective is similar to the

idea in existing works to make marginal distributions of the

representation similar across domains [15, 43]. If I(z, d) is

small, then given a z, it is hard to tell which domain the in-

put image x is from. As a result, the learned representation

will discard unwanted domain-related variations and form a

domain-invariant representation space, where every domain

has a similar marginal distribution.

3.1.2 Domain-specific information

Although domain-related variations are discarded, enforc-

ing the similarity in marginal distributions bear no direct

consequence on useful information capture on each domain.

The domain-invariant representation space can also be cre-

ated by projecting input images to a random invariant space

without semantic correspondence. Maintenance of specific

information for each domain is necessary. Furthermore, the

MDL strategy introduced so far does not take dataset imbal-

ance into consideration. Images in some domains could be

abundant while in other domains they might be scarce. Do-

mains with only small amount of data will be either over-

looked by the domain-invariant objective or overfitted by

the SSL objective. Specific information about these do-

mains should be preserved to ensure an intra-domain per-

formance.

Formally, let xi ∼ pi(x) and zi ∼ pi,θe
(z) denote the

random variables of input images and representations from

i-th domain, respectively. Our desideratum is limiting the

minimum value of MI I(zi,xi) for every domain so that

domain-specific information is retained in the representa-

tion to a certain level for every domain.

Rewriting the objective function (2) with these two

desiderata, we have the following constrained optimization

problem:

min
θe,θf

Lf =
1

M

M
∑

i=1

1

Ni

Ni
∑

j=1

l(F (E(x
(j)
i ;θe);θf ))

s.t. I(z, d) < ǫu

I(zi,xi) > ǫl, ∀i ∈ {1, . . . ,M},

(3)

which is different from (2) as the introduced MI constraints
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allow z to be more semantically representative by excluding

unwanted variations while retaining specific information in

each xi. The hyper-parameters ǫu and ǫl control the amount

of MI between z and x. Approximating the Lagrangian dual

of problem (3) using Lagrangian multipliers λu and λl, the

objective becomes:

min
θe,θf

Lf + λuI(z, d)− λl

M
∑

i=1

I(zi,xi). (4)

Both MI terms in (4) are difficult to compute and opti-

mize. We provide tractable approximations by using upper

and lower bounds of MI in the following two sections.

3.2. Upper bound of I(z, d) via adversarial training

Mutual information is upper bounded by replacing one

of the marginal distributions with a variational posterior dis-

tribution [1, 2, 54, 38]. Formally, for any distribution q(d),
we can have an upper bound of I(z, d):

I(z, d) = Epθe (z,d)

[

log pθe
(d|z)− log p(d)

]

= Epθe (z)
DKL(pθe

(d|z)‖q(d))−DKL(p(d)‖q(d))

≤ Epθe (z)
DKL(pθe

(d|z)‖q(d)) := C.

(5)

However, the pθe
(d|z) in Eq. (5) is intractable. We can

instead approximate pθe
(d|z) with a parameterized model

qφu
(d|z), thus this upper bound has a lower bound [45]:

C ≥ Epθe (z)

[

DKL(pθe
(d|z)‖q(d))−

DKL(pθe
(d|z)‖qφu

(d|z))
]

= Epθe (z,d)

[

log qφu
(d|z)− log q(d)

]

:= Ĉ.

(6)

Maximizing Ĉ with respect to φu will decrease

DKL(pθe
(d|z)‖qφu

(d|z)), making Ĉ a good approxi-

mate toward the upper bound C. The q(d) in Eq. (5)

can be chosen as a kernel density estimate based on all

datasets [45]. By making DKL(p(d)‖q(d)) as small as

possible, C gets closer to I(z, d). Therefore, minimization

of I(z, d) can be achieved through the following adversarial

objective:

min
θe

max
φu

Lu = Epθe (z,d)

[

log qφu
(d|z)− log q(d)

]

. (7)

Practically, we model qφu
(d|z) as a function D(·;φu) :

Z → ∆ = {α ∈ R
M : α1 + . . . + αM = 1, αd ≥ 0, d =

1, . . . ,M} (e.g. a neural network with softmax output) with

parameters φu that outputs a probability vector for an input

z, where ∆ is the probability simplex. The value of the

d-th component is denoted by D(d)(·;φu). Modeled with

empirical distributions, Lu can be further expressed as

Lu =
1

M

M
∑

i=1

1

Ni

Ni
∑

j=1

log
[

D(d
(j)
i

)(E(x
(j)
i ;θe);φu)/q(d

(j)
i )

]

.

(8)

Interestingly, this formulation is equal to the cross-

entropy loss used in multi-class classification. The net-

work D(·;φu) classifies input z into correct domain while

E(·;θe) tries to confuse D(·;φu). In practice, the q(d) is a

constant value and can be omitted during optimization.

3.3. Lower bound of I(zi,xi)

It is able to maximize the MI I(zi,xi) in objective (4) by

just maximizing one of its tractable lower bounds. MI can

have a lower bound formulation based on Noise Contrastive

Estimation [36]:

I(zi,xi) ≥ Î(NCE)(zi,xi)

:= Epi(x)

[

T (E(xi;θe),xi;φl)−

Ep̃i(x)

[

log
∑

x
′

i

eT (E(xi;θe),x
′

i;φl)
]

]

,

(9)

where x
′

i is the random variable of input images sampled

from the distribution p̃i(x) = pi(x). We can also max-

imize MI by maximizing the Jensen-Shannon divergence

(JSD) [35] formulation of MI, which is capable of provid-

ing stable approximation results [19]. To be specific, the

JSD formulation is

Î(JSD)(zi,xi) := Epi(x)

[

− sp(−T (E(xi;θe),xi;φl))
]

−

Epi(x)×p̃i(x)

[

sp(T (E(xi;θe),x
′

i;φl))
]

,

(10)

where sp(x) = log(1 + ex) is the softplus function. As

suggested in [19], the function T (·, ·;φl) can share lower

layers with E(·;θe) so that E(·;θe) = f(·;θe) ◦ C(·;θe)
and T (·, ·;φl) = D(C(·;θe), E(·;θe);φl). Maximizing

Eq. (10) with respect to θe and φl will maximize the MI

I(zi,xi) in objective (4).

Our complete model comprises three core modules:

multi-domain self-supervised learning (Eq. (2)), domain-

invariant representation constraint (Eq. (8)) and domain-

specific information preservation (Eq. (10)), and can be

written as the following minimax objective:

min
θe,θf ,φl

max
φu

Lf + λuLu − λl

M
∑

i=1

Î(JSD)(zi,xi). (11)

Solving this objective requires adversarial training of the

CNN. We connect a Gradient Reversal Layer (GRL) [15]

after E(·;θe), so that maximizing Lu w.r.t. φu will give

rise to the minimization of Lu w.r.t. θe.

4. Experiments

In this section, we conduct experiments on three types

of dataset to demonstrate the effectiveness of our approach.

These datasets are:
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• PACS dataset [26]: A small-scale multi-domain

dataset containing 4 sub-datasets, where the image

styles are different. This mainly aims to examine how

our approach performs in scenarios where the total

number of data available is limited.

• ImageNet (ILSVRC 2012) [42] and Places [55]:

We combine these two large-scale datasets and each

dataset is viewed as a domain. The former mainly

contains object-oriented images while the latter con-

tains scene-oriented images. We test the performance

of our apporach under large-scale datasets through this

setting.

• PASCAL VOC 2007 [13]: We test how our approach

performs when we use more diverse data available (Im-

ageNet and Places) to help the learning on a rather

small dataset (PASCAL).

We investigate the behavior of our mutual information con-

straints in comparison to both the standard single-domain

SSL model and the strategy of naı̈vely combining datasets

(marked as DeepAll in tables) as proof-of-principle.

Linear classification is a common procedure for feature

evaluation [53]. Its rationality has also been confirmed re-

cently by a study through thorough experiments, where it

is shown that a linear model is adequate for evaluating the

quality of a representation [22]. Therefore, we evaluate the

learned representations by training a linear multi-class clas-

sifier on top of them. High performance on this task requires

high-level semantic image understanding from the learned

representation. Following previous procedure [36, 19], for

all experiments we evaluate representations from the last

convolutional layer (conv5) and the output of the encoder

E(·;θe) (last fully-connected) layer (fc7).

4.1. Implementation details

We choose predicting image rotation (RotNet) [18] and

AET [51] as the running examples of SSL since they are ef-

ficient methods and achieve state-of-the-art results on many

downstream tasks. The proposed multi-domain solution

can be integrated with mainstream SSL methods. As sev-

eral transformation copies of an image are created in every

batches in RotNet and AET, we apply the MI constraints

separately on each copy of a minibatch. The encoder func-

tion E(·;θe) is implemented as a standard AlexNet archi-

tecture [23] following the setting of [18]. It consists of

five convolutional layers and two fully-connected layers.

The prediction function F (·;θf ) of SSL is implemented

as a one-layer linear network. For functions T (·, ·;φl) and

D(·;φu) used in MI approximation, we use a three-layer

multilayer perceptron (MLP) with the number of hidden

layers being 512. The feature map C(·;θe) are taken from

the conv4 layer of the encoder E(·;θe). For all experi-

ments, we set the Lagrangian multipliers λu and λl as 0.1,

except on PACS λl is 1. In order to prevent the network

from seeing different levels of total images for each do-

main, we divide each data batch equally to each domain.

Our model is trained with momentum of 0.9, a batch size of

128 and an l2 penalization of all weights with 5 · 10−4. The

learning rate is set to 0.01 initially and then decayed by a

factor of 10 when loss on validation set reaches plateau.

On PACS dataset, due to the low number of total im-

ages in the dataset, the number of channels on each con-

volutional layer of E(·;θe) are scaled to 1/4 of the original

size. The last convolutional layer is followed by 2 fully con-

nected layers with output size of 512 and 64, respectively.

The conv5 feature is pooled to a size of 64 by global av-

erage pooling for linear evaluation. The number of hidden

layers in D(·;φu) is also scaled to 64. For experiments

involving ImageNet, the output of E(·;θe) is first linearly

projected to a 128-dimensional feature vector before it is

fed into T (·, ·;φl) according to the practice of [19] for the

purpose of reducing memory consumption. Feature map on

conv5 are spatially resized (with adaptive max pooling) so

as to have around 9,000 elements [52] for linear evaluation.

4.2. PACS dataset

PACS [26] consists of images from photo (P), art paint-

ing (A), cartoon (C) and sketch (S) domains. Although it is

originally proposed for the purpose of evaluating DG meth-

ods, the four domains in PACS are closely related and share

same object-level semantics (same seven classes), while are

seemingly dissimilar (different image style). Training on

any one of these domains alone will not guarantee good

comprehensive semantics for objects.

The numbers of images in each domain are 1,670, 2,048,

2,344 and 3,929, respectively. The total number of images

is 9,991. We use the original train-validation split on each

domain in PACS, and train our model on training set and re-

port the representation evaluation results on each validation

set. The linear classifier is chosen as support vector machine

(SVM). Experimental results are summarized in Table 1.

From the results, we can see that DeepAll (training on

all sub-datasts together) is slightly better than training an

SSL algorithm on a single domain on average. But the

performance on some domains get decreased. This sug-

gests that SSL from multi-domain data without consider-

ing cross-domain relationship will hurt the representation.

Our method (DeepAll+MI) outperforms DeepAll and single

domain training on most domains. The average accuracies

on conv5 and fc7 are improved by 1.1% and 3.0% un-

der RotNet, respectively. Information loss on some domain

are successfully saved back. These results confirm the ad-

vantage of utilizing the proposed mutual information con-

straints. Our method is effective in boosting the SSL on

multiple domain by leveraging information across domains.
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Training domain\Test domain
Art painting Cartoon Photo Sketch Average

conv5 fc7 conv5 fc7 conv5 fc7 conv5 fc7 conv5 fc7

DeepAll-labels 64.7 58.0 85.4 89.2 83.2 85.2 76.1 74.7 77.4 76.8

Art painting (RotNet) 50.4 44.6 61.6 53.9 77.7 75.4 61.8 58.0 62.9 58.0
Cartoon (RotNet) 49.9 51.6 65.9 57.1 76.2 74.2 66.7 63.0 64.7 61.5
Photo (RotNet) 45.1 37.7 65.5 53.2 80.9 73.8 64.0 59.8 63.9 56.1
Sketch (RotNet) 45.4 38.7 56.3 45.0 71.9 64.1 72.6 59.9 61.6 51.9
PACS (DeepAll, RotNet) 54.3 43.0 68.5 58.7 80.9 73.5 60.9 61.9 66.2 59.3
PACS (DeepAll, AET) 53.1 43.4 67.6 42.2 77.3 72.1 66.3 50.6 66.1 52.1

Ours (DeepAll+MI, RotNet) 55.5 49.7 68.5 66.3 81.6 77.1 63.4 64.7 67.3 64.5
Ours (DeepAll+MI, AET) 56.9 46.7 69.6 56.9 80.9 73.9 67.9 59.7 68.8 59.3

Table 1: Top-1 linear classification accuracies on PACS dataset using activations from different pretraining strategies.

Training dom.\Test dom.
ImageNet Places Average

conv5fc7 conv5fc7 conv5fc7

ImageNet-labels 47.9 55.9 37.7 41.3 42.8 48.6

Random 7.2 1.1 11.9 3.5 9.6 2.3

ImageNet 31.9 20.4 32.5 24.7 32.2 22.6
Places 30.1 10.5 34.1 19.7 32.1 15.1
ImageNet+Places (DeepAll) 31.6 21.4 33.2 28.5 32.4 25.0

Ours (DeepAll+MI) 32.5 26.0 33.7 31.8 33.1 28.9

Table 2: Top-1 linear classification accuracies on ImageNet and

Places validation set using activations from different pretraining

strategies.

4.3. ImageNet and Places

ImageNet and Places are two large-scale image datasets

with 1,281,167 and 2,448,873 images in training set, re-

spectively, and 3,730,040 in total. As usual, we train logis-

tic regression on top of the representations on the training

set and report accuracies on the validation set [53]. We pre-

compute the visual representations for all training images

and train the logistic regression by SGD for 50 epochs. This

is inspired by [22], enabling a fast evaluation and compar-

ison between different scenarios. Table 2 shows the linear

classification accuracies with the representations learned in

RotNet.

Either of these two datasets has enough images to let

CNNs get a reasonably good representation in SSL. When

integrating more data into training, we can see that perfor-

mance does not improve much. This is reflected by compar-

ing ImageNet entry with ImageNet+Places entry on Ima-

geNet performance, as well as comparing Places entry with

ImageNet+Places entry on Places performance. The result

even decreases on conv5 layer (from 31.9 to 31.6 and from

34.1 to 33.2). Transfer learning results get large improve-

ments (comparing ImageNet entry with ImageNet+Places

entry on Places performance, and vice versa on ImageNet),

which is possibly due to the explicit use of target domain

images. Again, our method (DeepAll+MI) further outper-

Training domain\Test domain
PASCAL Classification

conv5 fc7

ImageNet-labels 80.3 83.5

Random 55.6 45.2

ImageNet 74.3 72.7
ImageNet+Places 74.5 73.8
ImageNet+PASCAL 74.8 73.2

Ours (ImageNet+Places+MI) 75.0 75.6
Ours (ImageNet+PASCAL+MI) 74.8 75.3

Table 3: Mean average precision on PASCAL VOC 2007 using

activations from different pretraining strategies.

forms naı̈ve combination (DeepAll). The improvement on

fc7 layer is most significant, which represents that learn-

ing from multi-domain data and the proposed constraints

are able to improve the representation outputted by E(·;θe)
and mitigate its over-fitting toward the SSL task.1

4.4. PASCAL VOC

Transfer a CNN pretrained in a pre-text task on Ima-

geNet to PASCAL dataset is a standard test in SSL experi-

mental benchmark. The relatively small size of the training

sets on PASCAL makes it a good proxy toward real-world

applications. In order to show the effect of multi-domain

learning, we first pre-train RotNet on ImageNet and Places,

and test on PASCAL by training a linear logistic regression

(a multi-label cross entropy loss) on top of the features. This

is somewhat similar to domain generalization setting and

will show the generalization ability of our method. We then

pre-train RotNet on ImageNet and PASCAL, which evalu-

ate the effect when we combine the target data at hand with

a large dataset.

1These results of linear evaluation do not use data augmentation, and

they are lower than those reported in RotNet [18]. For consistency

and comparison with RotNet, when trained with data augmentation, our

method is able to improve the performance on conv5 from 37.3% [18]

to 38.2%, and from 34.8% [18] to 36.0% on ImageNet and Places, re-

spectively (Results of RotNet are reproduced by us and outperform those

reported in [18] (36.5 and 33.7)).
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Training domain\Test domain Art painting Cartoon Photo Sketch Average

(λu, λl) conv5 fc7 conv5 fc7 conv5 fc7 conv5 fc7 conv5 fc7

PACS (DeepAll) (0, 0) 54.3 43.0 68.5 58.7 80.9 73.5 60.9 61.9 66.2 59.3

Ours (DeepInvariance) (0.1, 0) 55.4 45.0 68.4 60.1 80.4 73.4 63.9 58.0 67.0 59.1
Ours (DeepSpecific) (0, 0.1) 55.8 48.2 66.9 64.5 80.8 76.5 61.5 61.9 66.3 62.8

Ours (Full) (0.1, 0.1) 56.3 45.4 67.6 62.9 78.1 75.8 66.7 65.7 67.2 62.5
Ours (Full) (0.1, 1) 55.5 49.7 68.5 66.3 81.6 77.1 63.4 64.7 67.3 64.5
Ours (Full) (0.1, 0.01) 53.2 46.5 67.1 62.7 80.8 75.4 63.4 60.4 66.1 61.3
Ours (Full) (1, 0.1) 55.3 44.7 67.9 64.1 81.0 79.3 65.3 60.4 67.4 62.1
Ours (Full) (0.01, 0.1) 55.5 46.4 66.3 64.2 79.5 76.2 64.5 64.3 66.5 62.8

Table 4: Comparison of different components and different values of parameters λu and λl in our model on PACS linear classification task.

As shown in Table 3, both these two strategies are bet-

ter than ImageNet pretrained model on PASCAL. This indi-

cates that leveraging information from large scale datasets is

useful for representation learning on PASCAL. Our method

further improves simple dataset combination. Pretraining

on ImageNet and Places with MI constraints achieve the

best results. This suggests that the proposed mutual infor-

mation constraints improve the generalization ability of the

representation.

4.5. Ablation studies

In this section, we further conduct experiments on PACS

linear classification task to understand the impact of differ-

ent components and different hyper-parameter values in our

method.

4.5.1 Impact of different components

To investigate the contributions of each component in our

framework, we compare the following variants: DeepAll:

Train SSL on all available domains (naı̈ve combination).

DeepInvariance: Train SSL on all available domains with

constraint in Eq. (7) only. DeepSpecific: Train SSL on all

available domains with constraint in Eq. (10) only. Full:

Our full model (Eq. (11)). Results for every variant are sum-

marized in Table 4. We can observe the influence of each

individual component:

1. DeepInvariance outperforms DeepAll mainly on

conv5 layer, which can be seen from the Average re-

sults. This invariance constraint is imposed on the out-

put layer of E(·;θe) (fc7). It seems that the enforced

invariance alone does not add additional information

toward the output feature on average, but the interme-

diate layer will encode better representation.

2. DeepSpecific outperforms DeepAll mainly on fc7

layer, demonstrated by the improved performance on

it. This is the result of maintaining domain-specific

information on each domain.

3. Ours (Full) model achieves a trade-off between

DeepInvariance and DeepSpecific, and outperforms

DeepAll. Note that the result of using domain-invariant

and domain-specific constraints together does not sim-

ply equal to linearly add their effects separately. They

interact in a complex way and can further improve each

of them.

4.5.2 Impact of different λ value

Finally, we also evaluate the influence of the parameters λu

and λl in our model. The last five rows in Table 4 sum-

marize the results on PACS linear classification task with

different settings of λu and λl. We observe that the rela-

tive strength of these two MI constraints will have an ef-

fect on the final results. Emphasizing each one of them

will make the performance follow the effect of DeepInvari-

ance or DeepSpecific. These results verify the effect of the

two MI desiderata and their ability in seeking a controllable

trade-off between learning domain-invariant and domain-

specific information.

5. Conclusion

In this paper, we have presented an information-theoretic

approach to improve the use of training data when com-

bining datasets from multiple domains for self-supervised

learning, and demonstrated its effectiveness with RotNet

using popular vision datasets. Our proposed mutual infor-

mation constraints explicitly exploit common, invariant as

well as specific information across different domains. The

learned representation seeks a trade-off between maximal

invariance and maximal information maintenance, which

lead to improved performance than previous results. We

believe that learning from multiple domains is beneficial to

representation and is a promising future direction especially

for practical applications of self-supervised learning.
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